
STABILITY OF COUPLED SYSTEMS

FARID AMMAR KHODJA, ASSIA BENABDALLAH AND DJAMEL TENIOU

Abstract. The exponential and asymptotic stability are studied for certain
coupled systems involving unbounded linear operators and linear infinites-
imal semigroup generators. Examples demonstrating the theory are also
given from the field of partial differential equations.

1. Introduction

In [1] and [2], the authors have studied a system which consists in a
coupling of the wave equation with the heat equation. They showed that,
under some conditions, one has exponential stability or asymptotic stability.
Another system has been studied in [3]. Stability results are also proved
there. Our goal, in this paper, is to give results for the stability of more
general systems than those cited.
The system we want to study is:

u′ = Au+Bv,
v′ = −B∗u+ Cv,
u(0) = u0, v(0) = v0.

(1)

where A, B and C are unbounded operators on complex Hilbert spaces which
will be precisely defined in what follows.
This work is divided into three parts. In the second section, sufficient

conditions are given which insure the exponential stability of the semigroup
associated to system (1). The third section is devoted to the study of the
asymptotic stability. Applications to some examples end this paper.

2. Exponential stability

In this section, we set the following assumption:
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Assumption (E.S)

1) (A,D(A)) is a generator of an exponentially stable semigroup of con-
tractions (SA(t)) on the Hilbert space X: there exist ωA > 0 and
MA > 0 such that

‖SA(t)‖X ≤ MAe
−tωA ∀t ≥ 0;

2) (C,D(C)) is self-adjoint on the Hilbert space Y and generator of an
exponentially stable semigroup (SC(t));

3) (B,D(B)) is an operator from Y to X such that D(A) ⊂ D(B∗) and
it is (−C) 1

2 - bounded, i.e: D((−C) 1
2 ) ⊂ D(B) and

B(−C)− 1
2 ∈ L(Y,X);

4) The operator

L =
(

A B
−B∗ C

)
of domain D(A) × D(C) is closed and there exists λ0 > 0 such that
(λ0I − L) is onto.

Proposition 1. Under the assumption (E.S), the operator L is an infini-
tesimal generator of a semigroup SL(t) of contractions.

Proof. L is monotone since for all (u, v) ∈ D(L), one has:〈
L

[
u
v

]
,

[
u
v

]〉
X×Y

= 〈Au, u〉X + 〈Bv, u〉X − 〈B∗u, v〉Y + 〈Cv, v〉Y .

So, using assumptions (E.S1)-(E.S2):

Re

〈
L

[
u
v

]
,

[
u
v

]〉
X,Y

= Re (〈Au, u〉X + 〈Cv, v〉Y ) ≤ 0.

The assumption (E.S4) implies that L is maximal. The Lumer-Phillips
theorem gives the result.

Then, for all (u0, v0) ∈ D(L), the system
Y ′(t) = LY (t),

Y (0) = Y0 =
[
u0
v0

]
,

(2)

has a unique solution Y in C([0,+∞[;D(L)) ∩ C1([0,+∞[, X × Y ) [10].

Let us denote by Y (t) =
[
u(t)
v(t)

]
, t ≥ 0, a solution of (2). One has:

Theorem 2. The semigroup SL(t) generated by (L,D(L)) is exponentially
stable: there exist ω > 0 and M > 0 such that

‖SL(t)‖X×Y ≤ Me−ωt ∀t ≥ 0.
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Before proving the theorem, let us recall (see Pritchard and Zabczyk [11])
that a semigroup (S(t))t generated on a Hilbert space (H, 〈, 〉H) by an oper-
ator (A,D(A)) is exponentially stable if and only if there exists a bounded,
positive and selfadjoint operator P on H such that:

2 〈PAY, Y 〉H = −‖Y ‖2H ∀Y ∈ D(A).

