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Abstract. We establish some framework so that the generalized Conley
index can be easily used to study the multiple solution problem of semilinear
elliptic boundary value problems. Both the parabolic flow and the gradient
flow are used. Some examples are given to compare our approach here with
other well-known methods. Our abstract results with parabolic flows may
have applications to parabolic problems as well.

1. Introduction

In this paper, we continue our efforts to show how the generalized Conley
index developed by Rybakowski can be applied to multiple solution prob-
lems of semilinear elliptic equations. Our main purpose here is to set up
some framework so that the generalized Conley index can be easily used to
superlinear problems. To that end, we use both the parabolic flows and the
gradient flows of the elliptic problems. A simple example with superlinearity
is given to illustrate some advantages of our approach compared with other
well-established methods. We also study in some detail a more general ver-
sion of a semilinear elliptic problem with a combined concave and convex
nonlinearity, which was studied in [2] and [1] recently. This problem seems
to serve as a good example to show when the generalized Conley index ap-
proach gives better results and when it does not. Here we also improve some
results of A. Ambrosetti et al [1] and answer affirmatively a question asked
therein.

In [26], various applications of the generalized Conley index to asymp-
totically linear parabolic and elliptic problems can be found. Recently, in
[10] and [12], we used the generalized Conley index to study the multiplicity
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and related problems of some sublinear and asymptotically linear elliptic
equations, where we made use of the Morse inequalities of the Morse decom-
positions together with the order-preserving property of the parabolic flow.
The results obtained there seem difficult to get by using the standard topo-
logical and variational methods. In this paper, we extend some of the ideas
in [10] and [12] to superlinear problems. As before, we use Rybakowski’s
version of the Conley index. We remark that Benci [4] developed a differ-
ent version of the Conley index and he applied it also to some superlinear
problems [4], [5]. He made use of his Morse index of critical point sets but
did not use order structures and the full strength of Morse decompositions.
Our ideas could probably also be carried out by using Benci’s version of the
Conley index.

We need to establish proper compactness settings in the generalized Con-
ley index for superlinear nonlinearities. This is done by making use of the
energy functionals, a priori estimates (for the parabolic flow) and P.S. condi-
tion (for the gradient flow). We find that while the parabolic flow has wider
applications, for example, it can be used to study the existence of connecting
orbits of the corresponding parabolic equations, the gradient flow seems to
provide better compactness result (compare Theorems 2.1 and 3.2). One
difficulty in using the gradient flow is that it does not have the strongly
order preserving property and the solutions do not improve their regularity
as time increases. This is overcome in our applications by the observation
that certain entire orbits of the gradient flow are compact in C1(D), and the
fact that the flow has a certain invariance property.

To be more precise, we consider the following semilinear elliptic problem:

−∆u = f(u) in D, Bu = 0 on ∂D,(1.1)

where D is a bounded domain in RN with regular enough boundary ∂D,
Bu = u (Dirichlet boundary condition) or Bu = ∂u/∂n (Neumann boundary
condition), where n = n(x) is the unit outward normal to ∂D at x ∈ ∂D,
and f : R1 → R1 is a locally Lipschitz continuous function. Unless otherwise
specified, we suppose that f has a subcritical growth rate, i.e., it satisfies

• (H1) |f(u)| ≤ C(1 + |u|γ) for all u ∈ (−∞,∞), where C, γ are positive
constants, and γ < (N + 2)/(N − 2) if N > 2.

In the generalized Conley index approach, as in [26], [10] and [12], the most
natural flow to work with is the corresponding parabolic flow of (1.1), that
is the local semiflow induced by the following parabolic problem:

ut − ∆u = f(u), t > 0, x ∈ D, Bu = 0, t > 0, x ∈ ∂D.(1.2)

To be more precise, we choose p > N, θ ∈ (1/2 + N/(2p), 1) and let X =
Lp(D). By well known results (see, e.g., [20]), (1.2) defines a local semiflow
π(t) : Xθ → Xθ by π(t)u(0, ·) = u(t, ·), where Xθ is the fractional power
space induced by (1.2) and u(t, x) is a solution of (1.2). We will call π the
parabolic flow for (1.1) and denote π(t, u(0, ·)) = π(t)u(0, ·) = u(t, ·). By
our choice of p and θ, Xθ is continuously imbedded into C1(D) (see [20]).
Clearly, solutions of (1.1) are equilibria of π and vice versa.
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If the nonlinearity f is superlinear, one difficulty in using the generalized
Conley index theory with the above parabolic flow is that solutions of (1.2)
may blow up in finite time. To overcome this, or more precisely, to meet the
more demanding compactness requirements (i.e., the π-admissibility con-
dition) in the generalized Conley index theory, we make use of its energy
functional J : W 1,2

B (D) → R,

J(u) =
∫
D

[|∇u|2/2 − F (u)]dx,

where F (u) =
∫ u
0 f(s)ds, and a priori estimates for parabolic equations. Here

and throughout this paper, we understand that W 1,2
B = W 1,2

0 if Bu = u (i.e.,
the Dirichlet case), and W 1,2

B = W 1,2 if Bu = ∂u/∂n (i.e., the Neumann
case). We find that the energy level sets are very convenient to work with
for this purpose. We use ideas of F. Rothe [25] on a priori estimates for
parabolic systems, and energy estimates for parabolic equations as in [7]
and [19], and show in particular that, if f satisfies (H1), and

• (H2) For some M > 0 and q > 1, 0 < (1 + q)F (u) ≤ uf(u) for all
|u| ≥ M ,

then the set of points between any two energy levels (i.e., the set {u ∈ Xθ :
a ≤ J(u) ≤ b}) is strongly π-admissible provided that a further condition
γ < 1+(4q+8)/(3N) is met . This compactness result enables us to use the
generalized Conley index for π for superlinear problems. Note that condition
(H2) implies that F (u) ≥ C1(|u|q+1−1) for some C1 > 0 and all u. Therefore
we necessarily have q ≤ γ if f satisfies both (H1) and (H2). It then follows
from γ < 1 + (4q + 8)/(3N) that γ < (3N + 8)/(3N − 4) if N > 1.

It is well known that conditions (H1) and (H2) guarantee that the energy
functional J satisfies the P.S. condition on W 1,2

B , i.e., {un} has a conver-
gent subsequence in W 1,2

B whenever {J(un)} is bounded and J ′(un) → 0.
Therefore, standard variational methods are applicable to (1.1) under these
conditions only, but our generalized Conley index setting is not. We suspect
that our extra restriction γ < 1 + (4q + 8)/(3N) is not necessary.

Another natural flow associated to (1.1) is a slight variant of the negative
gradient flow of J , that is, the global flow η : R×W 1,2

B (D) → W 1,2
B (D) given

by η(t, u) = η(t), where η(t) is the unique solution of the problem

ηt = −σ(η)J ′(η), η(0) = u,(1.3)

where σ(u) = 1/max{1, ‖J ′(u)‖}. Since critical points of J are solutions of
(1.1), it is easy to see that equilibria of η are solutions of (1.1), and vice
versa.

Here we do not have blow-ups, but we still need η-admissibility. We find
that η possesses this compactness property under (H1) and (H2) only. In
fact, we will show that, under condition (H1), J satisfies the P.S. condition
if and only if {u ∈ W 1,2

B (D) : a ≤ J(u) ≤ b} is strongly η-admissible for
any finite numbers a < b. Hence, in almost all the cases where the standard
variational method can be used to (1.1), the generalized Conley index theory
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with the gradient flow works. One disadvantage of η compared with π is that
it does not have the order preserving property that the parabolic flow enjoys.
Moreover, unlike the parabolic flow, solutions along η do not improve their
regularity when time goes from zero to positive. These poses some difficulties
in applications. We overcome these by using an invariance property of η used
by Hofer [21], and an observation that any entire orbit lying between two
energy levels is precompact in C1(D). This makes it possible to use upper
and lower solution arguments in our generalized Conley index setting. These
properties of η come from the fact that J ′(u) = u−Au where A is compact,
order preserving, and improves regularity.

