
AN AMBROSETTI-PRODI-TYPE PROBLEM

FOR AN ELLIPTIC SYSTEM OF EQUATIONS VIA

MONOTONE ITERATION METHOD AND

LERAY-SCHAUDER DEGREE THEORY

D. C. DE MORAIS FILHO

Abstract. In this paper we employ the Monotone Iteration Method and
the Leray-Schauder Degree Theory to study an IR2-parametrized system of
elliptic equations. We obtain a curve dividing the plane into two regions.
Depending on which region the parameter is, the system will or will not
have solutions. This is an Ambrosetti-Prodi-type problem for a system of
equations.

0. Introduction

Let us consider a bounded domain Ω ⊆ IRN , N ≥ 2, with boundary ∂Ω
of class C2,α , 0 < α ≤ 1.

In what follows we shall denote the Cartesian product of Hölder spaces as
(Ci,α)2 = Ci,α(Ω)×Ci,α(Ω), 0 < α ≤ 1, i = 0, 1, 2 and (Cα)2 = (C0,α(Ω))2.

Remark 0.1. (Ci,α)2 ↪→ (Cj,α)2 compactly if i ≥ j ≥ 0.

Let us consider the following system of partial differential elliptic equa-
tions

(S)


−∆u = f(x, u, v) + h(x), Ω,
−∆v = g(x, u, v) + l(x), Ω,

u = v = 0, ∂Ω,

where h, l ∈ Cα(Ω) and f, g ∈ Cα(Ω × IR × IR) are real functions. By a
solution of (S) we mean a vector-function U = (u, v) ∈ (C2,α)2 satisfying
both equations in (S).

Any function h ∈ Cα(Ω) can be uniquely decomposed as h = tφ1 + h1,
where φ1 > 0 is an eigenfunction associated to the first eigenvalue λ1 > 0
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of the eigenvalue problem (−∆, H10 (Ω)), h1 ∈ Cα(Ω) ,
∫
h1φ1 = 0,

∫
φ21 = 1

and t =
∫
hφ1 ( unless otherwise mentioned all integrals are taken over the

whole Ω ).
According the above observations, system (S) may be IR2-parametrized,

and for the convenience of notation, be rewritten in the matrix form

(S)T
{ −∆U = F (x, U) + Tφ1 +H1(x), Ω,

U = 0, ∂Ω

where U = (u, v), T =

(
r

s

)
∈ IR2,

F (x, U) =

(
f(x, u, v)
g(x, u, v)

)
and H1 ≡

(
h

l

)
.

We make use of the following notation: N = span{φ1}, N⊥ = {f ∈
Cα(Ω);

∫
fφ1 = 0} and N2⊥ = N⊥ ×N⊥.

For any fixedH1 ∈ N2⊥ our main goal is to find the set of points T ∈ IR2 for
those, system (S)T has or has not solutions. Grosso modo, for this matter,
with convenient hypotheses on F which shall be timely introduced, we find
a curve Γ = Γ(H1) splitting the plane into two disjoint unbounded domains
E and N (IR2 = E ∪ Γ ∪N) such that

(i) (ST ) does not have a solution if T ∈ N
(ii) (ST ) has at least one solution if T ∈ Γ
(iii) (ST ) has at least two solutions if T ∈ E.

The paper is divided into two parts. In the first one we use the Monotone
Iteration Method to find the first solution and construct the curve. Although
some ideas of the first part already appear in [7], where we solved a kind
of this problem using variational techniques, we decided to include them
here for completeness of the text. In the second part, we obtain a priori
estimates for eventual solutions of (S)T using the Hardy-Sobolev inequality
(see [2] or [6]) and apply the Leray-Schauder degree theory to obtain the
second solution. Then we find a solution for T on the curve.

In this paper we have the advantage of relaxing the very restrictive hy-
pothesis on the non-linearity F = ∇H ( for some vector-function H ) which
is imposed by the variational methods we used in [7]. Also relating to [7],
another sharper result we found in this paper was the existence of a solution
for T on the curve Γ.

In the scalar case, the pioneering paper involving this kind of problem
but with a very different formulation is [1]. Also in the scalar case, good
references for this kind of problems up to 80’s may be found in [4] and [8].
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FIRST PART

1. Existence of a Region R in the Plane Where (S)T
Has No Solution

Let us order IR2 with the partial order Z = (z1, z2) ≥ 0 if and only if
z1,z2 ≥ 0.