This last equation (in P ) is called the Lyapunov equation (E.L) and
the solution P the Lyapunov operator. As the semigroups associated to
(A,D(A)) and (C,D(C)) are exponentially stable, we denote by PA and PC

their associated Lyapunov operators. One has:{
2Re 〈PAAu, u〉X = −‖u‖2X ∀u ∈ D(A),
2Re 〈PCCv, v〉Y = −‖v‖2Y ∀v ∈ D(C).(3)

In fact, as the operator (C,D(C)) is selfadjoint and its semigroup ex-
ponentially stable, the associated Lyapunov operator PC is −1

2C
−1. So we

have:

Lemma 3. There exists ε0 > 0 such that for all ε ≤ ε0 and all Y0 ∈ D(L),
the functional

ρε(t) = ‖Y (t)‖2X×Y + ε 〈PAu(t), u(t)〉X + ε
〈

−C−1v(t), v(t)
〉

Y

is such that there exists D(ε) > 0 for which

ρε (t) ≤ ρε (0)e−D(ε)t for all t ≥ 0.

Proof. We will prove that, for sufficiently small ε > 0, there exists a positive
constant D(ε) such that

d

dt
ρε(t) ≤ −D(ε)ρε(t).

Evaluating the derivative of ρε(t) , we get from system (2)
d

dt
‖Y (t)‖2X×Y = 2Re 〈Cv(t), v(t)〉Y + 2 Re 〈Au(t), u(t)〉X

and from (3)
d

dt
〈PAu(t), u(t)〉X = −‖u(t)‖2X + 2Re 〈 Bv(t), PAu(t)〉X ,

d

dt

〈
C−1v(t), v(t)

〉
Y
= −‖v(t)‖2Y − Re

〈
B∗u(t), C−1v(t)

〉
Y
.

Now we estimate the products using the assumptions on B and C:

|〈 Bv(t), PAu(t)〉X | =
∣∣∣〈 B(−C)− 1

2 (−C) 1
2 v(t), PAu(t)

〉
X

∣∣∣
≤ 1
2α‖B(−C)− 1

2 ‖2L(Y,X)‖(−C)
1
2 v(t)‖2Y

+α
2 ‖PA‖2L(X)‖u(t)‖2X ,

where α is a positive constant. We recall that the assumption (E.S3) implies
that all the quantities of the right member are bounded.
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Next, we estimate the last term:∣∣〈 B∗u(t), C−1v(t)
〉
Y

∣∣ =
∣∣∣〈u(t), B(−C)− 1

2 (−C)−1(−C) 1
2 v(t)

〉
Y

∣∣∣
≤ α

2 ‖u(t)‖2X + 1
2α ‖B(−C)− 1

2 ‖2L(Y,X)

·‖(−C)−1‖2L(Y ) ‖(−C) 1
2 v(t)‖2Y .

Grouping these estimates together (with the use of the dissipativity of A),
we get

d

dt
ρε(t) ≤ −ε ‖v(t)‖2Y − ε(1− α

2
‖PA‖2L(X) − α

2
)‖u(t)‖2X

+
[
ε

2α
‖B(−C)− 1

2 ‖2L(Y,X)

(
‖(−C)−1‖2L(Y ) + 1

)
− 2

]
‖(−C) 1

2 v(t)‖2Y .
If we choose α < α0 , where

α0 = 2
(
‖PA‖2L(X) + 1

)−1
,

and ε < ε0 , where

ε0 =
4α

‖B(−C)− 1
2 ‖2L(Y,X)

(
‖(−C)−1‖2L(Y ) + 1

)
we can then write

d

dt
ρε(t) ≤ −a(ε)‖Y (t)‖2X×Y

with
a(ε) = ε

(
1− α

2
(‖PA‖2L(X) + 1)

)
.

From the definition of ρε:

‖Y (t)‖2X×Y ≥ (1 + εmax
(
‖PA‖L(X), ‖C−1‖L(Y )

)
)−1ρε (t)(4)

and the two last inequalities give
d

dt
ρε(t) ≤ −D(ε)ρε(t),(5)

where

D(ε) =
a(ε)

1 + εmax
(
‖PA‖L(X), ‖C−1‖L(Y )

) .(6)

This proves the exponential decay of ρε(t).