As a simple example to show that the generalized Conley index approach
may give better results than the other well established methods, we apply
our general results on the parabolic and gradient flows to a special case of
(1.1), i.e., the following Neumann problem:

−∆u = f(u), ∂u
∂n |∂D = 0,(1.4)

where f is C1 and satisfies (H1), (H2) and
• (H3) There exist real numbers α and β with α < β such that

f(α) = f(β) = 0, f ′(α) > 0, f ′(β) > 0, f(x) < 0 for x < α, f(x) > 0 for
x > β.

Recall that condition (H2) implies that f(u) is superlinear near infinity. It
follows from condition (H3) that u = α and u = β are the only constant
solutions of (1.4) outside the interval (α, β). We are interested in establishing
a relationship between the position of the point (f ′(α), f ′(β)) in R2 and the
number of nonconstant solutions of (1.4) which are outside (α, β). Here we
say u = u(x) is outside (α, β) if for some x0 ∈ D, u(x0) �∈ (α, β), that is,
in the sense that (α, β) is regarded as an order interval in a proper function
space. Note that it follows from the continuity of f that (1.4) has at least
one constant solution in (α, β). Moreover, since we have no restriction on f
for u ∈ (α, β) except requiring it to be C1, by varying f in (α, β) one can
produce many constant and nonconstant solutions of (1.4) which lie inside
this interval. The point of our method is that it does not depend on how f
varies in (α, β).

Let 0 ≤ λ1 < λ2 ≤ λ3 ≤ ... ≤ λk ≤ λk+1 ≤ ... be all the eigenvalues
of −∆u = λu, Bu|∂D = 0, counting multiplicity. Note that {λk} with
Dirichlet boundary conditions is different from that with Neumann boundary
conditions. In concrete problems, we always understand that {λk} refers to
the one with the boundary condition of the problem under consideration.

Define the sets G1, G2 and G3 in R2 as follows:
G1 = [(λ1, λ2) × (λ1, λ2)] ∪ [(λ1, λ2) × (λ2, λ3)] ∪ [(λ2, λ3) × (λ1, λ2)].
G2 = [(λ1, λ2) × (λ3,∞)] ∪ [(λ3,∞) × (λ1, λ2)].
G3 = [(λ2, λ3)× (λ2, λ3)]∪ [(λ3,∞)× (λ3,∞)]∪{(λ2, λ3)× [(λ3,∞)\{λk :

k > 3}]}
∪{[(λ3,∞) \ {λk : k > 3}] × (λ2, λ3)}.

Note that the union of the closure of G1, G2 and G3 is the entire first
quadrant in R2 (where the Neumann boundary condition is used).
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We have the following result.

Proposition 1.1. Suppose that f satisfies (H1) − (H3). Then (1.4) has at
least i nonconstant solutions outside (α, β) if (f ′(α), f ′(β)) ∈ Gi, i = 1, 2, 3.

This result is proved by using the generalized Conley index theory for the
gradient flow of (1.4). It seems difficult to obtain by using the standard
topological and variational methods. We will also study a slightly more
general version of a problem studied by [1] and [2] recently, i.e., the following
Dirichlet problem:

−∆u = λ|u|r−1u + g(u), u|∂D = 0,(1.5)

where λ > 0 and r ∈ (0, 1) are constants, g : R1 → R1 is C1 and
• (H4) g(u)u ≥ 0, ∀u; limu→0 g(u)/u = 0.

We will show that if g is asymptotically linear, then our generalized Conley
index approach as developed in [12] gives better results than other well-
known methods; however, if g is superlinear, the degree method used in [11]
seems to give the best result.

We prove in particular the following.

Proposition 1.2. Suppose that g satisfies (H4) and either
• (H5) lim|u|→∞ g(u)/u = a ∈ (λk,+∞) \ {λi}, k ≥ 2, or
• (H6) lim|u|→∞ g(u)/|u|γ−1u = b > 0,

where 1 < γ < (N + 2)/(N − 2) if N > 2, 1 < γ < ∞ if N = 1, 2. Then
there exists Λ+,Λ− > 0 such that
(i) for λ > Λ+(resp. Λ−), (1.5) has no positive (resp. negative) solution;
(ii) for 0 < λ < Λ+ (resp. Λ−), (1.5) has at least two positive (resp. nega-

tive) solutions;
(iii) for 0 < λ < max{Λ+,Λ−}, (1.5) has at least two sign-changing solu-

tions.

Remarks. 1. The above result (essentially part (iii)) improves a result
in [1] where they proved that under conditions similar to but slightly more
restrictive than (H4) and (H6) for g, for all small positive λ , (1.5) has at
least 6 nontrivial solutions. Parts (i) and (ii) above follow essentially from
[2].

2. In fact we will prove more than Proposition 1.2 in section 4 later. In
particular, we will answer affirmatively a question in [1] (see Remark 4.1 for
details).

3. If g(u) = |u|p−1u, where p > 1 and p < (N + 2)/(N − 2) when N > 2,
then the above result follows directly from [2]. In fact, in this case, using the
oddness of the nonlinearity, Λ+ = Λ− and (iv) can be improved significantly,
i.e., there are infinitely many nontrivial solutions for any real λ, see [2] and
the note added in proof at the end of [2].

4. Conditions (H5) and (H6) can be relaxed considerably. For example,
(H5) can be replaced by

lim
u→±∞ g(u)/u = a± ∈ (λk,+∞) \ {λi}, k ≥ 2,
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and (H6) can be replaced by

lim
u→±∞ g(u)/|u|γ±−1u = b± > 0,

where γ± satisfies the same condition as γ. See also Remark 4.4 at the end
of section 4.

Our results on the parabolic and gradient flows, especially that on the par-
abolic flow, may have many other applications. For example, many equation
systems have certain single equations as limiting problems, and solutions of
the single equation problems often induce solutions to the original systems
(some such examples can be found in [13], [15] and [16]). Since the gen-
eralized Conley index possesses continuation stability, it may be useful to
consider the flow π for a single limiting equation as a limit of the flow π′
generated by the original system and use results on π to study π′. In this
case, the flow η is difficult to use as there is in general no gradient flow for
systems due to the fact that most natural reaction-diffusion systems lack
variational structures. Another use of the flow π is to study the existence of
connecting orbits (see Remark 2.3). We should point out that our results on
the gradient flow are sufficient for the applications in this paper. The main
point to include the results on the parabolic flow here is for comparison with
the gradient flow (which justifies our use of the less natural gradient flow)
and for possible future applications.

Most of our results on the flows π and η hold true for much more general
flows, where they are induced by more general uniformly elliptic operators,
and the nonlinearity f can also be x dependent.

The rest of this paper is organized as follows. In section 2, we show how
a framework for π can be established so that the generalized Conley index
works. A weaker version of Proposition 1.1 is proved using the flow π. In
section 3, we study the gradient flow η and prove Proposition 1.1. Section
4 is devoted to the study of (1.5). Section 5 is an appendix, where we give
proofs for the a priori estimates used in section 2.

2. The Parabolic Flow

In this section, we study (1.1) by making use of its parabolic flow and the
generalized Conley index. We consider only the superlinear case since the
sublinear and asymptotically linear cases are relatively well understood (see,
e.g., [26], [10] and [12]).

Let J1 = J |Xθ and for any interval Λ in R, define

J−1
1 Λ = {u ∈ Xθ : J1(u) ∈ Λ}, J−1Λ = {u ∈ W 1,2

B : J(u) ∈ Λ}.
The following result plays an important role in this section.

Theorem 2.1. Let a < b be real numbers, and (H1), (H2) be satisfied. If
further γ < 1 + (4q + 8)/(3N), then J−1

1 [a, b] is strongly π-admissible.

Recall that a set N ∈ Xθ is called strongly π-admissible ([26]) if (i) N is
closed; (ii) π does not explode in N , i.e., u ∈ Xθ, {tn} ⊂ R+ bounded and
{π(t, u) : t ∈ [0, tn]} ⊂ N imply {π(tn, u)} is bounded; (iii) for any un ∈ Xθ,
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{tn} ⊂ R+ with tn → ∞ and {π(t, un) : t ∈ [0, tn]} ⊂ N , {π(tn, un)} has a
convergent subsequence.

The proof of Theorem 2.1 relies on some a priori estimates for solutions
of (1.2).

