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Abstract. The onvergence and the stability of the iterative regularization
method for solving variational inequalities with bounded nonsmooth prop-
erly monotone (i.e., degenerate) operators in Banach spaces are studied.
All the items of the inequality (i.e., the operator A, the “right hand side” f
and the set of constraints Ω) are to be perturbed. The connection between
the parameters of regularization and perturbations which guarantee strong
convergence of approximate solutions is established. In contrast to previ-
ous publications by Bruck, Reich and the first author, we do not suppose
here that the approximating sequence is a priori bounded. Therefore the
present results are new even for operator equations in Hilbert and Banach
spaces. Apparently, the iterative processes for problems with perturbed sets
of constraints are being considered for the first time.

1. Introduction and previous results

We consider iterative methods for solving variational inequalities with
monotone operators in Banach spaces. A typical example of such prob-
lems is the problem of optimization of convex functionals on convex closed
sets. Recall that the gradient of a convex functional defined in a Banach
space B is a monotone, in general nonlinear and nonsmooth, operator act-
ing from B to the dual space B∗. Particular cases of variational inequalities
are problems of solving operator equations in Banach spaces, problems of
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finding saddle points of convex-concave functionals, equations with general
elliptic operators, etc. [25, 28, 17].
Assume that B is a uniformly convex Banach space. Denote by 〈ϕ, x〉 the

dual product in B, i.e., the pairing between ϕ ∈ B∗ and x ∈ B. Let ‖ ·‖ be a
norm in B, and ‖·‖∗ be the norm in B∗. Let Ω be a convex closed set in B, A
be a bounded monotone operator from B to B∗ with domain D(A) ⊆ B and
range R(A) ⊆ B∗, Ω ⊆ intD(A) (intD(A) stands for the interior of D(A)).
Recall that an operator A is called “bounded” if it maps bounded sets of B
onto bounded sets of B∗; an operator A is called “monotone” if for every
x1, x2 ∈ B, y1 ∈ Ax1 and y2 ∈ Ax2,

〈y1 − y2, x1 − x2〉 ≥ 0,(1)

“strongly monotone“ if

〈y1 − y2, x1 − x2〉 ≥ c‖x1 − x2‖2, c = const > 0,(2)

and “uniformly monotone“ if

〈y1 − y2, x1 − x2〉 ≥ ψ(‖x1 − x2‖),(3)

where ψ(t) is a continuous nondecreasing positive function for t > 0, ψ(0) =
0.
If A satisfies some continuity condition (for example, demi-, hemi- contin-

uity) then in the inequalities (1)-(3) we set y1 = Ax1 and y2 = Ax2. An
operator A is called maximal monotone (in the sense of inclusion) if its graph
is a maximal monotone set [19, 25, 28].
We define A : B → B∗ to be a “proper monotone” operator if it is mono-

tone and there is no other strengthening of the condition (1) (for example,
to the levels of (2) or (3)).
It is well known [1, 2] that the problem of finding a solution x∗ ∈ Ω for

the variational inequality

〈Ax∗ − f, x − x∗〉 ≥ 0, ∀x ∈ Ω, f ∈ B∗(4)

with a proper monotone operator A belongs to the class of ill-posed problems.
It is unstable with respect to perturbations of all of its terms: the operator
A, ”the right-hand side” f and the set of constraints Ω. That is why the
conventional approximate methods of relaxation type (gradient methods,
Newton methods, etc.) do not, in general, converge to the solution x∗,
which, moreover, does not necessary exist. In compliance with the concept
of ill-posed problems here we assume that there exists a nonempty set N of
solutions to the variational inequality (4).
By a “solution” of (4) we understand an element x∗ ∈ Ω for which there

exists y ∈ Āx∗ such that the inequality

〈y − f, x − x∗〉 ≥ 0, ∀x ∈ Ω,

is satisfied. Here Ā is the maximal monotone extension of A on Ω (which
always exists by the Zorn’s lemma). If A is continuous, then x∗ is a classical
solution. If A is maximal monotone and Ω = B, then x∗ is a solution in the
sense of inclusion, i.e., f ∈ Ax∗.
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It is well known that N is a convex closed set (see, for instance, [15]). Due
to the reflexivity of B, there exists a unique element x̃∗ of minimal norm

‖x̃∗‖ = min
x∈N

‖x‖.(5)

Moreover, the concept of an ill-posed problem assumes the application of a
regularization procedure to the variational inequality with perturbed initial
data, to ensure that the convergence of the approximate solutions is stable.
As regularizing (smoothing) operators we consider the one-parameter fam-

ily
S(α, x) = αJx,

where α is a positive parameter of regularization and J is a normalized
duality mapping. Recall that J : B → B∗ is called the “normalized duality
mapping” if

‖Jx‖∗ = ‖x‖, 〈Jx, x〉 = ‖x‖2.(6)

The duality mapping exists in every Banach space. The (generally nonlinear)
operator J is always monotone, coercive and bounded. It is also hemi-
continuous in smooth reflexive Banach space, uniformly continuous on every
bounded set in uniformly smooth Banach space, and uniformly monotone
on every bounded set in uniformly convex Banach space [9, 10]. If B is a
Hilbert space, then J is the identity operator I. If B is a strictly convex and
reflexive along with its dual, and J∗ : B∗ → B, is the normalized duality
mapping in the space B∗, then J∗ = J−1, where J−1 is the inverse of the
mapping J. If B is smooth, i.e., the norm of B is differentiable in the sense of
Gateaux, then Jx = grad(‖x‖2/2). Let us notice that these same properties
are shared by the duality mapping Jν with the gauge function ν(t) :

‖Jν‖∗ = ν(‖x‖), 〈Jx, x〉 = ν(‖x‖)‖x‖,(7)

which also plays an important role in the general theory of monotone and
accretive operators.
Assume that instead of A, f, and Ω perturbed values Ah, fω and Ωσ,

depending on positive parameters h, ω, and σ respectively are given. Fur-
thermore, let