Lemma 4. For ε > 0, the application

ςε :

 X × Y → R+

Y = (u, v) → ςε(Y ) =
(
‖Y ‖2X×Y + ε 〈PAu, u〉X + ε

〈−C−1v, v
〉
Y

) 1
2

defines a norm on X × Y which is equivalent to ‖Y ‖X×Y .
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Proof. One has the inequalities

‖Y ‖X×Y ≤ ςε(Y ) ≤
(
1 + εmax

(
‖PA‖L(X), ‖C−1‖L(Y )

)) 1
2 ‖Y ‖X×Y.

The first inequality is obvious. The second is (4).

Proof of the theorem. Lemmas 3 and 4 prove the theorem since we deduce
from them that, ∀t ≥ 0, we have

‖Y (t)‖2X×Y ≤ (1 + εmax
(
‖PA‖L(X), ‖C−1‖L(Y )

)
) ‖Y (0)‖2X×Y e

−D(ε)t,

which proves the exponential decay and gives an estimation of the decay
rate.

3. The asymptotic stability

Definition 5. A C0 semigroup (S(t))t in a Banach space E is said to be
asymptotically stable if

lim
t→+∞S(t)x = 0 ∀x ∈ E.

In this section, the assumption (E.S) is replaced by
Assumption (A.S)
1) (A,D(A)) has a compact resolvent and is a generator of contraction
semigroup (SA(t)) on the Hilbert space X;

2) (C,D(C)) has a compact resolvent, is self-adjoint on the Hilbert space
Y and generator of an exponentially stable C0−semigroup (SC(t));

3) i) D(C) ⊂ D(B) and there exist two constants αC and δC with

0 ≤ αC < 1, δC ≥ 0,

such that
‖Bv‖X ≤ αC‖Cv‖Y + δC‖v‖Y .

ii)
D(A) ⊂ D(B∗)

and there exist two constants αA and δA with

0 ≤ αA < 1, δA ≥ 0,

such that
‖B∗u‖Y ≤ αA‖Au‖X + δA‖u‖X .

Remark 6. The assumption (A.S3) is natural because the operator L can
be written as follows

L = D + E

with

D =
(
A 0
0 C

)
, E =

(
0 B

−B∗ 0

)
.

Clearly D is a generator of contraction semigroup and since E is dissipa-
tive, L is also a generator of contraction semigroup (see for example [10],
Corollary 3.3, p. 82).
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For

Y0 =
[
u0
v0

]
∈ X × Y,

let us denote by γ(Y0) its orbit and by ω(Y0) its ω − limit set :
γ(Y0) ≡ {S(t)Y0, t ≥ 0},

ω(Y0) ≡ {Z ∈ X × Y,∃tn ∈ R+, tn → +∞, Z = limtn→+∞ S(tn)Y0}
Proposition 7. If Y0 ∈ D(L), then (u′, v′) is bounded in X × Y.

Proof. Letting Y0 ∈ D(L2), we obtain
u′′ = Au′ +Bv′,

v′′ = −B∗v′ + Cv′,

with 
u′(0) = Au0 +Bv0,

v′(0) = −B∗u0 + Cv0.

So,

‖u′‖2X + ‖v′‖2Y ≤ ‖u′(0)‖2X + ‖v′(0)‖2Y
≤ ‖Au0 +Bv0‖2X + ‖ −B∗u0 + Cv0‖2Y
≤ 2

[‖Au0‖2X + ‖Bv0‖2X + ‖B∗u0‖2Y + ‖Cv0‖2Y
]

and, using the assumption (A.S3), we get

‖u′‖2X + ‖v′‖2Y ≤ K
[
‖Au0‖2X + ‖v0‖2Y + ‖u0‖2X + ‖Cv0‖2Y

]
,

where K is a positive constant. This proves the proposition for Y0 ∈ D(L2)
and, by a density argument, we obtain the result for all Y0 ∈ D(L).

Corollary 8. For all Y0 ∈ D(L), γ(Y0) is relatively compact in X × Y.