Lemma 2.1. Let the conditions of Theorem 2.1 be satisfied and u = u(t, x)
be a solution of (1.2) satisfying u(t, ·) ∈ J−1

1 [a, b] for t ∈ [T1, T2]. Then for
any r ∈ (1, (2q + 4)/3), there exists M = Mr independent of u and T1, T2
such that

sup
t∈[T1,T2]

‖u(t, ·)‖Lr ≤ M.

Lemma 2.1 follows from some well known energy estimates and interpo-
lation inequalities, which were used, for example, in [7] and [19]. For the
convenience of the readers, we will give the proof of Lemma 2.1 in the Ap-
pendix.

Lemma 2.2. Under the conditions of Lemma 2.1, there exist positive con-
stants M and δ independent of u and T1, T2 such that

‖u(t, ·)‖L∞ ≤ [m(t − T1)]−δM,∀t ∈ (T1, T2].

Here m(s) = min{s, 1}.
The proof of Lemma 2.2 is based on some well known methods of F. Rothe

[25] and is rather technical. Since the ideas needed in proving Lemma 2.2
are scattered in [25], we will give a complete proof of Lemma 2.2 in the
Appendix.

Proof of Theorem 2.1. For convenience of notations, we will denote
N = J−1

1 [a, b].
(i) It follows from the continuity of J1 that N is closed.
(ii) Suppose that π explodes in N . We are going to derive a contradiction.

Let u0 ∈ Xθ be such that π(t, u0) ∈ N for all t ∈ [0, T ) with 0 < T < ∞,
and for some tn ∈ (0, T ), tn → T , ‖π(tn, u0)‖Xθ → ∞. By Lemma 2.2,
‖π(t, u0)‖L∞ ≤ M for all t ∈ [T/2, tn], n ≥ 1. Hence, by Theorem 4.3 of
[26], ‖π(tn, u0)‖Xσ ≤ M1 for all t ∈ [2T/3, tn], n ≥ 1 with some M1 > 0 and
σ ∈ (θ, 1). Since Xσ imbeds continuously (in fact, compactly) into Xθ, we
arrive at a contradiction. Thus, π does not explode in N .

(iii) Let un ∈ Xθ, tn ∈ R+ satisfy tn → ∞ and {π(t, un) : t ∈ [0, tn]} ⊂
N . We may assume that tn > 1 for all n. Then using Lemma 2.2 and
Theorem 4.3 of [26] as in (ii), we deduce that ‖π(t, un)‖Xσ ≤ M1 for all n
and t ∈ [1, tn], where M1 is a positive number and σ ∈ (θ, 1). Since Xσ

imbeds compactly into Xθ, {π(tn, un)} is precompact in Xθ and hence has
a convergent subsequence.

The proof of Theorem 2.1 is complete.

Theorem 2.2. Suppose that (H1), (H2) are satisfied, and γ < 1 + (4q +
8)/(3N). Then there exists a0 < 0 such that J has no critical point in
J−1(−∞, a0]. If further J has no critical point in J−1[b0,∞) for some b0 >
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a0, γ < 1 + (4q + 8)/(3N) and K is the maximal invariant set of π in
J−1
1 [a0, b0], then the generalized Morse index h(π,K) is well-defined and

Hq(h(π,K)) = 0, q = 0, 1, 2, ....

Proof. Let S∞ = {u ∈ W 1,2
B (D) : ‖u‖

W 1,2
B

= 1}. Then it follows from (H2)
that for any u ∈ S∞, J(tu) → −∞ as t → ∞. Moreover, there exists
a0 < 0 such that t > 0, u ∈ S∞ and J(tu) ≤ a0 imply (d/dt)J(tu) < 0.
A detailed proof of these facts can be found in [27] where the Dirichlet
boundary condition is considered, but the proof for the Neumann problem
is the same. As in [27], one finds easily from these two facts that, for a ≤ a0,

(2.1) Hq(W
1,2
B , J−1(−∞, a]) = Hq(W

1,2
B , S∞) = 0, q = 0, 1, 2....

It is well known that under (H1) and (H2), J satisfies the P.S. condition.
Hence if J has no critical point in J−1[b0,∞), then for any b ≥ b0, J−1(−∞, b]
is a strong deformation retractor of W 1,2

B . Thus, by (2.1), for a ≤ a0, b ≥ b0,

Hq(J−1(−∞, b], J−1(−∞, a]) = Hq(W
1,2
B , J−1(−∞, a])

= 0, q = 0, 1, 2 . . . .
(2.2)

Now let a < a1 < a0, b1 > b > b0. Then J−1(−∞, a] and J−1(−∞, b] are
strong deformation retractors of J−1(−∞, a1) and J−1(−∞, b1) respectively.
Therefore,

Hq(J−1(−∞, b], J−1(−∞, a]) = Hq(J−1(−∞, b1), J−1(−∞, a1)).

By Palais’ theorem (see, Theorem 3.2 in [8]),

Hq(J−1
1 (−∞, b1), J−1

1 (−∞, a1)) = Hq(J−1(−∞, b1), J−1(−∞, a1)).

Thus, using (2.2), we have

Hq(J−1
1 (−∞, b1), J−1

1 (−∞, a1)) = 0, q = 0, 1, 2, ....(2.3)

By Theorem 2.1, for any a < a0 and b > b0, N ≡ J−1
1 [a, b] is strongly π-

admissible. We show that N is an isolating neighborhood of K. It suffices to
show that K is the maximal invariant set of π in N and that K ⊂ J−1

1 (a0, b0).
Let K1 be the maximal invariant set of π in N and u ∈ K1 (If K1 is empty,
then the conclusion of the theorem holds trivially). Then u = u(t, x) is a full
solution of (1.2). Since N is strongly π-admissible, it is easy to see that the
omega limit set ω(u) and the alpha limit set α(u) are both nonempty. Since
J is a Lyapunov functional for (1.2), ω(u) and α(u) consist of equilibria
of (1.2), i.e., solutions of (1.1). But solutions of (1.1) are critical points
of J . Therefore, by the assumptions, for any u1 ∈ α(u) and u2 ∈ ω(u),
J(u1), J(u2) ∈ (a0, b0). It follows that J(u(t, ·)) ∈ [J(u1), J(u2)] ∈ (a0, b0)
for any t ∈ (−∞,∞). This shows that u ∈ J−1

1 (a0, b0). Thus K = K1 and
N is an isolating neighborhood of K. Therefore h(π,K) is well-defined.

Since J1 is a quasi-potential of π, by Corollary 4.7 of [26],

(2.4) Hq(h(π,K)) = Hq(J−1
1 (−∞, a], J−1

1 (−∞, b]), q = 0, 1, 2, ....
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A simple variant of the argument on page 59 of [8] shows that, if a < a1 ≤ a0
and b1 > b ≥ b0, then J−1

1 (−∞, a] and J−1
1 (−∞, b] are strong deformation

retractors of J−1
1 (−∞, a1) and J−1

1 (−∞, b1) respectively. Thus

Hq(J−1
1 (−∞, a], J−1

1 (−∞, b]) = Hq(J−1
1 (−∞, a1), J−1

1 (−∞, b1)).

This and (2.3), (2.4) imply

Hq(h(π,K)) = 0, q = 0, 1, 2, ....

The proof is complete.

Remark 2.1. All our above results in this section are true for much more
general problems than (1.2). We could replace ∆ by a general second order
self-adjoint uniformly elliptic operator. f can also be dependent on x. Of
course, the functional J should be adjusted accordingly.

Now we are able to prove a weaker version of Proposition 1.1. We remark
that though we give a unified generalized Conley index approach, a number
of subcases in Proposition 2.1 can be proved by the standard topological and
variational methods.

Proposition 2.1. Suppose that (H1) − (H3) are satisfied and γ < 1 + (4q +
8)/(3N). Then (1.4) has at least i nonconstant solutions outside (α, β) if
(f ′(α), f ′(β)) ∈ Gi, i = 1, 2, 3.