We shall assume the following growth conditions on the non-linearity F :

F (x, Z) ≥ AZ − C(1.1)

F (x, Z) ≥ AZ − C(1.2)

for all x ∈ Ω and Z ∈ IR2, where

A =

(
a b

c d

)
, A =

(
a b

c d

)
∈M2×2(IR), C =

(
c

c

)
> 0(1.3)

and these matrices satisfy

(A− λ1I)−1Z ≤ 0 for all Z ≥ 0, Z ∈ IR2,(1.4)

(A− λ1I)−1Z ≥ 0 for all Z ≥ 0, Z ∈ IR2.(1.5)

(I = the identity of M2×2(IR)).
It is immediate that condition (1.4) is equivalent to conditions

b, c ≥ 0(1.6)

(λ1 − a)(λ1 − d) − bc > 0(1.7)

a, d < λ1(1.8)

or to conditions

b, c < 0(1.9)

(λ1 − a)(λ1 − d) − bc < 0(1.10)

a, d > λ1.(1.11)

On its turn, condition (1.5) is equivalent to conditions

b, c ≤ 0(1.12)

(λ1 − a)(λ1 − d) − bc > 0(1.13)

a, d > λ1(1.14)

or to conditions
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b, c > 0(1.15)

(λ1 − a)(λ1 − d) − bc < 0(1.16)

a, d < λ1.(1.17)

Remark 1.1. If (1.6) holds, conditions (1.7) and (1.8) are equivalent to

µ1, µ2 < λ1 ,where µ1, µ2 are the eigenvalues of A.(1.18)

Likewise, if (1.12) holds, conditions (1.13) and (1.14) are equivalent to

µ1, µ2 > λ1 ,where µ1, µ2 are the eigenvalues of A.(1.19)

With the above hypotheses we have

Lemma 1.1. (Existence of a region in the plane (r, s) where (S)T has no
solution) Let (1.1), (1.2), (1.4) and (1.5) be assumed. Then, for a given
H1 ∈ (Cα)2, there exists an unbounded domain R in the plane (r, s) (de-
pending only upon A,A and λ1) such that

if T ∈ R, system (S)T has no solution.(1.20)

Proof. Suppose U = (u, v) is a solution of (S)T . Multiplying both equations
of this system by φ1, integrating by parts and using (1.1) and (1.2) we achieve
the inequalities

(A− λ1I)
(
γ
δ

)
≤
(

- r̃
-s̃

)
(1.21)

and

(A− λ1I)
(
γ
δ

)
≤
(

- r̃
-s̃

)
,(1.22)

where γ =
∫
uφ1, δ =

∫
vφ1, r̃ = r − c and s̃ = s− c.

Applying (1.4) and (1.5) to (1.21) and (1.22) , respectively, and using a
straightforward computation we see that

(i) If γ ≤ 0 then

s̃ ≤ {(d− λ1)/b} r̃ when b �= 0; or r̃ ≤ 0 when b = 0

(ii) If γ ≥ 0 then

s̃ ≥ {(d− λ1)/b} r̃ when b �= 0; or r̃ ≤ 0 when b = 0 .

Hence, independently of the sign of γ, the pair (r̃, s̃) is in a region composed
of the intersection of two half-planes, each of them is bounded above by a
straight-line of negative or infinity slope passing through the origin. The
set R ⊂ IR2 is the complement of this region in the original variables r and
s.
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2. Existence of Sub and Supersolution

The existence of a solution for T in a certain region of IR2 is guaranteed
by the Monotone Iteration Method. This method requires the notions of sub
and supersolution. We now give some definitions and remarks in order to go
further.

Definition 2.1. A vector-function U ∈ (C2,α)2 is a “subsolution” for the
system (S) if { −∆U ≤ F (x, u) +H(x), Ω,

U = 0, ∂Ω.

A “supersolution” is defined likewise by reversing the inequality.

Definition 2.2. We say that a matrix-function A(x) “satisfies a maximum
principle” if for all U satisfying{ −∆U ≥ A(x)U, Ω,

U = 0, ∂Ω,

we have U ≥ 0.

Remark 2.1. If A is a cooperative matrix (i.e., A has nonnegative off di-
agonal terms) the condition

(A(x)Z,Z)IR2 ≤ µ,∀x ∈ Ω, Z ∈ IR2,(2.1)

where µ < λ1 and ( . , . )IR2 is the usual IR2 inner product, is a sufficient
condition for A to satisfy a maximum principle (see [10]). If A is a symmetric
matrix, condition (2.1) is equivalent to condition (1.18).

Remark 2.2. If the matrix A has entries in the space Cα(Ω) and satisfies
a maximum principle, then the linear system{ −∆U = A(x)U + F (x), Ω,

U = 0, ∂Ω.(2.2)

with F ∈ (Cα)2 has a (unique) solution. Indeed, in this case the above
system has the uniqueness of solution property and this fact yields readily
an (C2,α)2 a priori estimates for its solutions. Hence by Remark 0.1, a
Fredholm Alternative is valid for this system.

Let us prove the existence of sub and supersolutions for (S)T .