HB∗(Mh(x), M(x)) ≤ hζ(‖x‖),(8)

‖fω − f‖∗ ≤ ω,(9)

HB(Ωσ,Ω) ≤ σ.(10)

Here HX(Q1, Q2) is the Hausdorff distance between the sets Q1 and Q2 in
the space X (see, for example, [2]), M(x) and Mh(x) are the ranges of the
operators Ā and Āh in x, where Ā and Āh stands for the maximal extensions
of the corresponding monotone operators, ζ(t) is continuous non-decreasing
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function for t ≥ 0, bounded on bounded sets. If A and Ah are continuous
then (8) is replaced by the inequality

‖Ahx − Ax‖∗ ≤ hζ(‖x‖).
In what follows we assume that Ah are monotone operators, D(Ah) = D(A)
for all h ≥ 0 (A0 = A), and Ωσ are convex closed sets for all σ ≥ 0, (Ω0 =
Ω), Ωσ ⊂ intD(A). Using S(α, x) = αJx as the smoothing operator we have
the following regularized variational inequality:

〈Ahx∆α + αJx∆α − fω, x − x∆α 〉 ≥ 0, ∀x ∈ Ωσ,∆ = (h, ω, σ),(11)

recently studied by Alber and Notik [2, 11].
The following two main problems are naturally posed for the variational

inequality (11):
1. Find the connection between parameters h, ω, and σ of the problem

and the regularization parameter α, securing convergence of the ap-
proximate solutions x∆α to the solution x∗ of the initial inequality (4),
and their stability.
The simplest of the known relations is the following: ∆/α → 0 as

α → 0. Namely, under this very condition convergence x∆α → x̃∗ is
proved in [2, 11]. However, this choice of α is not single-valued and
does not guarantee the regularization properties of the approximate
solutions to the variational inequality (11). Therefore, the following
problem is stated:

2. Justify a single-valued choice of the regularization parameter α pro-
viding regularizing properties of the approximate solutions. In other
words, the given perturbing parameters ∆ = (h, ω, σ) have to provide
a single-valued choice of α, continuously tending to zero along with
∆ → 0. Then the limit relation x∆α → x̃∗ is guaranteed.

In this case the method of finding solution x∆α from (11) along with the
way to choose α is called the operator regularization, in contrast to the
iterative regularization to be discussed in what follows.
The operator method of regularization has got a great deal of interest.

For linear equations with exact data in Hilbert spaces it was studied by
Lavrentjev in [27] and Lattes and Lions in [26]. Here the regularizing family
is especially simple, namely, S(α, x) = αI.
Browder [20] and Bakushinskii [17] used a strongly and uniformly mono-

tone operators M(x) in Hilbert spaces:

〈Mx − My, x − y〉 ≥ ‖x − y‖ψ(‖x − y‖),(12)

ψ(t) > 0, 0 < t < ∞, ψ(0) = 0, ψ(0) → ∞ as t → ∞,

as the regularizing operators for variational inequalities. Unfortunately, in
[20, 17] there are no examples of such operators for Banach spaces. In
the work [1] Alber has first applied the duality mappings as regularizing
operators for solving equations with exact and approximate data in Banach
spaces. The duality mappings do not satisfy the condition (12) even in
smooth Banach spaces: generally speaking, they are uniformly monotone
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on bounded sets. This makes apparent difficulties in investigation of the
methods mentioned above. Nevertheless, duality mappings turn out to be an
exceptionally efficient tool for regularization of unstable problems in Banach
spaces (operator equations, variational inequalities, problems for calculating
values of unbounded operators, convex optimization problems, etc.). This
allowed to get the most of the results about convergence and stability [2,
4, 11, 15, 16, 24, 29, 30, 35, 36] which have been known previously only for
Hilbert spaces, mainly, in linear cases (cf. [32]). In addition, let us point out
that duality mappings have an analytical descriptions for the most important
Banach spaces, namely, lp, Lp, Hp

m, 1 < p < ∞ [3] and Orlicz spaces with
Luxemburg norm [12].
It is a special question how to choose the parameter of regularization. The

most popular approach is based on the so called the residual principle. For
linear equation and regularization of the variational type in Hilbert spaces,
it was first proposed and studied by Ivanov and Morozov (see [23, 32]). For
nonlinear problems and regularization of the operator type in Banach spaces,
it was first investigated by Alber in [4] (see also [15]). Let us illustrate the
idea of this approach by finding the solution x̃∗ to the operator equation
Ax = f with properly monotone hemi-continuous operator A acting from a
uniformly convex Banach space B to the dual strictly convex space B∗. Let,
for simplicity, the equation is defined only with a perturbed RHS fω, ω > 0.
According to (11) the regularized equation is

Axω
α + αJxω

α = fω, α > 0, ‖fω − f‖∗ ≤ ω.(13)

In fact [1], xω
α → x̃∗ for α → 0 and ω/α → 0. However, the last relations do

not provide the regularization properties of (13) in the sense that they do
not guarantee convergence xω

α → x̃∗ only under the condition ω → 0. In the
principle of the residual we choose α = ᾱ from the condition

r(ᾱ) = ‖Axω
ᾱ − fω‖∗ = ωs, 0 < s ≤ 1.(14)

Moreover, xω
ᾱ converge strongly to x̃∗ if ω → 0 and 0 < s < 1, and converge

weakly if ω → 0 and s = 1. In the both cases as a consequence we get
the following limit relations: ᾱ → 0 for ω → 0; ω/ᾱ → 0 for 0 < s < 1,
and ω/ᾱ < const for s = 1. This justifies approximating the solution x̃∗
by the solutions xω

ᾱ of (13) for a fixed ω. In this very form the problem
of finding x∗ ∈ N is mostly close to the reality, and corresponds to the
fundamental principle of selection of the approximate solution in correct
(stable) problems: residual in the approximate solution has to be satisfied
with the accuracy not exceeding the error of the RHS.
Of special importance in applications are equations and variational in-

equalities with maximal monotone, possibly multi-valued, operators [7, 19].
Evidently, the residual principle in the form of (14) is not applicable in these
cases. The reason is that the residual r(ᾱ) becomes a multi-valued function
of ᾱ, but in the proof we require this function to be continuous. In order
to overcome this difficulty Alber in [4] proposed significant generalization of
the residual principle. The idea of it is as follows: on the solutions xω,h