Proof. It follows from (H3) that (1.4) has no constant solution outside [α, β].
Moreover, there exist unique α1 > α and β1 < β such that α1 ≤ β1 and

f(α1) = f(β1) = 0, f(u) > 0 for x ∈ (α, α1), f(u) < 0 for u ∈ (β1, β).
(2.5)

We observe two facts by using (2.5). First, it follows from (2.5) and the
elliptic maximum principle that any nonconstant solution of (1.4) which is
outside [α1, β1] must be outside [α, β].

Second, for any α′ ∈ (α, α1) and β′ ∈ (β1, β), u ≡ α′ and v ≡ β′ are strict
lower and upper solutions of (1.4) respectively. Fix such a pair and define

N0 = [α′, β′]Xθ ≡ {u ∈ Xθ : α′ ≤ u ≤ β′}.
As in [10], one can easily show that N0 is a strongly π-admissible isolating
neighborhood of K0, where K0 is the maximal invariant set of π in N0.
Moreover

Hq(h(π,K0)) = δ0,1G.(2.6)

(2.6) can be proved by either a simple homotopy argument (see Remark 3.2
later) or by calculating h(π,K0) directly (observing that N0 is in fact an
isolating block of K0).

We have three cases to consider:
(i) (f ′(α), f ′(β)) ∈ G1, (ii) (f ′(α), f ′(β)) ∈ G2, (iii) (f ′(α), f ′(β)) ∈ G3.
We give the detailed proof for case (ii) only. The proofs for the other cases

are similar or simpler, and therefore are left to the interested readers.
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Now suppose that (f ′(α), f ′(β)) ∈ G2. We may assume that f ′(α) ∈
(λ1, λ2) and f ′(β) ∈ (λ3,∞) as the remaining case can be proved analogously.

A simple variant of the proof of Proposition 2 in [12] (where the Dirichlet
boundary condition is considered) shows that u = β1 is a strict local mini-
mum of J restricted to the set S = {u ∈ W 1,2(D) : u ≥ β1}, and (1.4) has a
solution u1 > β1 which is of mountain pass type. We may assume that (1.4)
has only finitely many solutions in S. Then it follows as in [12] that

Cq(J, u1) = δ1,qG.

Here, and in what follows, Cq(J, u) denotes the critical groups of the critical
point u of J . By Proposition 2.1 in [10] (applied to the Neumann boundary
condition case),

Hq(h(π, {u1})) = Cq(J, u1).
Thus we have

Hq(h(π, {u1})) = δ1,qG.(2.7)

Since f ′(β) ∈ (λ3,∞), we can use the shifting theorem (see, e.g., [22]) to
calculate the critical groups of the critical point u2 = β, and obtain

Cq(J, u2) = 0, q = 0, 1, 2.

Now use this and Proposition 2.1 in [10] as above, we obtain

Hq(h(π, {u2})) = 0, q = 0, 1, 2.(2.8)

This implies in particular that u2 �= u1. As u3 = α �∈ S, we also have
u3 �= u1. Moreover, it follows from f ′(α) ∈ (λ1, λ2) that

Hq(h(π, {u3})) = δ1,qG.(2.9)

Now clearly u1 is a nonconstant solution of (1.4) outside (α, β). We need to
show that there is at least one more such solution. Suppose that this is not
the case. Then one easily sees that the solution set of (1.4) is compact in
Xθ. Hence we can find a < b such that a < J(u) < b for any solution u of
(1.4). Moreover, if K is the maximal invariant set of π in J−1

1 [a, b], then by
Theorem 2.2, h(π,K) is well-defined and

Hq(h(π,K)) = 0, q = 0, 1, 2, ....(2.10)

By changing the subscripts in u1, u2 and u3 we can suppose that J(u1) ≤
J(u2) ≤ J(u3). We show next that {K0, {u1}, {u2}, {u3}} is a Morse de-
composition of K. For convenience, we denote Ki = {ui}, i = 1, 2, 3. It
suffices to show that, for any u ∈ K, either u ∈ Ki for some 0 ≤ i ≤ 3
or α(u) ∈ Kj and ω(u) ∈ Ki for some 0 ≤ i < j ≤ 3. Now let u ∈ K
and u �∈ ∪3

i=0Ki. Then u cannot be an equilibrium of π. Moreover, since
t → J(u(t, ·)) is strictly decreasing, α(u) and ω(u) are different sets and
consist of solutions of (1.4). Since both α(u) and ω(u) are connected, each
of them is contained in one and only one Ki. Choose w ∈ α(u). If w ∈ Kj ,
j > 0, then we necessarily have α(u) = Kj , and J(ω(u)) < J(α(u)). Hence
we must have ω(u) ⊂ Ki, i < j. It remains to check the case that w ∈ K0.
In this case, w ∈ [α1, β1]. It follows from the parabolic maximum principle
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and the fact that u = α′, u = β′ are lower and upper solutions of (1.4) that
α′ < u(t, x) < β′ for all t ∈ (−∞,∞) and x ∈ D, i.e., u ∈ K0. But this con-
tradicts our initial assumption. Therefore the last case never occurs. This
proves that {K0,K1,K2,K3} is a Morse decomposition of K.

Next we use the Morse equation for this Morse decomposition to deduce
a contradiction and thereby complete the proof. We substitute (2.6)-(2.10)
into the following Morse equation

Σ∞
q=0rankHq(h(π,K))tq

= Σ3
i=0Σ

∞
q=0 rankHq(h(π,Ki))tq − (1 + t)Q(t),

where Q(t) = Σ∞
q=0dqt

q, dq ≥ 0, and obtain by comparing the coefficients:

0 = 1 − d0, 0 = 1 + 1 − d1 − d0, 0 = −d2 − d1.

This gives d0 = d1 = 1, d2 = −1, contradicting d2 ≥ 0. The proof is
complete.

Remark 2.2. As in [26], one can use irreducibility properties of the gen-
eralized Conley index to discuss the existence of connecting orbits of (1.2).
For example, under the conditions of Proposition 2.1, corresponding to each
isolated solution of (1.4) with non-trivial Conley index, there is a bounded
non-equilibrium entire solution of (1.2) (with Neumann boundary condi-
tions) having this solution of (1.4) as its alpha or omega limit set.

3. The Gradient Flow

In this section, we set up the framework for the gradient flow η so that
the generalized Conley index can be used.

We note first that σ(η)J ′(η) is locally Lipschitz in η and ‖σ(η)J ′(η)‖
W 1,2

B
≤

1. Therefore η is defined on the whole R × W 1,2
B .

Fix any k > 0 and define A : W 1,2
B → W 1,2

B by

A(u) = (−∆ + k)−1(f(u) + ku),

where (−∆ + k)−1 denotes the inverse of −∆ + k under the homogeneous
boundary conditions Bu = 0. It is well known that, under condition (H1),
A is compact, and if we use the equivalent norm

‖u‖ =
∫
D

[|∇u|2/2 + ku2]dx

in W 1,2
B (D), then

J ′(u) = u − A(u).

For any u0 ∈ W 1,2
B , let

w(t, u0) =
∫ t

0
σ(η(ξ, u0))dξ.

Then

(3.1) η(t, u0) = e−w(t,u0)u0 + e−w(t,u0)
∫ t

0
ew(s,u0)A(η(s, u0))σ(η(s, u0))ds.
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Let X0 = W 2,p
B , p ≥ 2 is such that W 2,p

B imbeds compactly into C1(D).
Then it is well known (see, e.g., [8] or [21]) that there exist a finite sequence
of Banach spaces X1, ..., Xk such that

W 2,p
B = X0 ↪→ X1 ↪→ ... ↪→ Xk = W 1,2

B ,

the imbedding of Xi−1 into Xi is compact, and A : Xi → Xi−1 is continuous
and maps bounded sets into bounded sets, i = 1, ..., k.

Using this and (3.1), one sees that if η(t, u0) is a solution of (1.3), then
η(t, u0) ∈ Xi for all t if u0 ∈ Xi, t → η(t, u0) is continuously differentiable
in Xi and (t, u0) → η(t, u0) is continuous in R × Xi.

Lemma 3.1. Let (H1) be satisfied, {un} ⊂ Xi for some fixed 1 ≤ i ≤ k and
0 < T ≤ ∞. Suppose that

M1 = sup{‖η(t, un)‖Xk
: 0 ≤ t < T, n ≥ 1} < ∞

and
M2 = sup{‖un‖Xi : n ≥ 1} < ∞.