Lemma 2.1. (Existence of subsolutions) Suppose that (1.1), (1.6), (1.7)
and (1.8) hold. Then for a given vector-function H = H1 + Tφ1 ∈ (Cα)2

there exists a subsolution U ∈ (C2,α)2 of the system (S)T such that if U is
any supersolution of this system, we have that

U < U in Ω and
∂U

∂ν
<
∂U

∂ν
on ∂Ω(2.3)

(here ∂U
∂ν = (∂u∂ν ,

∂v
∂ν ) and ∂ .

∂ν is the outward directional derivative).
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Proof. Choose C such that one has strict inequality in (1.1). Assertions
(1.6), (1.7) and (1.8) give sufficient and necessary conditions for A to satisfy
a Maximum Principle (see [5]). Therefore by Remark 2.2 the system{ −∆W = AW − C +H, Ω

W = 0, ∂Ω

has a unique solution U. By (1.1) it is immediate that U is a subsolution for
(S)T . From (1.6), (1.8) and the choice of C, using the Maximum Principle
and the Hopf Maximum Principle of the scalar case for both equations in
the above system we assure that (2.3) holds.

Lemma 2.2. (Existence of supersolutions) For any given vector-function
H1 ∈ (N⊥)2, there exists a To ∈ IR2, To < 0 (depending upon Ω and H1)
such that system (S)T has a positive supersolution U for all T ≤ To.

Proof. Let us fix N > 0 and define

m > {max{|f(x, η, ξ)+h1(x)|}, {max{|g(x, η, ξ)+l1(x)}, x ∈ Ω; |s|, |ξ| ≤ N}
Consider the domains below to be chosen timely

Ω1 ⊆ Ω1 ⊆ Ω2 ⊆ Ω2 ⊆ Ω

and denote δ =vol(Ω \ Ω1). Let us take ϑ ∈ Cα(Ω), such that ϑ ≡ m in
Ω \ Ω2 , ϑ ≡ 0 in Ω1 and 0 ≤ ϑ ≤ m. Let w be the solution of the equation{ −∆w = ϑ,Ω

w = 0, ∂Ω.

Hence, w ∈ C2,α(Ω) and w > 0. From Lp estimates and the Sobolev embed-
ding Theorem it is possible to choose Ω1such that |w(x)| < N for x ∈ Ω.

Now choosing To = (ro, so) with ro and so sufficiently negative as to have

ϑ ≥ m+ roφ1,m+ soφ1

it is readily seen from the definition of m that U = (w,w) > 0 is the wanted
supersolution.

3. The Monotone Iteration Method

This method has the advantage of being constructive and yields easily
some important facts (see Corollary 3.1 and Lemma 5.2).

Theorem 3.1. (Monotone iteration method) Let U and U be, respectively,
ordered sub and supersolution of (S) with U ≤ U . Let A(x) be a matrix-
function with entries in the space Cα such that:

(3.1) F (x, Z2)−F (x, Z1) ≥ A(x)(Z2−Z1), Z2 ≥ Z1;Z2, Z1 ∈ IR2, x ∈ Ω,

and Z2, Z1 ∈ [min
x∈Ω

U,max
x∈Ω

U ] (min
x∈Ω

U :=
(min
x∈Ω

U

min
x∈Ω

V

)
. The same definition for

max
x∈Ω

U). Then, system (S) has two solutions U and V in (C2,α)2 (eventually

it may occur that U ≡ V ) such that U ≤ U ≤ V ≤ U . Moreover, if W is
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any other solution with W ∈ [U,U ], then W ∈ [U, V ]. (Here [U,U ] ≡ { U ∈
(C2,α)2 : U ≤ U ≤ U})
Proof. By Remark 2.2 the following operator is well defined

T : [U,U ] −→ (C2,α)2

U �→ W = T U,
where W is the (unique) solution of the system

(3.2)
{−∆W = A(x)W + F (x, U) + Tφ1 +H1 −A(x)U, Ω,
W = 0, ∂Ω.

By (3.1), using the Maximum Principle for systems, we have that T is
monotone. Let us define the sequences

U0 = U, Un = T Un−1
and

V0 = U, Vn = T Vn−1
By the previous arguments, we prove that U1 ≥ U0 and V1 ≤ V0. Iterating
the above sequences we achieve that

U = U0 ≤ U1 ≤ U2 ≤ · · · ≤ V2 ≤ V1 ≤ V0 = U.

So, there are pointwise convergent subsequences (denoted again by Un and
Vn) such that

Un → U and Vn → V pointwise.

By a standard bootstrap argument we may assume the above convergences
in (C2,α)2. Hence, going to the limit in (3.2) we conclude the first part of
the proof. The second one is also proved by iteration.