α of
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the regularized equation

Ahxω,h
α + αJxω,h

α = fω, ω > 0, h > 0,(15)

with maximal monotone operators Ah, the residual is

‖Ahxω,h
α − fω‖∗ = α‖xω,h

α ‖.(16)

Hence the function r(α) = α‖xω,h
α ‖ is natural to be called the generalized

residual on approximate solutions xω,h
α (in other points it is of no inter-

est). The function r(α) is continuous, single-valued and monotone increas-
ing. Moreover, if A is hemi- (demi-)continuous operator then r(α) coincides
with the classical residual ‖Axω,h

α − fω‖∗. It has been shown in [15] that the
generalized residual principle in the form

ᾱ‖xω,h
ᾱ ‖ = (h + ω)s, 0 < s ≤ 1,

where xω,h
ᾱ is the solution of (15) for α = ᾱ is the regularizing algorithm as

ω, h → 0. The statement completely corresponds to the case of continuous
operator A. The principle of generalized residual proved to be exceptionally
fruitful not only for the problems with maximal but even for discontinuous
monotone operators. Moreover, Ryazantseva [35] was first to use this prin-
ciple for variational inequalities where the classical notion of residual is not
defined even in the continuous case (see also [16]). The similar principle of
the smoothing functional was studied in detail by Alber and Liskovets [8].
At last, let us mention the papers where under consideration were con-

vergence and stability of the regularization method in the operator form for
variational inequalities with perturbed sets Ω. In the most complete form
it was studied recently by Alber and Notik [11] and Alber [2]. Different
particular cases appeared earlier in Mosco [31], Bakushinskii [18], Liskovets
[30], Ryazantseva [36], etc. The principle of the residual for such problems
has been obtained by Ryazantseva [36] for Hilbert spaces, for Banach spaces
the problem is still open.
Thus, the operator method of regularizing variational inequalities in Ba-

nach spaces has been developed in satisfactory completeness. However, this
method by itself does not give a final solution to the problem, - for every fixed
α it requires solving a nonlinear problem of type (15). In contrast to this
the iterative regularization method gives successive approximations to the
solution x̃∗ on every step of the iterative process. Here the parameters of the
regularization are preassigned. Let us emphasize that the residual principle
in the methods of iterative type has been studied in Hilbert spaces for linear
equations and for iterative sequences of the form xn+1 = xn − α(Axn − f)
(see Vainikko [37]).

1. Main result

The process of proving convergence and stability of iterative regularization
includes the operator regularization of the form

〈Azn + αJzn − f, x − zn〉 ≥ 0, ∀x ∈ Ωσn .(17)
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The method of iterative regularization which we consider can be described
by the following iterative procedure:

(18) Jxn+1 = Jxn − εn(yhm x̄n + αmJx̄n − fωm + qm), yhm ∈ Ahm ,

qm = (αm + αm‖x̄n‖+ ‖yhm x̄n − fωm‖∗)
J(xn − x̄n)
‖xn − x̄n‖ ,(19)

m = n + n0, n0 = const ≥ 0, xn = J∗Jxn, x1 ∈ B.(20)

Here x̄n = PΩxn is the metric projection of xn on Ω. Since Ω is a convex
closed set in a reflexive space then for arbitrary xn ∈ B there exists the
unique x̄n ∈ Ω [3].
Analogously to (8) and (9) assume that Ωσn ⊂ intD(A) are convex sets,

D(Ahn) = D(A) and for x ∈ D(A) the following inequality holds:

HB∗(Āx, Āhnx) ≤ ζ(‖x‖)hn, 0 ≤ hn ≤ h̄,(21)

‖fωn − f‖∗ ≤ ωn, 0 ≤ ωn ≤ ω̄,(22)

HB(Ωσn ,Ω) ≤ σn, 0 ≤ σn ≤ σ̄, σn+1 ≤ σn.(23)

The method of iterative regularization was first studied by Bruck and Ba-
kushinskii in Hilbert spaces (see [21, 17]). They used the following scheme
of the proof: according to the inequality

‖xn+1 − x̃∗‖ ≤ ‖zn+1 − x̃∗‖+ ‖xn+1 − zn+1‖,(24)

on the fist stage convergence to x̃∗ of the solutions zn to the variational
inequality

〈Azn + αnzn − f, x − zn〉 ≥ 0, ∀x ∈ Ω
was established. On the second stage the limit relation

lim
n→∞ ‖xn − zn‖ = 0,(25)

was proved. Here

xn+1 = PΩ(xn − εn(Ahnxn + αnxn − fωn)), n = 1, 2, . . .(26)

Such a scheme stems from Alber [5] where stabilization of the method of
continuous regularization

(27)
d x(t)

d t
+ A(t)x(t) + α(t)x(t) = f(t), x(t0) = x0, t0 ≤ t < ∞,

in Hilbert space H for solution of the operator equation Ax = f with con-
ditions

‖f(t)− f‖H ≤ ω(t),
‖A(t)− A‖H ≤ h(t),

was studied.
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The method of iterative regularization of operator equation Ax = f

xn+1 = xn − εn(Ahnxn + αnxn − fωn), n = 1, 2, . . .