Then there exists C depending only on i,M1 and M2 such that

‖η(t, un) − e−w(t,un)un‖Xi−1 ≤ C, ∀t ∈ [0, T ), n ≥ 1.

Proof. By (3.1),

‖η(t, un) − e−w(t,un)un‖Xk−1 = e−w(t,un)‖
∫ t

0
ewA(η)σ(η)ds‖Xk−1

≤ e−w(t,un)
∫ t

0
ew‖A(η)‖Xk−1σ(η)ds.

Since A is a bounded operator from Xk to Xk−1, we can find C1 = C1(M1)
such that

‖A(u)‖Xk−1 ≤ C1, ∀u ∈ Xk, ‖u‖Xk
≤ M1.

Using this we obtain

e−w(t,un)
∫ t

0
ew‖A(η)‖Xk−1σ(η)ds

≤ e−w(t,un)
∫ t

0
ew(s,un)C1σ(η(s, un))ds

= e−w(t,un)
∫ w(t,un)

0
C1e

ξdξ = C1(1 − e−w(t,un))

≤ C1, ∀t ∈ [0, T ), n ≥ 1.
Thus

‖η(t, un) − e−w(t,un)un‖Xk−1 ≤ C1, ∀t ∈ [0, T ),
and

‖η(t, un)‖Xk−1 ≤ C1 + ‖un‖Xk−1 ≤ K1, ∀t ∈ [0, T ), n ≥ 1.
Repeating the above argument k − i times, we obtain

‖η(t, un)‖Xi ≤ Kk−i, ∀t ∈ [0, T ), n ≥ 1

where Kk−i depends only on i and M1,M2. Now use the argument once
more, and the proof is complete.
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Theorem 3.1. Let (H1) be satisfied. Then any bounded closed set in W 1,2
B

is strongly η-admissible.

Proof. Let U be any bounded closed set in W 1,2
B . Since η is a global flow, it

does not explode in U . Therefore, it suffices to show that {η(tn, un)} has a
convergent subsequence whenever η([0, tn], un) ⊂ U and tn → ∞. Since U is
bounded, it is easy to see that δ = min{σ(u) : u ∈ U} is positive. It follows
that

w(tn, un) =
∫ tn

0
σ(η(s, un))ds ≥ δtn → ∞.

By (3.1) and Lemma 3.1, there exists C > 0 such that

‖η(tn, un) − e−w(tn,un)un‖Xk−1 ≤ C for all n.

But Xk−1 imbeds compactly into Xk = W 1,2
B . Thus {η(tn, un)−e−w(tn,un)un}

has a convergent subsequence in W 1,2
B . Since e−w(tn,un)un → 0 in W 1,2

B ,
we conclude that {η(tn, un)} has a convergent subsequence. The proof is
complete.

The following result establishes the relationship between the P.S. condition
and η-admissibility.

Theorem 3.2. Suppose that (H1) is satisfied. Then J satisfies the P.S.
condition if and only if, for any −∞ < a < b < ∞, J−1[a, b] is strongly
η-admissible.

Proof. We show first that strongly η-admissibility implies the P.S. condi-
tion. Suppose that J−1[a, b] is strongly η-admissible for any finite inter-
val [a, b]. Let {un} ⊂ W 1,2

B be a P.S. sequence: {J(un)} is bounded and
J ′(un) → 0. It follows easily that we can find tn > 0, tn → ∞ and a fi-
nite interval [a, b] such that η([−tn, 0], un) ⊂ J−1[a, b]. Let vn = η(−tn, un).
Then η([0, tn], vn) ⊂ J−1[a, b]. Since tn → ∞, and J−1[a, b] is strongly η-
admissible, un = η(tn, vn) has a convergent subsequence. This proves that
J satisfies the P.S. condition.

Next we prove the converse. Suppose that J satisfies the P.S. condition.
We need to show that {η(tn, un)} has a convergent subsequence whenever
η([0, tn], un) ⊂ J−1[a, b] and tn → ∞. The proof of Theorem 3.1 shows that
it suffices to prove that {η(t, un) : 0 ≤ t ≤ tn, n ≥ 1} is bounded in W 1,2

B .
Suppose that this set is not bounded. Then, by passing to a subsequence,
we can find sn ∈ [0, tn] such that

Rn ≡ ‖η(sn, un)‖W 1,2
B

→ ∞.

Since J satisfies the P.S. condition, its critical points in J−1[a, b] form a
bounded set K, say K ⊂ BR0−1 = {u ∈ W 1,2

B : ‖u‖
W 1,2

B
≤ R0−1}. Moreover,

the P.S. condition implies that, for some δ ∈ (0, 1), ‖J ′(u)‖
W 1,2

B
≥ δ for all

u ∈ J−1[a, b] \ BR0 . By definition,

min{1, ‖J ′(u)‖
W 1,2

B
} ≤ σ(u)‖J ′(u)‖

W 1,2
B

≤ 1.
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Thus, if we denote vn = η(sn, un), then

‖η(t, vn) − vn‖W 1,2
B

≤ |t|, ∀t.
It follows that

‖η(t, vn)‖W 1,2
B

≥ ‖vn‖W 1,2
B

− |t| > R0 whenever |t| < Rn − R0.

Since tn → ∞, we have, subject to a subsequence, either (i) sn → ∞, or (ii)
tn − sn → ∞.

In case (i), choose Tn = − min{Rn − R0, sn}. Then Tn → −∞ and
η(t, vn) ∈ J−1[a, b] \ BR0 for all t ∈ [Tn, 0]. Therefore,

a − b ≤ J(vn) − J(η(Tn, vn)) =
∫ 0

Tn

(d/dt)J(η(t, vn))dt

=
∫ 0

Tn

−σ(η(t, vn))‖J ′(η(t, vn))‖2
W 1,2

B

dt

≤ δ2Tn → −∞,

a contradiction.
In case (ii), we define Tn = min{Rn − R0, tn − sn} and similarly derive

b − a ≥ J(vn) − J(η(Tn, vn)) ≥ δ2Tn → ∞,

again a contradiction. This finishes the proof.

Remark 3.1. Under the condition (H1), in general, J satisfies the P.S.
condition (or equivalently, by Theorem 3.2, J−1[a, b] is strongly η-admissible)
does not imply that J−1[a, b] ∩ Xi is strongly η|R×Xi-admissible for any
i ≤ k − 1. To see this, we choose f such that (H1) and the P.S. condition
are satisfied and that (1.1) has a solution u0 in J−1[a + 1, b − 1] for some
a < b − 2. By elliptic regularity, u0 ∈ X0. Now choose un ∈ Xi satisfying
that

‖un − u0‖Xi+1 → 0, ‖un‖Xi → ∞.

Since η(t, u0) ≡ u0, we can find an increasing sequence {tn} with tn → ∞
such that η([0, tn], un) ⊂ B1(u0) ∩ J−1[a, b], where B1(u0) = {u ∈ Xi+1 :
‖u‖Xi+1 ≤ 1}. By Lemma 3.1 there exists C > 0 independent of n such that

‖η(t, un) − e−w(t,un)un‖Xi ≤ C, ∀t ∈ [0, tn], n ≥ 1.

Since ‖un‖Xi → ∞ and un → u0 in Xk, for any fixed j, we can find nj ≥ j

such that ‖unj‖Xie
−w(tj ,u0) > j and |w(tj , u0) − w(tj , unj )| < 1. Thus,

‖unj‖Xie
−w(tj ,unj ) → ∞, and

‖η(tj , unj )‖Xi ≥ ‖unj‖Xie
−w(tj ,unj ) − C → ∞.

Since η([0, tj ], unj ) ⊂ η([0, tnj ], unj ) ⊂ J−1[a, b]∩Xi, and tnj → ∞, our above
discussion means that J−1[a, b] ∩ Xi is not strongly η|R×Xi-admissible.

The following is a useful result.
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Lemma 3.2. Suppose that f satisfies (H1), J satisfies the P.S. condition,
and for some u0 ∈ W 1,2

B and T ≤ ∞, {η(t, u0) : −∞ < t < T} ⊂ J−1[a, b],
where −∞ < a < b < ∞. Then {η(t, u0) : −∞ < t < T} is a bounded set in
X0 = W 2,p

B .