Corollary 3.1. If (1.1), (1.6), (1.7), (1.8) and (3.1), hold and (S) has a
solution for some H ∈ (Cα)2, then system (S) has a minimal solution Umin.
That is, if U is another solution of (S) , then we have necessarily Umin ≤ U
in Ω.

Corollary 3.2. With the same assumptions of Corollary 3.1, if system (S)
has a solution for some H1 ∈ (Cα)2, then it has a solution for all H2 ∈ (Cα)2

with H2 ≤ H1.

Example 3.1. (An Application of Theorem 3.1) Consider the following
problem 

−∆u = a(x)u+ b(x)v − u3, Ω,
−∆v = c(x)u+ d(x)v − v3, Ω,

u = v = 0, ∂Ω.
(3.3)

Denote A(x) =
(a(x) b(x)
c(x) d(x)

)
where a, b, c, d ∈ Cα(Ω).

(i) If

(3.4) (A(x)Z,Z) ≤ µ|Z|2, for some 0 < µ < λ1, all x ∈ Ωand Z ∈ IR2,

then system (3.3) has unique solution U = 0.
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(ii) If the matrix A is cooperative and

a(x), d(x) > µ > λ1,(3.5)

then system (3.3) has at least two non-trivial vector-solutions.

Proof. (i) Multiplying the first and the second equation in (3.3) by u and v,
respectively, integrating the expression by parts and using (3.4) and Poincaré
inequality we have that

(λ1 − µ)
∫

|U |2 +
∫

(u4 + v4) ≤ 0,

and therefore that U = 0.
(ii) If Φ =

(φ1
φ1

)
, using (3.5) one easily finds a subsolution σoΦ and a

supersolution ηoΦ of system (3.3) for small σo ∈ IR+ and large ηo ∈ IR+.
So σoΦ < ηoΦ. Define N = max

x∈Ω
( ηoΦ) and then choose M > N , such that

(AM (x)Z,Z) ≤ µ∗|S|2 for some 0 < µ∗ < λ1 and all Z ∈ IR2, x ∈ Ω, where

AM (x) =
(
a(x) − 3M2 b(x)

c(x) d(x) − 3M2

)
.

In this way, if U satisfies 0 < σoΦ ≤ U ≤ ηoΦ <
(M
M

)
, defining f(x, u, v) =

a(x)u+ b(x)v − u3 and g(x, u, v) = c(x)u+ d(x)v − v3, we have that

F (x, U2) − F (x, U1) ≥ AM (x)(U2 − U1) for U2 ≥ U1;U1, U2 ∈ [σoΦ, ηoΦ].

Now by Remark 2.1 and the previous theorem there exists a solution U ∈
(C2,α)2 of system (3.3). The vector- function −U is the other solution.

Remark 3.1. Observe that

(A(x)Z,Z) ≥ µ|Z|2, for some µ > λ1, ∀x ∈ Ω, Z ∈ IR2,

is a symmetric condition to (3.4) and implies (3.5).

4. The Curve

Let us now construct the curve. For this purpose, let us fixH1 =
(h1
l1

) ∈ N2⊥
and define

Wt := {(r, s) ∈ IR2, s+ t = r}
and

R(t) = {r ∈ IR; (S)T has a solution with T ∈ Wt for some s ∈ IR}.
By Lemma 1.1 and Theorem 3.1, the curve below is well-defined:

Γ(t) = (supR(t), supR(t) − t) = (r(t), s(t)), t ∈ IR.

It is readily seen the following properties of Γ:
Γ1) Γ increases in the r direction and decreases in the s direction (ie,

t′ < t′′ implies r(t′) ≤ r(t′′) and s(t′) ≥ s(t′′)).
Γ2) r(t′′) − r(t′) ≤ t′′ − t′ for t′ ≤ t′′.
Γ3) Γ is a Lipschitzian curve.
Γ4) lim

t→−∞r(t) = −∞ and lim
s→+∞s(t) = −∞.
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for b, b �= 0.
From all our results so far and from the construction of Γwe are now able

to state the final Theorem of the first part.

Theorem 4.1. Suppose that (1.1), (1.2), (1.5), (1.6), (1.7), (1.8) and (3.1)
hold. Then for each fixed H1 ∈ (Cα)2 there exists a Lipschitzian curve Γ ∈
IR2 splitting the plane into two unbounded domains E and N (IR2 = E∪Γ∪N
where N is the part of the plane above Γ) such that

(i) (S)T has no solution ifT ∈ N.
(ii) (S)T has at least one solution if T ∈ Γ.

Remark 4.1. Changing the previous order in IR2 by the new order U ≥ 0
if and only if u ≥ 0 and v ≤ 0, mutatis mutandis previous definitions and
hypotheses, a similar theorem to Theorem 4.1still holds when the matrices
A and A are not cooperative, with non-positive off diagonal terms. In this
case a similar curve to Γ is found with similar properties.