is the difference approximation of the differential equation (27) according to
the simplest Euler scheme.
In application to variational inequalities the following fundamental state-

ment strikes: a point x∗ ∈ Ω ⊂ H is a solution of the variational inequality

〈Ax − f, ξ − x〉 ≥ 0, ∀ξ ∈ Ω,

if and only if x∗ is a solution of the operator equation

x = PΩ(x − ε(Ax − f))(28)

with an arbitrary ε > 0. Successive approximations for the regularized
equation (28) with perturbed data give the iterative sequence (26).
In Banach spaces iterative regularization was considered in [6] only for

nonlinear equations Ax = f with monotone operators A : B → B∗. Transi-
tion from Hilbert to Banach spaces is not trivial due to the following reasons.
First of all, using conventional Lyapunov functionals V1(x) = ‖x − x∗‖2 or
V2(x) = ‖Jx − Jx∗‖2∗ leads to unnatural a priori assumptions being outside
the framework of the theory of monotone operators. To avoid this it was
proposed in [6] (and earlier in [9]) to use in Banach spaces a new Lyapunov
functional

V (Jx, x∗) = (‖Jx‖2∗ − 2〈Jx, x∗〉) + ‖x∗‖2)/2,(29)

that does not require any a priori structure assumptions but monotonicity of
the operator A. However, using such functional essentially complicates the
proof, and the question of relations between V (Jx, x∗) and the conventional
functional V1(x) becomes of major importance since the final results should
be stated in terms of V1(x).
Second, it turned out that in Banach spaces it is necessary to use the

geometry of these spaces in order to investigate convergence and stability of
iterative processes. In Hilbert spaces there is no such problem, more pre-
cisely, the geometry of Hilbert spaces is trivial enough, and it is automatically
employed in squaring the norm ‖x − x∗‖ in the Lyapunov functional V1(x),
which is equivalent using the parallelogram equality [22]

‖x + y‖2H + ‖x − y‖H = 2‖x‖2H + 2‖y‖2H .

Third, in Hilbert spaces the operator (A+αI) of (24) is strongly monotone
all over the space, in contrast to Banach spaces the operator (A + αJ) is
uniformly monotone only on the bounded sets. This is essentially used in
the proof of uniform boundedness of approximate iterations and turns out
to be the most difficult point in the theory of iterative methods.
Now let us summarize the main characteristics which distinct this paper

from previous works:
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1. In [6] iterative regularization of operator equations in all the space B was
studied in the form

Jxn+1 = Jxn − εn(yhn + αnJxn − fωn), yhn ∈ Ahnxn,(30)

xn = J∗Jxn, n = 0, 1, . . . , x0 ∈ B.

In the present paper we study the iterative regularization method for varia-
tional inequalities which uses the operation of metric projection on Ω under
the sign of the operator A (cf. [13]) and the additional ”penalty” term (19).
2. In [6] it was a priori assumed that the sequence (30) is bounded (the
same in [21, 34]). Here we omit this requirement. Therefore, the results
obtained in this paper turn out to be new even for operator equations in
Banach spaces.
3. In this paper we are first to consider stability of iterative processes for
variational inequalities in relation to perturbation of the set Ω.
Denote by δB(ε), ε ∈ [0, 2] the modulus of convexity, by ρB(τ), τ ≥ 0, the

modulus of smoothness of B [22], gB(ε) = δB(ε)/ε. Assume that the inverse
function g−1

B (·) exists. It is known that gB(ε) and g−1
B (·) are nondecreasing,

and δB(ε) and ρB(τ) are increasing functions, δB(0) = ρB(0) = 0. We also
consider the function µ(t) = d1t

2 + d2ρB(t), which is increasing along with
its inverse µ−1(·) (d1 and d2 are positive constants). It is possible to assume
that δB(ε) ≥ cεγ , where γ ≥ 2 and c is a positive constant. This assumption
is not too restrictive since, on one hand, a direct calculation of δB(ε) in the
spaces lp, Lp, W p

m, 1 < p < ∞, and in some Orlicz spaces, shows that it
allows the corresponding lower estimate

δB(ε) ≥ (p − 1)ε2/16, 1 < p ≤ 2,

δB(ε) ≥ p−1(ε/2)p, p ≥ 2.

On the other hand, the Pisier theorem [33] states that the same result up
to isomorphism is valid for arbitrary uniformly convex Banach space. Thus,
without loss of generality, we assume the following: there exists continuous
on [0, 2] convex increasing function δ̃B(ε), δ̃B(0) = 0, such that

δB(ε) ≥ δ̃B(ε).(31)

Our aim is to prove the following result.

Theorem 1. Let B be an uniformly convex Banach space, B∗ be its dual.
Moreover, assume that
1. x̃∗ is the solution of the variational inequality (4) of minimal norm;
2. The operator A : B → 2B∗

is monotone bounded with ϕ-arbitrary
growth order, i.e.

‖y‖∗ ≤ ϕ(‖x‖), ∀y ∈ Ax,(32)

where ϕ(t) is a continuous nondecreasing function for t ≥ 0.
3. The perturbations of the operator A, the element f and the convex set

Ω are given with errors and satisfy (21)-(23).
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4. In the method (18)-(19) the initial approximation x0 satisfies the in-
equality V (Jx0, zn0) ≤ R0, where R0 is an arbitrary constant, zn0 is
the solution of the variational inequality

〈Az + αn0Jz − f, x − z〉 ≥ 0, ∀x ∈ Ωσn0
,(33)

and n0 satisfies (62).
5.

∑∞
n=1 αnεn = ∞.

6. There exist constants a > 0, and b > 0, such that
σn

αn
≤ a,

|αn − αn+1|
αn

≤ b,

and for n → ∞

αn → 0,
ρB∗(εn)

αnεn
→ 0,

ωn + hn + εn + σn

αn
→ 0,

g−1
B

(√
σn

αn
+

|αn − αn+1|
αn

)
/αnεn → 0.

(34)

Then the sequence {xn} generated by the iterative method (18)-(19) converges
strongly to x̃∗.

2. Auxiliary lemma

As a preliminary, let us show validity of the following ”proximity lemma”.