Proof. By Theorem 3.2, J−1[a, b] is strongly η-admissible. It follows easily
that B ≡ {η(t, u0) : −∞ < t < T} is precompact in Xk = W 1,2

B . Let v ∈ B
be an arbitrary point. By (3.1) we have

v = ew(t,v)η(t, v) −
∫ t

0
ew(s,v)A(η(s, v))σ(η(s, v))ds.(3.2)

Since B is precompact in Xk, we can find tn → −∞ and some v0 ∈ Xk such
that η(tn, v) → v0 in Xk. Using w(tn, v) → −∞, and passing to the limit in
(3.2) with t = tn, we obtain

v =
∫ 0

−∞
ew(s,v)A(η(s, v))σ(η(s, v))ds.(3.3)

Since B is precompact and hence bounded in Xk, by the properties of A,
there exists C1 such that supu∈B ‖A(u)‖Xk−1 ≤ C1. Thus it follows from
(3.3) that

‖v‖Xk−1 ≤
∫ 0

−∞
ew(s,v)σ(η(s, v))C1ds = C1.

But v is an arbitrary point in B. Therefore,

sup
u∈B

‖u‖Xk−1 ≤ C1.

Now, by the properties of A, we can find C2 such that supu∈B ‖A(u)‖Xk−2 ≤
C2, and by (3.3), we deduce

sup
u∈B

‖u‖Xk−2 ≤ C2.

Clearly, Lemma 3.2 follows by repeatedly using the above argument. The
proof is complete.

The following result follows from Theorems 3.1, 3.2 above and Corollary
4.7 and Theorem 4.8 in Chapter III of Rybakowski [26].

Lemma 3.3. Suppose that f satisfies (H1). Then
(i) If J satisfies the P.S. condition and has no critical point u in the sets

{J(u) = a} and {J(u) = b}, where a < b are real numbers, then

Hq(h(η,K)) = Hq(J−1(−∞, a], J−1(−∞, b]),

where K is the maximal invariant set of η in J−1[a, b].
(ii) If u is an isolated critical point of J , then

Hq(h(η, {u})) = Cq(J, u).
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Theorem 3.3. Suppose that f satisfies (H1), J satisfies the P.S. condition
and (1.1) has a pair of strict lower and upper solutions u0, v0 ∈ C2(D),
u0 < v0, u0 being a lower solution and v0 an upper solution. Then there
exist real numbers a0 < b0 such that

(i) For any a ≤ a0 and b ≥ b0, the maximal invariant set K0 of η in
[u0, v0]W 1,2

B
∩ J−1[a, b] is independent of a,b.

(ii) h(η,K0) is well-defined and h(η,K0) = Σ0, i.e., Hq(h(η,K0)) = δq,0G.

Proof. By standard argument, all the solutions of (1.1) contained in
[u0, v0]W 1,2

B
form a compact set S0 in W 1,2

B . Therefore we can find a0 < b0

such that S0 ⊂ J−1(a0, b0). Let a ≤ a0, b ≥ b0. By Theorem 3.2, J−1[a, b]
is strongly η-admissible.

Let η((−∞,∞), u0) be any entire orbit in [u0, v0]W 1,2
B

∩ J−1[a, b]. By
Lemma 3.2, η((−∞,∞), u0) is bounded in X0 and hence precompact in
W 1,2
B . Thus both α(η) and ω(η) are non-empty. Since J is a quasi-potential

of η, α(η) and ω(η) consist of equilibria of η, that is, solutions of (1.1). By
our choice of a0 and b0, α(η)∪ω(η) ⊂ J−1(a0, b0) and thus η((−∞,∞), u0) ⊂
J−1(a0, b0). This implies that the maximal invariant set of η in [u0, v0]W 1,2

B
∩

J−1[a, b] does not depend on a, b. Denote this set by K0 and the proof for
(i) is finished.

We may assume that the constant k in the definition of A is chosen large
enough so that u → f(u) + ku is strictly increasing for u ∈ [minD u0(x) −
1,maxD v0(x) + 1]. Then it follows from standard argument (see, e.g., [3])
that un = Anu0 and vn = Anv0 satisfy:

u0 < u1 < ... < un < un+1 < ... → u∗, v0 > v1 > ... > vn > vn+1 > ... → v∗,

and u∗, v∗ are the minimal and maximal solutions of (1.1) in [u0, v0]W 1,2
B

respectively. Denote by Nδ the closed δ-neighborhood of [u∗, v∗]
W 1,2

B
in W 1,2

B .
We show that, for all small δ > 0, any solution of (1.1) in Nδ belongs to S0.
In fact, if w is any solution of (1.1) in Nδ, and if w0 ∈ [u∗, v∗]

W 1,2
B

is such

that ‖w − w0‖W 1,2
B

< 2δ, then, since Ak is continuous from Xk to X0, by

making δ arbitrarily small, we can guarantee that ‖Ak(w) − Ak(w0)‖X0 is
arbitrarily small. But w = Ak(w) and Ak(w0) ∈ [u∗, v∗]C1 which is in the
interior of [u0, v0]C1 . Therefore, w ∈ [u0, v0]C1 ⊂ [u0, v0]W 1,2

B
. This shows

that w ∈ S0.
Fix such a small δ > 0 and let K1 be the maximal invariant set of η in

Nδ ∩ J−1[a0, b0]. We show that K1 = K0. Indeed, if η((−∞,∞), u0) is an
arbitrary orbit in K1, then it is precompact in W 1,2

B and α(η) ∪ ω(η) ⊂ S0
by what we have just proved. Let w ∈ α(η). By Lemma 3.2, η((−∞,∞), u0)
is precompact in C1. We may assume that η(tn, u0) → w in C1, where
tn → −∞. Since w ∈ [u∗, v∗]C1 , for any fixed positive integer m, η(tn, u0) ∈
[um, vm]C1 for all large n. Since [um, vm]

W 1,2
B

is A-invariant, as in Hofer[21],
it follows from a well-known result in Banach space ordinary differential
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equation theory that [um, vm]
W 1,2

B
is η-invariant. It follows that η(t, u0) ∈

[um, vm]
W 1,2

B
for all t ∈ (−∞,∞). Since this is true for any m and um →

u∗, vm → v∗, we obtain η((−∞,∞), u0) ⊂ [u∗, v∗]
W 1,2

B
. Similarly, any entire

orbit in K0 belongs to [u∗, v∗]
W 1,2

B
. This shows in particular that K1 = K0.

The above argument also shows that Nδ∩J−1[a0, b0] is an isolating neigh-
borhood of K0. Since it is strongly η-admissible by Theorem 3.2, we conclude
that h(η,K0) is well-defined.

Next we calculate h(η,K0) by a homotopy argument. First we may assume
that u∗ = 0 and f(0) = 0. Otherwise, we can make a change of variables
w = u − u∗ and replace f by

f̃(x,w) = f(u∗(x) + w) − f(u∗(x))

from the very beginning. One easily sees that under this change of variables,
the new f and new J satisfy all the conditions of the Lemmas and Theorems
in this section so far. Therefore, this change of variables does not affect the
previous results in this section.

We make a remark here for our later purpose. Since in general f̃ is x
dependent even if f is not, we need to be a little careful here if we want to
use this theorem to prove Proposition 1.1, where condition (H3) is needed.
We observe that the change of variables here does not produce trouble for
the proof of Proposition 1.1, as we will use u0 = α′, v0 = β′ and u∗ = α1 is
a constant in the proof of Proposition 1.1, where α′, β′ and α1 are defined
in the proof of Proposition 2.1.

Now go back to our calculation of h(η,K0) under the assumptions that
u∗ = 0 and f(0) = 0. We consider the following homotopy:

(3.4) −∆u+ku = fµ(u) ≡ µ[f(u)−ku] in D, Bu = 0 on ∂D, 0 ≤ µ ≤ 1.