To finish this section, we give

Example 4.1. (The Ambrosetti-Prodi problem for the biharmonic equa-
tion) Let us consider the biharmonic equation{

(∆ + a)(∆ + b)v = f(x, v) + tφ1 + h(x), Ω,
∆v = v = 0, ∂Ω,(4.1)

with a, b, t ∈ IR. This equation is equivalent to the elliptic system
−∆u = au+ f(x, v) + tφ1 + h, Ω,
−∆v = u+ bv, Ω,

u = v = 0, ∂Ω.

If the following hypotheses hold:

(4.2) −∞ ≤ lim sup
s→−∞

f(x, s)
s

< (λ1−a)(λ1− b) < lim inf
s→+∞

f(x, s)
s

≤ +∞

uniformly for all x ∈ Ω and

f(x, s2) − f(x, s1) ≥ k(s2 − s1), s2, s1 ∈ IR, s2 ≥ s1,(4.3)

with k ∈ IR+such that (1.6), (1.7) and (1.8) hold for the matrix A =(
a k
1 b

)
, then we have that there exists to ∈ IR such that

(i) Problem (4.1) has no solution, if t > to
(ii) Problem (4.1) has at least one solution if t < to.

SECOND PART

In this second part we shall improve Theorem 4.1 by finding another solution
if T ∈ E and a solution if T ∈ Γ.
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5. A Priori Bounds

The a priori estimates we are to obtain are needed to the use of the
Leray-Schauder Degree. In the following section we apply degree theory in
order to find the other solution. In this section we use the ideas of Brèzis-
Turner [2], where they made estimates in the scalar case using the Hardy-
Sobolev inequality (see [2] or [6] ). In our work the limitations of the growth
conditions on the non-linearities f and g ( see (5.16) and (5.17) below ) are
due to the restriction of the exponents of the Hardy-Sobolev inequality. Let
us denote by U = (u, v) an eventual solution of the system

(5.1)
{−∆U = F (x, U) +H(x), Ω,
U = 0, ∂Ω.

The same letter c will denote a generic positive constant.

Lemma 5.1. (L1loc estimates) If assumptions (1.1), (1.2), (1.4) and (1.5)
hold, then there exists a constant c > 0, depending on H, A and A, such that∫

|uφ1|,
∫

|vφ1| ≤ c.(5.2)

Proof. As in Lemma 1.1, using assumptions (1.1) and (1.2) we obtain

(A− λ1I)

( ∫
uφ1∫
vφ1

)
≤
(
c

c

)
,(5.3)

and

(A− λ1I)

( ∫
uφ1∫
vφ1

)
≤
(
c

c

)
,(5.4)

where I is the 2 × 2 identity matrix.
Applying (A−λ1I)−1and (A−λ1I)−1to (5.3) and (5.4), respectively, and

using (1.4) and (1.5) we get (5.2) for some c ∈ IR+.

From Corollary 3.1 it is readily seen that the following lemma holds.

Lemma 5.2. (A priori estimates for the negative part) Suppose that as-
sumptions (1.1), (1.2), (1.5), (1.6), (1.7), (1.8) and (3.1) hold. Then there
exists c > 0 such that

||u−||L∞(Ω) , ||v−||L∞(Ω) ≤ c,(5.5)

where u− := max(0,−u).
To proceed further, we need the following result.

Lemma 5.3. Suppose that (1.1), (1.2), (1.5), (1.6), (1.7), (1.8) and (3.1)
hold. Then there exists c > 0 such that∫

|f(x, u, v)|φ1,
∫

|g(x, u, v)|φ1 ≤ c.(5.6)
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Proof. From Lemmas (5.1) and (5.2) we have∫
u+φ1,

∫
u−φ1,

∫
v+φ1,

∫
v−φ1 ≤ c.(5.7)

Let Ω− = {x ∈ Ω; f(x, u(x), v(x)) ≤ 0} and Ω+ = Ω/Ω−. Assumption (1.1)
and the relations (5.7) imply that

−
∫
Ω−
f(x, u, v)φ1 ≤ −a

∫
Ω−
uφ1 − b

∫
Ω−
vφ1 + c ≤ c.(5.8)

Observe that

λ1

∫
uφ1 =

∫
(−∆uφ1) =

∫
fφ1 +

∫
hφ1

and then, by (5.2):

|
∫
fφ1| ≤ c where (c = c(h)).(5.9)

Therefore, from (5.8) and (5.9),∫
Ω

|f |φ1 =
∫
Ω+
fφ1 −

∫
Ω−
fφ1 =

∫
Ω
fφ1 − 2

∫
Ω−
fφ1 ≤ c.

A similar estimate can be obtained with g replacing f .