Lemma 1. Suppose that
(i) B is a uniformly convex Banach space with the modulus of convexity

δB(ε);
(ii) the sequences {z1} and {z2} of the solutions to the variational inequal-

ities

〈T1z1 + α1Jz1, x − z1〉 ≥ 0, ∀x ∈ Ω1 ⊂ B, z1 ∈ Ω1, α1 > 0,

〈T2z2 + α2Jz2, x − z2〉 ≥ 0, ∀x ∈ Ω2 ⊂ B, z2 ∈ Ω2, α2 > 0,
are bounded for all α1 and α2 respectively, i.e. ‖z1‖ ≤ M1, ‖z2‖ ≤ M1;

(iii) the operator T1 is monotone and bounded on the sets {z1} and {z2},
i.e. ‖T1z1‖∗ ≤ M2 and ‖T1z2‖∗ ≤ M2, M2 = const.;

(iv) HB∗(T1(z), T2(z)) ≤ ωζ(‖z‖), where z is an arbitrary element of {z2};
(v) Ω1 ⊂ D and Ω2 ⊂ D are convex closed sets, HB(Ω1,Ω2) ≤ σ0; D =

D(T1) = D(T2).
Then the following estimate is valid:

‖z1 − z2‖ ≤ c1g
−1
B

(
c3

√
σ0
α1

+ c4
|α1 − α2|

α1
+ c5

ω

α1

)
,(35)

where
c1 ≤ 2max{1, M1},

c2 = 2M2 + α1M1 + α2M1 + ωζ(M1),
c3 = max{1, 2−1Lc2}, 1 < L < 3.18,

c4 = 2c1LM1,
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c5 = 2c1Lζ(M1),

Proof. We consider the expression

D = 〈T1z1 + α1Jz1 − T2z2 − α2Jz2, z1 − z2〉
= 〈T1z1 − T1z2 + α1(Jz1 − Jz2) + T1z2 − T2z2 + (α1 − α2)Jz2, z1 − z2〉.

By virtue of monotonicity of T1,

〈T1z1 − T1z2, z1 − z2〉 ≥ 0

In [9, 10] an estimate of the adjoint mapping was given:

〈Jz1 − Jz2, z1 − z2〉 ≥ (2L)−1δB(‖z1 − z2‖/c1),

Then we have

D ≥ α1(2L)−1δB(‖z1 − z2‖/c1)− ‖T1z2 − T2z2‖∗‖z1 − z2‖
− |α1 − α2|‖z2‖‖z1 − z2‖

≥ −‖z1 − z2‖(ωζ(‖M1‖) + M1|α1 − α2|)
+ α1(2L)−1δB(‖z1 − z2‖/c1).

(36)

On the other hand, since HB(Ω1,Ω2) ≤ σ0, then for z2 ∈ Ω2 there exists
z̃1 ∈ Ω1 such that ‖z2 − z̃1‖ ≤ σ0 and

〈T1z1 + α1Jz1, z1 − z2〉 = 〈T1z1 + α1Jz1, z1 − z̃1 + z̃1 − z2〉
= 〈T1z1 + α1Jz1, z1 − z̃1〉+ 〈T1z1 + α1Jz1, z̃1 − z2〉
≤ (‖T1z1‖∗ + α1‖z1‖)σ0 ≤ (M2 + α1M1)σ0.

Analogously, one can obtain the estimate

〈T2z2 + α2Jz2, z2 − z1〉 ≤ (‖T2z2‖∗ + α2M1)σ0.

It is evident that

‖T2z2‖∗ ≤ ‖T1z2‖∗ + ‖T2z2 − T1z2‖∗ ≤ M2 + ωζ(M1).

And so it follows that

D ≤ (2M2 + α1M1 + α2M1 + ωζ(M1))σ0 = c2σ0.

From the last inequality and from (36) we have

(37) c2σ0+ ‖z1− z2‖(ωζ(M1)+M1|α1− α2|) ≥ α1(2L)−1δB(‖z1− z2‖/c1).

Only two cases are possible, either

(i) ‖z1 − z2‖ < c1g
−1
B

(√
σ0
α1

+ c4
|α1 − α2|

α1
+ c5

ω

α1

)
(38)

or

(ii) ‖z1 − z2‖ ≥ c1g
−1
B

(√
σ0
α1

+ c4
|α1 − α2|

α1
+ c5

ω

α1

)
.

In the second case, since [22, 3]

δB(ε) ≤ δH(ε) ≤ ε2/4,
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we obtain
‖z1 − z2‖

4c1
≥ gH

(‖z1 − z2‖
c1

)
≥ gB

(‖z1 − z2‖
c1

)
≥

√
σ0
α1

.(39)

Consider now (37). We have
c1δB(‖z1 − z2‖/c1)

‖z1 − z2‖ ≤ c4
|α1 − α2|

α1
+

2Lc1c2
‖z1 − z2‖

σ0
α1

+ c5
ω

α1
.

Using (39) , we get

‖z1 − z2‖ ≤ c1g
−1
B

(
Lc2
2

√
σ0
α1

+ c4
|α1 − α2|

α1
+ c5

ω

α1

)
.

Comparing the last expression with (38), we get (35). The proof of the
lemma is completed.

Remark 1. If σ0 = 0, i.e. Ω1 coincides to Ω2 and ω = 0, i.e. T1 coincides
with T2 (at least on the elements of the sequence {z2}) then

‖z1 − z2‖ ≤ c1g
−1
B

(
c4

|α1 − α2|
α1

)
.(40)

This estimate coincides with those obtained before (see [1, 6]). Proximity
estimates of solutions to variational inequalities with perturbed operators
and perturbed sets of constraints have not exist before.

Remark 2. In the case of multi-valued operators, by T1 and T2 we mean
the single-valued sections of the corresponding operators.