Proof. One has

‖Au‖X ≤ ‖u′‖X + ‖Bv‖X ≤ ‖u′‖X + δC‖v‖Y + αC‖Cv‖Y

‖Cv‖Y ≤ ‖v′‖Y + ‖B∗u‖Y ≤ ‖v′‖Y + δA‖u‖X + αA‖Au‖X ,

so

(1− αA)‖Au‖X + (1− αC)‖Cv‖Y ≤ ‖u′‖X + ‖v′‖Y + δA‖u‖X + δC‖v‖Y .

Since we assumed that the constants αA and αC are less than one, from the
last proposition we deduce that ‖Au‖X and ‖Cv‖Y are bounded in X and
Y respectively. As A and C have compact resolvent, we have the result.

We can then state
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Theorem 9. Under the assumption (A.S), if the unique solution of the sys-
tem {

u′ = Au,

B∗u = 0, t ≥ 0,

is u ≡ 0, then SL(t) is asymptotically stable.

Proof. Let Y0 ∈ D(L2) and Y ∈ ω(Y0). Clearly,

SL(t)Y ∈ ω(Y0) ∀t ≥ 0,

and
‖SL(t)Y ‖2X×Y = ‖Y ‖2X×Y ∀t ≥ 0.

Now, let (tn) be such that

SL(tn)Y0 −→ Y as n → ∞.

Since SL(tn)LY0 is relatively compact, there exists a subsequence (tnj ) such
that

LSL(tnj )Y0 = SL(tnj )LY0 −→ Z as j → ∞.

Since L is closed, Y ∈ D(L) and LY = Z. If
[
u(t)
v(t)

]
= SL(t)Y , then we

can write
d

dt
‖SL(t)Y ‖2X×Y = Re ((Au(t), u(t))X + (Cv(t), v(t)))Y = 0.

Thus, v ≡ 0 and u verifies

u′ = Au, B∗u = 0.

The assumption of the theorem implies that u ≡ 0. This proves that

SL(t)Y = 0 ∀t ≥ 0.

Consequently, Y = 0 and ω(Y0) = {0}. Since SL(t) is uniformly bounded
and D(L2) is dense in X × Y , the result follows.

4. Applications

As a first example, consider the problem
u′′ = ∆u− a(x)u′ + bw, Ω×R+,
w′ = ∆w − b∗u′, Ω×R+,
u∂Ω = w∂Ω = 0, R+,
u(0) = u0, u

′(0) = u1, w(0) = w0, Ω,

(7)

where Ω is an open bounded subset of Rn with a smooth boundary, a ∈
L∞(Ω) and (b,D(b)) is a linear operator on L2(Ω) which will be precisely
specified later. The system (7) can be written formally as follows:

Y ′ = LY

Y (0) = Y0 =

 u0
u1
w0

(8)
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with

L =


(
0 I
∆ −a

) (
0
b

)
(
0 −b∗ )

∆

 =

 A B

−B∗ C


defined on H = H10 (Ω) × L2(Ω) × L2(Ω) (the energy space equipped with
the product norm denoted by ‖.‖) and
D(L) = D(A)×D(C) = (H2(Ω) ∩H10 (Ω)×H10 (Ω))× (H2(Ω) ∩H10 (Ω)).

Then, assuming the following geometrical control property (see [4])
Ω0 ⊂ Ω is open and there exists T > 0 with the property that every geodesic

(ray) of length T meets Ω0.
As a direct consequence of the results of the previous sections, one has

Theorem 10. The following statements are true:

(i) If a is nonnegative on Ω and

a ≥ a0 > 0 a.e on Ω0 ⊂ Ω,(9)

where Ω0 is open and satisfies the geometrical control property and b

is (−∆) 1
2 -bounded, then (SL(t))t≥0 is exponentially stable: there exist

ω > 0 and M > 0 such that

‖SL(t)‖ ≤ M e−ωt for all t ≥ 0;

(ii) If b is (−∆) 1
2 -bounded and a ≡ 0 a.e. in Ω, then, for all Y0 ∈ X,

‖SL(t)Y0‖ → 0 as t → +∞.