Remark 5.1. The constant c appearing in (5.9) - and hence in (5.6) -
depends upon H but it is independent of U . It is relevant to remark that this
constant may be taken uniformly with respect to H varying in a bounded
subset of (Cα)2. Later we shall make use of this important fact.

For estimating purposes we need the following growth conditions on the
non-linearities, for all x ∈ Ω ; η, ξ ∈ IR:

(5.10) f(x, η, ξ) = f1(x, η) + f2(x, ξ); f1, f2 ∈ Cα(Ω × IR, IR),

(5.11) lim
η→+∞

f1(x, η)

η
N+1
N−1

= 0, uniformly for x ∈ Ω,

(5.12) |f2(x, ξ)| ≤ c(|ξ|p + 1), p as restricted below,

(5.13) g(x, η, ξ) = g1(x, ξ) + g2(x, η); g1, g2 ∈ Cα(Ω × IR, IR),

(5.14) lim
ξ→+∞

g1(x, ξ)

ξ
N+1
N−1

= 0, uniformly for x ∈ Ω,

(5.15) |g2(x, η)| ≤ c(|η|q + 1), q as restricted below,

(5.16) 0 ≤ pq <

(
N + 2
N

)2
and

(5.17) 1 ≤ p, q ≤ N

N − 2
if N > 3, and 1 ≤ p, q < ∞ if N = 2
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Remark 5.2. In our estimates, p and q are restricted to be below the so-

called critical hyperbola:
1

p+ 1
+

1
q + 1

>
N − 2
N

. However, our estimates

include some cases that are not covered in the papers [3] and [9], where a
priori estimates are also obtained. It is also important to point out that,
contrary the scalar case, in our work the exponents p or q may grow beyond

the Brèzis-Turner exponent:
N + 1
N − 1

.

Theorem 5.1. (H10 (Ω)-a priori estimate for the positive part) If the as-
sumptions (1.1), (1.2), (1.5), (1.6), (1.7), (1.8), (3.1), (5.10), . . . , (5.16)
and (5.17) hold, then there exists a constant c > 0 such that

||u+||H1
0 (Ω)

, ||v+||H1
0 (Ω)

≤ c.(5.18)

Proof. There is no loss of generality in assuming that f1(x, η) ≥ 0 for η ≥ 0
and f2(x, ξ) ≥ 0 for ξ ≥ 0. Indeed, using (5.10) and (1.1) we have f1(x, η) ≥
aη − c′ for η ≥ 0. Let m1 > c′. Let us consider f̃1 = f1 + m1 ≥ 0 and
9̃ = 9 − m1 in (5.10). Then f̃1 satisfies all the hypotheses required for f1.
The same is done for f2. Hence hereafter we shall assume that f1,f2 ≥ 0 for
η ≥ 0 and ξ ≥ 0, respectively. We may write

f(x, u, v) = f(x, u+, v+) + f(x, u+,−v−) + f(x,−u−, v+)

+ f(x,−u−,−v−) − f(x, 0,−v−) − f(x,−u−, 0)(5.19)

− f(x, u+, 0) − f(x, 0, v+) + f(x, 0, 0).

The above facts with (5.5), (5.6) and (5.10) lead to∫
|f1(x, u+)|φ1,

∫
|f2(x, v+)|φ1 ≤ c(5.20)

for some c > 0.Multiplying the first equation of (5.1) by u+, then integrating
by parts the resulting expression and using the a priori estimates for the
negative parts (5.5), we obtain

(5.21)
||∇u+||2L2 ≤ c

(∫
|f1(x, u+)|u+ +

∫
|f2(x, v+)|u+ + ||∇u+||L2

)
= c

(
I1 + I2 + ||∇u+||L2

)
.

Now let us estimate I1and I2, using the Hardy-Sobolev Inequality (see [2]):
By virtue of (5.11) and (5.20), for an arbitrary ε > 0 we have

I1 ≤ c(ε)||∇u+||2L2 + Cε||∇u+||L2 ,(5.22)

where c(ε) = 0(1) as ε → 0 and Cε > 0 (see Lemma 2.4 in [2]). The proof
of this inequality follows the same ideas that we are going to use in the
following to estimate I2. Hence we suppress it here.

In order to estimate I2, let us we consider 0 < θ < 1 to be chosen later.
Hölder inequality implies that

I2 ≤
(∫

|f2(x, v+)|φ1
)θ
(∫ |f2(x, v+)|(u+)1/(1−θ)

φ
θ/(1−θ)
1

)1−θ

.
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It follows from (5.12) and (5.20) that

(5.23)
I2 ≤ c

{(∫ (v+)p(u+)1/(1−θ)

φ
θ/(1−θ)
1

)
1−θ +

(∫ (u+)1/(1−θ)

φ
θ/(1−θ)
1

)
1−θ

}
= c(I3 + I4).