3. Proof of Theorem 1

Consider the auxiliary inequality (33). Earlier, in [1], it was proved that
the relation limn→∞ ‖zn−x̃∗‖ = 0 holds in B while σ/α → 0 and ‖zn‖ ≤ M1,
M1 = const. From (24) it follows that it is necessary to prove only (25) to
obtain strong convergence and stability of the method (18)-(19).
Let zm and zm+1 be solutions of the variational inequalities

〈Azm + αmJzm − f, x − zm〉 ≥ 0, ∀x ∈ Ωσm , m = n + n0

and
〈Azm+1 + αm+1Jzm+1 − f, x − zm+1〉 ≥ 0, ∀x ∈ Ωσm+1

respectively. Consider the Lyapunov functional

V (Jx, z) = (‖x‖2 − 2〈Jx, z〉+ ‖z‖2)/2,
where x and z are arbitrary points from B. Let us state the properties of
this functional (see [3]):
1. V (Jx, z) is a convex, continuous and differentiable with respect to each

argument ϕ = Jx and z;
2. gradϕV (Jx, z) = x − z, if z is fixed;
3. gradzV (Jx, z) = Jz − Jx, if x is fixed;
4. V (Jx, z) ≥ 0 ∀x, z ∈ B and V (Jx, z) = 0, only if x = z;
5. 2−1(‖x‖ − ‖z‖)2 ≤ V (Jx, z) ≤ 2−1(‖x‖+ ‖z‖)2;
6. V (Jx, z) → ∞, if ‖x‖ → ∞ and (or) ‖z‖ → ∞.
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From the convexity of V (Jx, z) in z we have

V (Jxn+1, zm+1)− V (Jxn+1, zm)

≤ 〈Jzm+1 − Jxn+1, zm+1 − zm〉
≤ ‖Jzm+1 − Jxn+1‖∗‖zm+1 − zm‖.

(41)

Now from the convexity of V (Jx, z) in ϕ = Jx, we have

V (Jxn+1, zm)− V (Jxn, zm)

≤ 〈Jxn+1 − Jxn, xn+1 − zm〉
= 〈Jxn+1 − Jxn, xn − zm〉+ 〈Jxn+1 − Jxn, xn+1 − xn〉.

(42)

(41) together with (42) give the following inequality

V (Jxn+1, zm+1)− V (Jxn, zm)

≤ ‖Jzm+1 − Jxn+1‖∗‖zm+1 − zm‖
+ 〈Jxn+1 − Jxn, xn+1 − xn〉+ 〈Jxn+1 − Jxn, x̄n − zm〉
+ 〈Jxn+1 − Jxn, xn − x̄n〉.

(43)

Let us estimate each of the four terms in the RHS of (43).

The first term. Using the estimate for the modulus of continuity of the
duality mapping [9, 10], we get

‖Jxn+1 − Jzm+1‖∗ ≤ c6g
−1
B∗(2c6L‖xn+1 − zm+1‖)

≤ c6g
−1
B∗(2c6L(‖xn+1‖+ ‖zm+1‖)),

where

c6 = 2max{1, ‖xn+1‖, ‖zm+1‖}.(44)

Then, from Lemma 1 it follows that

‖zm+1 − zm‖ ≤ c1g
−1
B

(
c4

|αm − αm+1|
αm

+ 2c3
√

σm

αm

)
.

We have used here the inequality:

HB(Ωσm ,Ωσm+1) ≤ HB(Ω,Ωσm) +HB(Ω,Ωσm+1) ≤ σm + σm+1 ≤ 2σm.

The second term. First consider the following estimate ( see [9, 10])

〈Jxn+1 − Jxn, xn+1 − xn〉 ≤ 8‖Jxn+1 − Jxn‖2∗ + c7ρB∗(‖Jxn+1 − Jxn‖∗),

where

c7 = 8max{L, ‖xn+1‖, ‖xn‖}.(45)

It is evident (see e.g. (22)), that

‖fωn‖∗ ≤ ‖f‖∗ + ωn.

By virtue of (21) and (32) we can write for all yn ∈ Axn

‖yhn‖∗ ≤ ‖yhn − yn‖∗ + ‖yn‖∗ ≤ hnζ(‖xn‖) + ϕ(‖xn‖).
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Now let us estimate ‖Jxn+1 − Jxn‖∗:

‖Jxn+1 − Jxn‖∗ = εm‖ȳhm − fωm + αmJx̄n + qm‖∗
≤ εm(2‖ȳhm‖∗ + 2‖fωm‖∗ + 2αm‖x̄n‖+ αm)
≤ εmc8,

where

(46) c8 = 2(ϕ(‖x̄n‖) + hmζ(‖x̄n‖) + αm‖x̄n‖+ ‖f‖∗ + ωm) + αm.

Therefore

〈Jxn+1 − Jxn, xn+1 − xn〉 ≤ 8c28ε
2
m + c7ρB∗(c8εm).

The third term. For all ȳn ∈ Ax̄n, wm ∈ Azm:

〈Jxn+1 − Jxn,x̄n − zm〉
= −εm〈ȳhm + αmJx̄n − fωn + qm, x̄n − zm〉
= −εm〈ȳhm − ȳn, x̄n − zm〉 − εmαm〈Jx̄n − Jzm, x̄n − zm〉

− εm〈ȳn − wm, x̄n − zm〉
− εm〈wm + αmJzm − f, x̄n − zm〉
− εm〈f − fωm , x̄n − zm〉 − 〈qm, x̄n − zm〉.

Taking into account that

〈ȳn − wm, x̄n − zm〉 ≥ 0, 〈wm + αmJzm − f, x̄n − zm〉 ≥ 0

and
〈qm, x̄n − zm〉 ≥ 0,

we have
〈Jxn+1 − Jxn, x̄n − zm〉 ≤ (hmζ(‖x̄n‖) + ωm)εm‖x̄n − zm‖

− εmαm(2L)−1δB(‖x̄n − zm‖/c9),

where

c9 = 2max{1, ‖xn‖, ‖zm‖}.(47)

And, finally, the fourth term.

〈Jxn+1 − Jxn, xn − x̄n〉 = −εmαm〈Jx̄n, xn − x̄n〉 − εm〈qm, xn − x̄n〉
− εm〈ȳhm − fωm , xn − x̄n〉

≤ (εmαm‖x̄n‖ − εmαm − εmαm‖x̄n‖
− εm‖ȳhm − fωm‖∗ + εm‖ȳhm − fωm‖∗)‖xn − x̄n‖

= −εmαm‖xn − x̄n‖.