Proof. From the results of [4], A generates an exponentially stable semigroup
in case (i). The other assumptions of theorem 2 are easily derived. Property
(ii) is a direct consequence of theorem 9.

Remark 11. (a) This result is true, in particular, if b is a bounded operator
in L2(Ω). In this case, one cannot expect exponential stability if a ≡ 0 and b
is a constant and, in a sense, (ii) in theorem 10 is optimal. More precisely,
when a and b are constants, we have (see [1] and [2])

Proposition 12. The eigenvalues (λ3k+j) of L satisfy the following proper-
ties

(i) for sufficiently large k, one of the eigenvalues (denoted by λ3k) is real
and the two others are complex;

(ii) λ3k > −µk, Re(λ3k+j) < −a
2 for all k and j = 1,2

limk→+∞Re(λ3k) = −∞, limk→+∞Re(λ3k+j) = −a

2
j = 1, 2;
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(iii) L satisfies the spectrum determined growth assumption and for every
b ∈ R , there exists a0 = a0(b) ∈]0,√2µ1[ such that

ω(L) := inf{ω ∈ R,∃M > 0, ‖SL(t)‖ ≤ Meωt}

= ω(Ã) if a ∈]0, a0],

ω(L) > ω(Ã) if a > a0,

where the µk are the eigenvalues of (−∆) and

Ã =
(
0 I
∆ −a

)
; ω(Ã) =


−a
2 if a ≤ √

2µ1,

−a
2 +

√
a2−4µ1
2 if a >

√
2µ1.

(b) If one takes b = d · ∇, where d is a vector of Rn, the result still holds.
The interest here is that, in the one-dimensional case (the one- dimensional
thermoelasticity system), the exponential stability remains even if a ≡ 0 (see
[8]).

The second example deals with the boundary stabilization of the thermoe-
lasticity system. Let Ω an open bounded set in Rn with smooth boundary
Γ, 

u′′ = ∆u+ α∇w, R+ × Ω,

w′ = ∆w + α∇.u′, R+ × Ω,
∂u
∂ν = bu′, R+ × Γ0,

u = 0, R+ × Γ1,

w = 0, R+ × Γ,

u(0) = u0, u
′(0) = u1, w(0) = w0, Ω.

(10)

where u = [(u1, . . . , un)] (resp. w) is the displacement (resp. the temper-
ature) of the system, ν(x) is the exterior normal to Γ at x, α > 0 is the
coupling parameter and x0 is a fixed point in Rn (n ≤ 3 for physical cases)
(see [7]),

m(x) = x− x0 x ∈ Rn,

Γ0 = {x ∈ Γ; m(x).ν(x) > 0},
Γ1 = Γ− Γ0,

b(x) = −m(x) · ν(x).
We assume that

Γ1 �= ∅(11)
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and set
H1Γ1

(Ω) = {u ∈ H1(Ω);u = 0 on Γ1}.
On this space, we define the scalar product

< u, v >=
∫
Ω

∇u.∇v dx.

The energy space will be the Hilbert space

H = (H1Γ1
(Ω))n × (L2(Ω))n × L2(Ω)

with the scalar product

<

 u
v
w

 ,
 f
g
h

 >= ∫
Ω
(∇u.∇f + vg + wh) dx

and we denote by ‖ · ‖ the induced norm on H. |.| will denote the L2-norm.
Let

L =


 0 I

∆ 0

  0

α∇


(
0 α∇· )

∆

 =

 A B

−B∗ C

 ,

D(L) = D(A)×D(C)

=
{[

u
v

]
∈ H1Γ1

(Ω)n × L2(Ω)n; ∆u ∈ (L2(Ω))n, v ∈ H1Γ1
(Ω)n, ∂u

∂ν

= bv on Γ0
}

× (H2(Ω) ∩H10 (Ω)).