From the Hardy-Sobolev Inequality, it follows that

(5.24) I4 ≤ c||∇u+||L2 if
1

1 − θ
≤ R and

1
R

=
1
2

− (1 − θ)
N

.

On the other hand,

(5.25) I3 ≤ C ′
ε||v+||2p(1−θ)

L2p + c′(ε)|| u
φθ1

||2L2/(1−θ) .

In view of (5.17) and the Sobolev Embbeding Theorem, we have that

||v+||2p(1−θ)
L2p ≤ c||∇v+||2p(1−θ)

L2 .(5.26)

Again, by the Hardy-Sobolev Inequality and the Sobolev Embedding The-
orem, if

2
1 − θ

≤ Q and
1
Q

=
1
2

− (1 − θ)
N

,

then

(5.27) ||u
+

φθ1
||2L2/(1−θ) ≤ c||∇u+||2L2 .

Thereby, from (5.21), . . . , (5.27), we have

||∇u+||L2 ≤ c(||∇v+||p(1−θ)
L2 + ||∇u+||1/2L2 ).(5.28)

A similar reasoning yields

||∇v+||L2 ≤ c(||∇u+||q(1−θ)
L2 + ||∇v+||1/2L2 ).(5.29)

Choosing θ =
2

N + 2
, (the best possible for our purposes), using (5.16),

(5.28), (5.29) and the assertion below, the estimates (5.18) are attained.

Assertion. If a, b ≥ 0 are such that a ≤ c(aγ1 + bγ2), b ≤ c(aγ3 + bγ4) for
some c > 0, with 0 < γ1, γ3 < 1 and 0 < γ2γ4 < 1, then there exists K ≥ 0
such that a, b ≤ K.

As the growth condition on the non-linearities f and g are subcritical, a
bootstrap argument enable us to obtain estimates in spaces of more regular
functions. Indeed, from Lemma 5.2 and Theorem 5.1, we have

Corollary 5.1. (C1,α(Ω)-a priori estimates) With the assumptions of The-
orem 5.1, there exists a constant c > 0 such that

||u||C1,α(Ω), ||v||C1,α(Ω) ≤ c.(5.30)
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6. Computation of Some Topological Degrees

As previously said, in this section, employing Leray-Schauder degree The-
ory, we shall improve Theorem 4.1 by finding another solution of system (S)
if T ∈ E and one solution if T is on the curve Γ. A priori estimates are
required for the use of topological degree. So, throughout this section we
shall assume all the hypotheses of Theorem 5.1, where a priori bounds were
found, with the additional hypothesis that A in (3.1) is cooperative.

First, for each T =

(
r

s

)
∈ IR2 let us define the operator

KT : (C1,α)2 −→ (C2,α)2(6.1)
U �−→ V

where V is the unique solution (see Remark 3.1) of the system

(6.2)
{−∆V = A(x)V + F (x, U) −A(x)U + Tφ1 +H1, Ω,
V = 0, Ω.

(A is the same matrix that appears in Theorem 3.1).
From Remark 0.1 and Remark 2.2, it follows that KT is a compact oper-

ator if looked from (C1,α)2 into itself.
With this setting, U is a solution of (S) if, and only if (I − KT )U = 0.

Therefore Leray-Schauder degree is applicable to find a solution of the last
equation.

Lemma 6.1. Let To ∈ IR2 and H1 ∈ N2⊥ be fixed. Then there exists a
constant R > 0 such that

D(I −KTo , BR(0), 0) = 0, where(6.3)

BR(0) = {U ∈ (C1,α)2; ||U ||(C1,α)2 < R}

Proof. T0 ∈ Wt0 for some t0 ∈ IR. Fix some T1 ∈ Wt0 ∩ N and let W̃t0 be
the closed segment joining the points T0 and T1. From Corollary 5.1 and
Remark 5.1, there exists R > 0 such that ||U ||(C1,α)2 < R for any eventual
solution of (S)T for all T ∈ W̃t0 . Since KT is an admissible homotopy joining
KT0 and KT1 and (S)T1 has no solution, we obtain (6.3).

Lemma 6.2. Given T0 ∈ E and H1 ∈ N2⊥, there exists an open, bounded
and convex subset O ⊆ (C1,α)2 such that

D(I −KT0 ,O, 0) = 1.(6.4)

Proof. T0 ∈ Wt0 some t0 ∈ IR. Let Ẇt0 be the open segment on Wt0 joining
T0 to Γ(t0). Fixed T1 ∈ Ẇt0 , it follows from Theorem 4.1 that system (S)T1

has a solution U =
(u
v

)
which is a supersolution for (S)T0 . By Lemma 2.1

there exists a subsolution U =
(u
v

)
for (S)T0 , such that U < U in Ω and
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∂U