Let Jµ, ηµ and Aµ denote the corresponding J , η and A, where f is replaced
by fµ. It is easy to check that u0 < 0 and v0 > 0 are strict lower and upper
solutions of (3.4) for any fixed µ ∈ [0, 1] (here we use f(u0) + ku0 < 0 <
f(v0) + kv0). Moreover, by standard regularity argument, the set

S1 = {u ∈ [u0, v0]W 1,2
B

: u solves (3.4) for some µ ∈ [0, 1]}
is compact in W 1,2

B . Thus we can find real numbers a1 < b1 such that
S1 ⊂ J−1

µ [a1 + 1, b1 − 1] for all µ ∈ [0, 1].
For any fixed µ ∈ [0, 1], u∗

µ = limAnµu0 and v∗
µ = limAnµv0 are minimal and

maximal solutions of (3.4) in [u0, v0]W 1,2
B

. It is easy to see that u∗
µ ≥ u∗

0 = u∗

and v∗
µ ≤ v∗

0 = v∗ for any µ ∈ [0, 1]. Now we use a similar argument to that
used in showing that Nδ ∩ J−1[a0, b0] is a strongly η-admissible isolating
neighborhood of K0, and obtain that, for δ > 0 small,

N ≡ Nδ ∩µ∈[0,1] J
−1
µ [a1, b1]

is a strongly ηµ-admissible isolating neighborhood of Kµ for each µ ∈ [0, 1],
where Kµ denotes the maximal invariant set of ηµ in N , and Nδ is the closed
δ-neighborhood of [u∗, v∗]

W 1,2
B

.



120 E. N. DANCER AND YIHONG DU

It is easily seen that if µn → µ0 with µn, µ0 ∈ [0, 1], then ηn → η0.
Moreover, a simple variant of the proof of Proposition 2.1 shows that N
is {ηµn}-admissible. Therefore, we can use the continuation property of
the generalized Conley index to conclude that h(ηµ,Kµ) is independent of
µ ∈ [0, 1]. In particular,

h(η,K0) = h(η1,K
1) = h(η0,K

0).

But clearly K0 = {0} and u = 0 is a global minimum of J0. Thus, by Lemma
3.3,

Hq(h(η0,K
0)) = Cq(J0, 0) = δq,0G.

The proof is complete.

Remark 3.2. The homotopy (3.4), together with the change of variables
trick, also works for the parabolic flow. In this case the argument is much
more simpler because we can simply use [u0, v0]Xθ as the common isolating
neighborhood. This observation can be used to simplify the arguments in a
number of places in section 3 of [10].

Remark 3.3. All the above results in this section also hold true for much
more general problems than (1.1). For example, they are true for the cases
indicated in Remark 2.1. Therefore, they should have many other applica-
tions.

Proof of Proposition 1.1. This is just a simple variant of that for Propo-
sition 2.1. Therefore we just give an outline of the proof by pointing out the
points where care is needed.

We make use of the previous results in this section.
First, we observe that Theorem 2.2 is still true with π replaced by η. Then

we follow the proof of Proposition 2.1 with π replaced by η. Note that (2.6)
is now replaced by Theorem 3.3, and (2.10) by Theorem 2.2 with π replaced
by η.

Second, we notice that the only other point we need to be careful with is
in checking the Morse decompositions. Since by Lemma 3.2 any entire orbit
is compact in C1, we see that any orbit approaches its alpha limit set in the
norm of C1 (actually C0 is enough for our present purpose because we are
dealing with Neumann boundary conditions). Moreover, as in the proof of
Theorem 3.3, if u0 < v0 and u0 and v0 are lower and upper solutions of (1.4)
respectively, then [u0, v0] is η-invariant. These two facts guarantee that the
argument in checking the Morse decompositions in the proof of Proposition
2.1 also works now. This finishes the outline of the proof.

4. A Dirichlet Problem

In this section, we study problem (1.5). Proposition 1.2 is a consequence
of our results in this section.

Theorem 4.1. Suppose that g satisfies (H4) and lim|u|→∞g(u)/u > λ1.
Then there exist Λ+,Λ− ∈ (0,∞) such that
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(i) for λ > Λ+ (resp. Λ−), (1.5) has no positive (resp. negative) solution;
(ii) for 0 < λ < Λ+ (resp. Λ−), (1.5) has at least one positive (resp.

negative) solution;
(iii) for 0 < λ < min{Λ+,Λ−}, (1.5) has at least one sign-changing solu-

tion.

Proof. (i) Define

Λ+ = sup{λ > 0 : (1.5) has a positive solution },
Λ− = sup{λ > 0 : (1.5) has a negative solution }.

Then the conclusion follows from a simple variant of the proof of Lemma 3.1
in [2].

(ii) The same upper and lower solution argument as in [2] shows that (1.5)
has a minimal positive solution uλ for 0 < λ < Λ+, and a maximal negative
solution vλ for 0 < λ < Λ−.

(iii) This follows from a variant of the proof of Theorem 1 in [11] based
on Hofer [21]. We just sketch the main steps. By truncating g outside
[−‖vλ‖∞, ‖uλ‖∞], we may assume that Jλ, defined by

Jλ(u) =
∫
D

[
|∇u|2/2 − λ|u|r+1/(r + 1) −

∫ u

0
g(s)ds

]
dx,

satisfies the P.S. condition in W 1,2
0 (D). Let

C = [vλ, uλ]W 1,2
0

≡ {u ∈ W 1,2
0 (D) : vλ ≤ u ≤ uλ}.

Note first that Jλ is C1 and the monotonicity condition for I − J ′
λ in [21]

can be easily met as λ|u|r−1u is increasing with u and g is locally Lipschitz.
Then as in [11], vλ and uλ are strict local minima of Jλ on C. It then follows
from the mountain pass theorem on C (see [21]) that Jλ has a critical point
w of type −I in C( see [21] for the definition of type −I critical points). Note
that C1 smoothness for J is enough here. Since uλ is the minimal positive
solution and vλ is the maximal negative solution, w must be a sign-changing
solution if we can show that w �= 0. Since the righthand side of (1.5) is
greater than au for all small positive u and some a > λ2, a variant of the
argument in Step 2 of the proof of Theorem 1 in [11] shows that 0 is a critical
point of type X ( see [21] for the definition of type X critical points). Hence
w �= 0.

The proof is complete.

Remark 4.1. Note that in Theorem 4.1, there is no growth restriction on
g from above. One easily sees that our method used to prove (iii) above
can be used to answer affirmatively a question in Remark 2.9 of [1], where
they conjecture that their growth restriction on g is not necessary for the
existence of w (in their setting, one easily shows that Jλ(w) < 0).

Theorem 4.2. Suppose that g satisfies (H4) and (H5), and Λ+, Λ− are as
in Theorem 4.1. Then
(i) for λ = Λ+ (resp. Λ−), (1.5) has at least one positive (resp. negative)

solution;
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(ii) for 0 < λ < Λ+ (resp Λ−), (1.5) has at least two positive (resp. negative)
solutions;

(iii) for 0 < λ ≤ max{Λ+,Λ−}, (1.5) has at least two sign-changing solu-
tions.

Proof. (i) We carry out the proof for λ = Λ+ only; the other case can be
proved analogously. By Theorem 4.1, (1.5) has a minimal positive solution
uλ for any λ ∈ (0,Λ+). Since

lim
u→+∞(λur + g(u))/u = a > λ1,

uniformly in λ ∈ (0,Λ+), it follows from a well-known result on asymptoti-
cally linear problems (see e.g. [3]) that ‖uλ‖∞ ≤ C for all λ ∈ (0,Λ+) and
some positive constant C. It follows from elliptic regularity that {uλ : 0 <
λ < Λ+} is precompact in C1. Hence for some sequence λn → Λ+, uλn

converges to a solution u of (1.5) with λ = Λ+. By [2], uλ ≥ wλ, where wλ
is the unique positive solution of

−∆w = λwr, w|∂D = 0,

which is always a lower solution to (1.5). Therefore u must be a positive
solution and u ≥ wλ. This implies that (1.5) has a minimal positive solution
uλ for λ = Λ+ as well.

(ii) Again we consider the case 0 < λ < Λ+ only. The other case is similar.
Choose λ′ ∈ (λ,Λ+) and define u = uλ′ . Then u is an upper solution to (1.5).
Let u∗ be the maximal solution of (1.5) between wλ and u. Then the proof
of Proposition 2 in [12] shows that (1.5) has a mountain pass solution u > u∗
(some details are recalled in the proof of (iii) below).