One has the following: Assumption (E.S) is satisfied if a geometrical hy-
pothesis on Ω (see below in the proof) is added which insures the validity of
Grisvard’s integral formula.

Proof. Following Grisvard [5], in the case n = 2 one has the Green formula:∫
Ω∆um · ∇u dx = 1

2
∫
Γ1
m · ν|∂u

∂ν |2dσ − 1
2
∫
Γ0
m · ν|∂u

∂τ |2dσ

+(Π8 )
∑

S∈ΣS c2Sm(S) · τS − (Π8 )
∑

S∈ΣC c2Sm(S) · τS
for all u in D(∆) (with mixed boundary conditions) where u − ∑

S∈Σ cSuS

is in H2(Ω), uS being the first singularities of the Laplace operator. In this
formula, Σ is a finite set (the ”vertexes”) and (Σc,Σs) is a partition of Σ
defined by
(i) S ∈ Σc if S is downstream of Γ1 following the positive orientation of Γ;
(ii) S ∈ Σs if S is downstream of Γ0 following the positive orientation of Γ.
In this case, the geometric condition on Ω is

m · τ ≥ 0 on Σc; m · τ ≤ 0 on Σs.
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This last condition implies the inequality∫
Ω
∆um · ∇u dx ≤ 1

2

∫
Γ1

m · ν|∂u
∂ν

|2dσ − 1
2

∫
Γ0

m · ν|∂u
∂τ

|2dσ.

The exponential stability of the semigroup whose generator is A is then
proved as in [6]. The operator B is (−∆)1/2-bounded and D(A) ⊂ D(B∗).
Note that the last (crucial) inequality remains true in higher dimension with
similar geometric restriction on Ω (see [5] for n = 3 and [M] for n ≥ 3) and
thus the semigroup is also exponentially stable.

Theorem 13. Under the previous assumption, (SL(t)) is exponentially sta-
ble.

We give, in what follows, a second proof, more constructive, which insures
an estimate of ωL, the constant of the exponential decay of SL(t).

Proof. Let Y =

 u
v
w

 a solution of (10). We define, for all t ≥ 0, the

function

ρε(t) =
1
2
‖Y (t)‖2 + ε

(
n∑

i=1

ρi
1(t) + ρ2(t)

)
,

where

ρi
1(t) =

∫
Ω
vi(t, x)[2m · ∇ui(t, x) + (n− 1)ui(t, x)] dx, i = 1, ..., n,

and

ρ2(t) =
1
2

| ∇∆−1w(t, x) |2 .
∆−1 is the inverse of ∆ considered as an operator of L2(Ω) with domain
D(∆) = H2(Ω) ∩H10 (Ω). Differentiating ρ

i
1, we obtain

d

dt
ρi
1 =

∫
Ω
v′
i[2m · ∇ui + (n− 1)ui] + vi[2m · ∇vi + (n− 1)vi]dx

=
∫
Ω

(
∆ui + α

∂w

∂xi

)
[2m · ∇ui + (n− 1)ui] + vi[2m · ∇vi + (n− 1)vi]dx

As in ([6], (2.20)-(2.22)), we have, for all i = 1, ..., n,

(n− 1)
∫
Ω
ui∆uidx = −(n− 1)

∫
Γ0

(m · ν)viuidΓ− (n− 1)
∫
Ω

| ∇ui |2 dx,

2
∫
Ω
vim · ∇vidx =

∫
Γ0

m · ν | vi |2 dΓ− n

∫
Ω

| vi |2 dx,

2
∫
Ω
(∆ui)(m · ∇ui)dx ≤ (n− 2)

∫
Ω

| ∇ui |2 dx

−
∫
Γ0

(m · ν)[2vi(m · ∇ui)+ | ∇ui |2]dΓ·
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From these three last relations, we get

(12)

d

dt
ρi
1 ≤ − | ∇ui |2 − | vi |2 +

∫
Ω
α
∂w

∂xi
[2m · ∇ui + (n− 1)ui] dx

−
∫
Γ0

m · ν[2vim · ∇ui+ | ∇ui |2 − | vi |2 +(n− 1)uivi] dΓ.