Now we can rewrite (43) in the following form:

(48) V (Jxn+1, zm+1) ≤ V (Jxn, zm)− αmεm((2L)−1δB(‖x̄n − zm‖/c9))

+ ‖xn − x̄n‖) + γm,
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where
γm = εm(hmζ(‖x̄n‖) + ωm)‖x̄n − zm‖+ 8ε2mc28 + c7ρB∗(c8εm)

+ c1c6c10g
−1
B

(
2c3

√
σm

αm
+ c4

|αm − αm+1|
αm

)
,

and

c10 = g−1
B∗(2c6L(‖xn+1‖+ ‖zm+1‖)).(49)

Assume that V (Jxn, zm) ≤ R0. Then ‖xn‖ ≤ ‖zm‖ +
√
2R0 ≤ M1 +√

2R0 = K1. It follows from the 5-th property of the functional V (Jx, z). It
is easy to see that

‖x̄n‖ ≤ ‖x̄n − zm‖+ ‖zm‖ ≤ 2‖xn − zm‖+ ‖zm‖ ≤ 2‖xn‖+ 3‖zm‖
≤ 2K1 + 3M1 = K2.

If ‖xn‖ ≤ K1 and ‖x̄n‖ ≤ K2 , then it is possible to derive from the expres-
sions (44), (45), (46), (47), (49) the following inequality:

c8 ≤ 2(ϕ(K2) + h̄ζ(K2) + ᾱK2 + ‖f‖∗ + ω) + ᾱ = c̄8,(50)

Since

‖xn+1‖ ≤ ‖xn‖+ ‖Jxn+1 − Jxn‖∗ ≤ K1 + εmc8 ≤ K1 + ε̄c̄8,

then

c9 ≤ 2max{1, K2, M1} = c̄9,(51)

c6 ≤ 2max{1, K1 + ε̄c̄8, M1} = c̄6,(52)

c7 ≤ 8max{L, K1 + ε̄c̄8} = c̄7,(53)

and

c10 ≤ g−1
B (2c̄6L(K1 + ε̄c̄8 + M1) = c̄10,(54)

where c̄6, c̄7, c̄8, c̄9, c̄10 are absolute constants. Getting back to (48), we
obtain

V (Jxn+1, zm+1) ≤ V (Jxn, zm)

− εmαm[(2L)−1δB(‖x̄n − zm‖/c̄9) + ‖xn − x̄n‖] + γ̄m

≤ V (Jxn, zm)− εmαm[(2L)−1δ̃B‖x̄n − zm‖/c̄9)

+ ‖xn − x̄n‖] + γ̄m,

(55)

where
γ̄m = εm(hmζ(K2) + ωm)(K2 + c̄8) + 8ε2mc̄28 + c̄7ρB∗(εmc̄8)

+ c̄6 c̄10 c̄1 g−1
B

(
2c3

√
σm

αm
+ c4

|αm − αm+1|
αm

)
.

(56)

It is evident that

‖xn − x̄n‖ = δ(‖xn − x̄n‖/c̄9)c̄9
gB(‖xn − x̄n‖/c̄9)

.(57)
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At the same time, since ‖xn − x̄n‖ ≤ K1 + K2,

gB(‖xn − x̄n‖/c̄g) ≤ gB((K1 + K2)/c̄g) = c11.(58)

Thus, from (57), it follows that

‖xn − x̄n‖ ≥ c̄9c
−1
11 δB(‖xn − x̄n‖/c̄9) ≥ c̄9c

−1
11 δ̃B(‖xn − x̄n‖/c̄9).

By our assumption, δ̃B(ε) is a convex function. Therefore,

(2L)−1δ̃B(‖x̄n − zm‖/c̄9) + ‖x̄n − xn‖
≥ (2L)−1δ̃B(‖x̄n − zm‖/c̄9) + c̄9c

−1
11 δ̃B(‖x̄n − xn‖/c̄9)

≥ 1
2

c12(δ̃B(‖x̄n − zm‖/c̄9) + δ̃B(‖x̄n − xn‖/c̄9)

≥ c12δ̃B((2c̄9)−1(‖x̄n − zm‖+ ‖xn − x̄n‖))
≥ c12δ̃B(‖xn − zm‖/2c̄9).

(59)

Here,

c12 = 2min{(2L)−1, c̄9 c−1
11 }.(60)

Taking all this into consideration, along with (55), we have the following
numerical inequality:

(61) V (Jxn+1, zm+1) ≤ V (Jxn, zm)− εmαmc12δ̃B(‖xn − zm‖/2c̄9) + γ̄m.

Recall that m = n + n0. Choose n0 according to the formula:

n0 = min{k : 2c̄9δ̃−1
B (γ̄k/c12εkαk) ≤ µ−1(R0)},(62)

where
µ(t) = 8t2 + CρB(t),

C = 8max{L, M1 +
√
2R1},

R1 = R0 + r̄

and
r̄ = ε̄c̄8(K1 + M1 + ε̄c̄8) + c1(K1 + M1)g−1

B (2c3
√

a + c4b).

Let us calculate the Lyapunov functional V (Jx, z) at the point (xn+1, zm+1).

V (Jxn+1, zm+1) ≤ 2−1‖Jxn‖2 − 〈Jxn, zm〉+ 2−1‖zm‖2
+ εm‖Ahm x̄n + αmJx̄n − fωm + qm‖(‖xn‖+ ‖zm+1‖)
+ 2−1ε2m‖Ahm x̄n + αmJx̄n − fωm + qm‖2
+ 〈Jxn, zm − zm+1〉+ 2−1(‖zm+1‖2 − ‖zm‖2).

Let us estimate the last two terms.