∂ν
<
∂U

∂ν
on ∂Ω. The set O is defined by

O = {U ∈ (C1,α(Ω))2; U < U in Ω,
∂U

∂ν
<

∂U

∂ν
on ∂Ω(6.5)

and ||U ||(C1,α)2 < r} for some r > 0 to be chosen later.
Let us define

f̃(x, η, ξ) =



f(x, u(x), v(x)) − a(x)u(x) − b(x)v(x), if η ≤ u(x)
or ξ ≤ v(x)

f(x, η, ξ) − a(x)η − b(x)ξ, if u(x) ≤ η ≤ u(x)
and v(x) ≤ ξ ≤ v(x)

f(x, u(x), v(x)) − a(x)u(x) − b(x)v(x), if η ≥ u(x)
or ξ ≥ v(x)

In a similar way we define a function g̃. The functions f̃ and g̃ are bounded
and non-decreasing .With these functions we can introduce, as in the be-
ginning of this section, the operator K̃T0 : (C1,α)2 �→ (C2,α)2 such that
K̃T0U = V where V is the unique solution of the system

(6.6)
{−∆V = A(x)V + F̃ (x, U) + T0φ1 +H1, Ω,
V = 0, ∂Ω.

As before, K̃T0 is a compact operator of (C1,α)2 into itself.
Since f̃ and are bounded, it follows from Lp estimates for systems that

all the solutions of (6.6) are uniformly bounded in (C1,α)2. So, if we choose
r > sup{||KT0U ||(C1,α)2 ;U ∈ (C1,α)2}, use (3.1), use the fact that f̃ and g̃
are non-decreasing, and use the Maximum Principle for systems, it follows
that K̃T0(O) ⊆ O.

Now take ψ ∈ O and consider the admissible compact homotopy Hθ(U) =
θK̃T0(U)+(1−θ)ψ, 0 ≤ θ ≤ 1. As ψ is a constant mapping, D(I−H0,O, 0) =
1 and hence D(I − K̃T0 ,O, 0) = 1. The proof is finished since K̃T0 |O ≡
KT0 .

Theorem 6.1. Consider the assumptions of Theorem 5.1. Then the con-
clusions of Theorem 4.1 can be strengthened as follows:
(i) (S)T has no solution if T ∈ N
(ii) (S)T has at least one solution if T ∈ Γ
(iii) (S)T has at least two solutions if T ∈ E.

Proof. Case (i) is already contained in Theorem 4.1. Case (ii) is consequence
of Lemmas 6.1 and 6.2. Indeed take R > 0 in Lemma 6.1 such that R > r.
Since D(I −KT0 ,O, 0) = 1 we have a solution U in O. By Lemma 6.1 and
excision property of the degree we have that D(I −KT , BR(0)/O, 0) = −1
and then there exists another solution W �= U of (S)T in BR(0)/O. In Case
(iii), take a sequence (Tn) ⊆ E such that Tn → T . By the uniform a priori
bound (Corollary 5.1 and Remark 5.1 ) we have that ||Un||(C1,α)2 ≤ c for some
c > 0. By the compact embedding Theorem (Remark 0.1) we have (passing
eventually to a subsequence) Un → U0 in (Cα)2 for some U0 ∈ (Cα)2.
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Using Schauder estimates for systems we have the above convergence in
(C2,α)2 and then going to the limit in (S)Tn we finish the proof of (iii).

Example 6.1. (Where Theorem 6.1 holds) Let us consider system (S) with
f = f(x, v) and g = g(x, u).

Suppose that f and g are non-decreasing functions ( hence (3.1) holds )
and that (5.12), (5.15) and (5.16) are satisfied. If in addition the following
assumptions hold

−∞ ≤ lim sup
v→−∞

f(x, v)
v

< Λf < lim inf
v→+∞

f(x, v)
v

≤ +∞(6.7)

−∞ ≤ lim sup
u→−∞

g(x, u)
u

< Λg < lim inf
u→+∞

g(x, u)
u

≤ +∞(6.8)

uniformly for x ∈ Ω, where

Λf ,Λg > 0 and ΛfΛg = λ21,(6.9)

then (1.1), (1.2), (1.6), (1.7), (1.8), (1.15), (1.16) and (1.17) are valid. There-
fore Theorem 6.1 holds for system (S) with the above non-linearities.

Note that conditions (6.7) and (6.8) generalizes for systems the condition

−∞ ≤ lim sup
u→−∞

f(x, u)
u

< λ1 < lim inf
u→+∞

f(x, u)
u

≤ +∞

uniformly for x ∈ Ω, asked in the scalar case (see [4] on [8]).

References

[1] A. Ambrosetti and G. Prodi, On the inversion of some Differentiable mappings with
singularities between Banach spaces, Ann. Math. Pura Appl. 93 (1972), 231-247.
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