On the other hand,
d
dtρ2 =

∫
Ω(∇∆−1w) · (∇∆−1w′)dx

= − ∫
Ω(∆

−1w)w′dx

and then, using the second equation in (10), we obtain
d

dt
ρ2 = − | w |2 −

∫
Ω
α(∇ · v)(∆−1w) dx.(13)

Noting that
1
2
d

dt
‖Y (t)‖2 = (LY, Y ) ,

one obtains
1
2
d

dt
‖Y (t)‖2 = −

∫
Γ0

m · ν | v |2 dΓ−
∫
Ω

| ∇w |2 dx.(14)

Thus, from (12)-(14),

(15)

d

dt
ρε ≤ −

∫
Γ0

m · ν[(1− ε) | v |2 +ε(n− 1)u · v

+ 2εv · (m | ∇)u+ ε | ∇u |2] dΓ
+ ε

∫
Ω
α∇w · [2(m | ∇)u+ (n− 1)u] dx+

+ ε

∫
Ω
α(∇ · v)(∆−1w) dx− ε‖Y ‖2− | ∇w |2,

where, in this last inequality, we used the notation

(m|∇)u =


m · ∇u1

.

.

.
m · ∇un

 .

Let R = ‖m‖L∞(Ω), C0 the Poincaré constant in H̃10 (Ω) and C1 defined by∫
Γ0

m · ν | u |2 dΓ ≤ C1 | ∇u |2 ∀u ∈ H̃10 (Ω).

Let us denote by I0 the integral on Γ0 in inequality (15). It is estimated as
in [6] by

(16)
−I0 ≤ −

[
1− ε(1 +R2 +

(n− 1)2C1
2

)

] ∫
Γ0

m · ν | v |2 dΓ

+
ε

2

(
|∇u|2 + |v|2

)
.
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For the next terms of (15), let β > 0 any constant. One has

|
∫
Ω
α∇w. (m | ∇)u dx |≤ | α |2

2β
| ∇w |2 +β

2
R2 | ∇u |2(17)

and

(18) |
∫
Ω
α∇w. (n− 1)u dx |≤ | α |2

2β
| ∇w |2 +β(n− 1)2C0

2
| ∇u |2 .

Using first Green’s formula, we obtain for the third integral

|
∫
Ω
α(∇ · v)(∆−1w) dx |≤ | α |2 C20

2β
| ∇w |2 +β

2
| v |2 .(19)

With the inequalities (16)-(19), we conclude that

d

dt
ρε ≤ −ε‖Y ‖2 +

[
| α |2
2β

ε(2 + C20 )− 1
]

| ∇w |2

−
[
1− ε(1 +R2 +

(n− 1)2C1
2

)

] ∫
Γ0

m · ν | v |2 dΓ

+
ε

2

(
1 + β

[
R2 + (n− 1)2C0

])
| ∇u |2 +εβ + 1

2
| v |2 .

We choose β > 0 such that

1− β[R2 + (n− 1)2C0] > 0; 1− β > 0

and ε > 0 in such a way that

ε
| α |2
2β

(2 + C20 )− 1 ≤ 0; 1− ε(1 +R2 +
(n− 1)2C1

2
) ≥ 0.

Since m · ν ≥ 0 on Γ0, one derives the inequality

d

dt
ρε ≤ −εC2‖Y ‖2

with
C2(= C2(β)) = min(1− β[R2 + (n− 1)2C0], 1− β).

But, on the other hand, for all t ≥ 0,

ρε(t) ≤ (
1
2
+
1
2
εmax(C0, 2R+ (n− 1)C0))‖Y (t)‖2.

As

ρε(t) ≥ (
1
2

− ε

2
(2R+ (n− 1)C0))‖Y (t)‖2,

we get the result with

2ω ≥ εC2(β)
(12 +

1
2εmax(C0, 2R+ (n− 1)C0))

and ε verifying the condition: (1− ε(2R+ (n− 1)C0) > 0.
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