〈Jxn, zm − zm+1〉+ 2−1(‖zm+1‖2 − ‖zm‖2)
≤ (‖xn‖+ 2−1(‖zm+1‖+ ‖zm‖))‖zm − zm+1‖

≤ (K1 + M1)c1g−1
B

(
2c3

√
σm

αm
+ c4

|αm − αm+1|
αm

)
.
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Therefore, according to our notation,

V (Jxn+1, zm+1) ≤ R0 + rm,(63)

where
rm = εmc8(K1 + M1 + εmc8)

+ c1(K1 + M1)g−1
B

(
c4

|αm − αm+1|
αm

+ 2c3
√

σm

αm

)
.

Then it is clear that rm ≤ r̄, since εm ≤ ε̄ , σm/αm ≤ a , |αm−αm+1|/αm ≤ b
and

V (Jxn+1, zm+1) ≤ R0 + r̄ = R1.(64)

Let us show now that (64) holds for all n ≥ 1. Let V (Jx0, zn0) ≤ R0 and
the minimal n be such that

R0 < V (Jxn, zn+n0) < R0 + r̄.(65)

For this n we have the following alternatives:
(H1) δ̃B(‖xn − zm‖/2c̄9) > γ̄m/c12αmεm;
(H2) δ̃B(‖xn − zm‖/2c̄9 ≤ γ̄m/c12αmεm.

From (H1) and (61) it follows:

V (Jxn+1, zm+1) < R0 + r̄.

The inequality H2 is impossible. Indeed, suppose that the contrary holds.
Then we obtain from (62)

‖xn − zm‖ ≤ 2c̄9δ̃−1
B (γ̄m/c12αmεm) ≤ µ−1(R0).(66)

Let us estimate V (Jxn, zm) using ‖xn − zm‖. As V (Jxn, xn) = 0,

V (Jxn, zm) ≤ 〈Jxn − Jzm, xn − zm〉.
But in [9, 10] it is shown that

〈Jxn − Jzm, xn − zm〉 ≤ 8‖xn − zm‖2 + c13ρB(‖xn − zm‖),
where

c13 = 8max{L, ‖xn‖, ‖zm‖} ≤ 8max{L, M1 +
√
2R1} = c̄13.

Therefore,

(67) V (Jxn, zm) ≤ 8‖xn − zm‖2 + c̄13ρB(‖xn − zm‖) = µ(‖xn − zm‖).
With regard to (66) it brings

V (Jxn, zm) ≤ R0,

which contradicts (65). Thus, (64) takes place for all n ≥ 1, i.e. ‖xn‖ are
uniformly bounded. From (67)

‖xn − zm‖ ≥ µ−1(V (Jxn, zm)),

therefore, since δ̃B(ε) is nondecreasing function, then

δ̃B(‖xn − zm‖/2c̄9) ≥ δ̃B(µ−1(V (Jxn, zm))/2c̄9).(68)
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Denote ψ(λ) = δ̃B(µ−1(λ/2c̄9)). It is clear that ψ(λ) is continuous and
nondecreasing function, and that ψ(0) = 0. Then, finally, we obtain the
following numerical inequality

V (Jxn+1, zm+1) ≤ V (Jxn, zm)− αmεmc12ψ(V (Jxn, zm)) + γ̄m,

or, letting λn = V (Jxn, zm) ≥ 0 ,

λn+1 ≤ λn − αmεmc12ψ(λn) + γ̄m.(69)

Lemma 2. (see [7, 14]) If the sequence of nonnegative numbers {λn} satis-
fies the inequality (69), εm > 0, αm > 0,

∞∑
m=1

αmεm = ∞, lim
m→∞

γ̄m

αmεm
→ 0,

ψ(λ) is continuous, nondecreasing function and ψ(0) = 0, then limn→∞ λn =
0.

From this lemma along with the conditions (34) it follows that

V (Jxn, zm) → 0, n → ∞.(70)

And finally, analogously to [3], the following estimate has been obtained

‖x − y‖ ≤ 4R1δ̃−1
B (V (Jx,y)/4R21).(71)

Indeed, for arbitrary elements x, y ∈ B

‖x + y

2
‖2 − ‖x‖2 ≥ 〈Jx, y − x〉+ 2R1δB(

‖x − y‖
4R1

)

≥ 〈Jx, y − x〉+ 2R1δ̃B(
‖x − y‖
4R1

),
(72)

where
R1 =

√
(‖x‖2 + ‖y‖2)/2.

Using the equality 〈Jx, x〉 = ‖x‖2, we get
〈Jx, y〉 ≤ ‖(x + y)/2‖2 − 4R1δ̃B(‖x − y‖/4R1).

From the convexity of δ̃B(ε), it follows that δ̃B(tε) ≤ tδ̃B(ε) for each t ∈ [0, 1].
Particularly, for t = 1/2, we have 2δ̃B(ε/2) ≤ δ̃B(ε). Hence,

V (x, y) = 2−1(‖x‖2 − 2〈Jx, y〉+ ‖y‖2)
≥ 2−1(‖x‖2 + ‖y‖2 − 2−1‖x + y‖2 + 4R21δ̃B(‖x − y‖/4R1))

≥ R21δ̃B(‖x − y‖/2R1) + 2R21δ̃B(‖x − y‖/4R1)

≥ 4R21δ̃B(‖x − y‖/4R1).

This gives (71). From (70) we obtain the final limit relation

lim
n→∞ ‖xn − zn+n0‖ = 0,

since ‖xn‖ and ‖zm‖ are uniformly bounded.
The proof of the theorem is complete.
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Remark 3. This scheme of the proof could be applied to the study of equa-
tions Ax = f with accretive operators A : B → B :

〈J(x − y), Ax − Ay〉 ≥ 0, ∀x, y ∈ B.

It gives the possibility to get rid of the assumption of the a priori bounded-
ness of the sequence {xn} in the method of iterative regularization

xn+1 = xn − εm(yhmxn + αmxn − fωm), n = 1, 2, ...

(cf. [10, 34]).

Remark 4. In the proof of Theorem 1 the monotonicity of the operators
Ahn is used only in (8), to provide the existence of the maximal monotone
extension. Thus, continuous Ahn could be not necessary monotone.
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