(iii) We break the proof into three steps.
Step 1. For 0 < λ ≤ max{Λ+,Λ−}, (1.5) has at least one sign-changing

solution lying in the order interval [vλ, uλ]W 1,2
0

. Here we understand that
uλ = +∞ if λ > Λ+ and vλ = −∞ if λ > Λ−.

By Theorem 4.1, we need only prove Step 1 for the case min{Λ+,Λ−} ≤
λ ≤ max{Λ+,Λ−}.

For λ = min{Λ+,Λ−}, the proof is the same as in (iii) Theorem 4.1, since
we have proved in (i) that (1.5) has a minimal positive solution and a max-
imal negative solution. Suppose next that min{Λ+,Λ−} < max{Λ+,Λ−}.
We may assume that Λ− < Λ+; the other case is similar.

Now for Λ− < λ ≤ Λ+, (1.5) has a minimal positive solution uλ and no
negative solution. Let C = {u ∈ W 1,2

0 (D) : u ≤ uλ}. We first use a trick in
the proof of Proposition 2 in [12]. Denote f(u) = λ|u|r−1u+ g(u) and define

f̃(x, u) = f(u) for u ≤ uλ(x); f̃(x, u) = f(uλ(x)) for u ≥ uλ(x).

Then f̃ is continuous, and for any given finite interval in R1, we can find a
positive constant k such that f̃(x, u) + ku is strictly increasing in u for u in
that interval and all x in D. Moreover, it is easily seen that wλ and uλ+εφ1
is a pair of lower and upper solutions to

−∆u = f̃(x, u), u|∂D = 0.
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Here ε > 0 is a constant and φ1 is given by

−∆φ1 = λ1φ1, φ1|∂D = 0, φ1 ≥ 0, ‖φ1‖∞ = 1.

As in [12], it follows from [6] that the functional

J̃λ(u) =
∫
D

|∇u|2/2dx −
∫
D

∫ u

0
f̃(x, s)dsdx,

restricted to E = C1
0 (D) has a local minimizer in the order interval [wλ, uλ+

εφ1]E , and it is also a local minimizer of J̃λ in H = W 1,2
0 (D). By the

definition of f̃ , clearly uλ is the only critical point of J̃λ in the above interval.
Therefore, uλ is an isolated critical point of J̃λ in H. One easily checks that
J̃λ(−tφ1) → −∞ as t → +∞. The argument in [12] shows that J̃λ satisfies
the P.S. condition. Since uλ is an isolated critical point of J̃λ, as in [12],
inf{J̃λ(u) : ‖u − uλ‖H = ε} > J̃λ(uλ). Thus we can use the well-known
mountain pass theorem to obtain a critical point u0 of J̃λ. It follows from the
definition of f̃ that u0 ∈ C, hence it is a solution to (1.5). Clearly u0 �= uλ.
At this stage, we are not sure if u0 = 0. If we can show that (1.5) has a
solution in C \ {0, uλ}, then this solution must be a sign-changing solution
as there is no negative solution and uλ is the minimal positive solution.

Next we use an idea of [21]. Arguing indirectly, we assume that 0 and uλ
are the only solutions of (1.5) in C. Hence we necessarily have u0 = 0 and
thus J̃λ(uλ) < J̃λ(u0) = 0. Using a suitable equivalent norm of H, we can
assume that I − J̃ ′

λ is increasing in the order interval [−1, uλ + 1]H . From
the behaviour of the nonlinearity near 0, as before, 0 is a critical point of
J̃λ of type X. This would contradicts the well-known characterization of a
mountain pass solution if our functional is smooth enough near 0. To get
around this smoothness problem, we use the proof of Lemma 3 in [21] to find
a continuous map γ : [0, 1] → H such that γ(0) = uλ, J̃λ(γ(1)) < J̃λ(uλ)
and J̃λ(γ(t)) < J̃λ(0) = 0 for all t ∈ [0, 1]. This implies that the mountain
pass solution satisfies J̃λ(u0) < 0, a contradiction. This finishes the proof of
Step 1.

Step 2. Let 0 < λ ≤ min{Λ+,Λ−}. Then (1.5) has a sign-changing
solution outside the order interval [vλ, uλ]W 1,2

0
.

We use some results and techniques from [12]. Since the righthand side
of (1.5) is not C1 at u = 0, we cannot use [12] directly. We modify |u|r−1u
near u = 0 as follows. For δ > 0 small, let

hδ(u) = δr−1u for u ∈ [−δ/2, δ/2]; hδ(u) = |u|r−1u for u �∈ [−2δ, 2δ];

hδ(u) is C1 and increasing for u ∈ [−2δ,−δ/2] ∪ [δ/2, 2δ].

Then consider

−∆u = λhδ(u) + g(u), u|∂D = 0.(4.1)

With care, it is easy to see that we can construct hδ as above and such
that hδ(u) ≤ |u|r−1u for u > 0 and the reverse inequality holds for u < 0.
It follows that uλ is a strict upper solution of (4.1) and vλ is a strict lower
solution of (4.1). Since δ is small, we can find ε0 > 0 small such that εφ1 ≤ uλ
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and εφ1 is a lower solution of (4.1) for all ε ∈ (0, ε0). It follows that (4.1)
has a minimal positive solution uδ. Similarly, it has a maximal negative
solution vδ. Now the modified problem (4.1) satisfies all the conditions of
Proposition 2 in [12]. By Propositions 2, 2′, 2′′ and their proofs in [12], we
conclude that (4.1) has a sign-changing solution wδ outside the order interval
[vδ, uδ]. We want to show that, for some δn → 0, wδn converges to a sign-
changing solution of (1.5) outside [vλ, uλ]; this would finish our proof of Step
2.

We show first that vδ → vλ and uδ → uλ as δ → 0. Since hδ1(u) ≥ hδ2(u)
if u ≥ 0 and δ1 ≤ δ2, an easy upper and lower solution argument shows that
uδ1 ≥ uδ2 . By a simple regularity argument, {uδ : 0 < δ ≤ δ0} is precompact
in C1(D) for any fixed small positive δ0. Thus for any sequence δn → 0 there
is a subsequence still denoted by δn such that uδn → u in C1. One easily
sees that u is a solution to (1.5). Moreover, uδn ≤ u ≤ uλ. Hence we must
have u = uλ as uλ is the minimal positive solution of (1.5). This implies
that uδ → uλ in C1 as δ → 0. The proof that vδ → vλ is similar.

We show next that ‖wδ‖∞ ≤ M for all small δ and some fixed positive
constant M . We argue indirectly. Suppose to the contrary that there exists
a sequence of positive numbers δn → 0 such that ‖wδn‖∞ → ∞. Then let
wn = wδn/‖wδn‖∞, and divide (4.1) with (δ, u) = (δn, wδn) by ‖wδn‖∞, and
use lim|u|→∞ g(u)/u = a and |hδn(wδn)| ≤ |wδn |r. It results

∆wn = awn + o(1), wn|∂D = 0.(4.2)

From the L∞ boundedness of the righthand side of (4.2) we infer that {wn}
is precompact in C1. By passing to a subsequence we may assume that
wn → w in C1. Now let n → ∞ in (4.2) we obtain

−∆w = aw, w|∂D = 0.

Since ‖w‖∞ = 1, this implies that a = λk for some k ≥ 1, which contradicts
(H5).

Thus we have proved that ‖wδ‖∞ ≤ M for all δ ∈ (0, δ0], where δ0 > 0 is
small. Using this fact, we find that the righthand side of (4.1) with u = wδ is
L∞ bounded uniformly for all small positive δ. Hence it follows from elliptic
regularity that {wδ : 0 < δ ≤ δ0} is precompact in C1. Thus we can find
a sequence of positive numbers δn → 0 such that wδn → w in C1. One
easily sees that w is a solution of (1.5). Since wδn is outside [vδn , uδn ]C1 and
vδn → vλ, uδn → uλ in C1, it follows that w is not in the interior of [vλ, uλ]C1

considered as a subset of C1(D).
We prove that w changes sign. Otherwise w is a positive solution or

negative solution. If it is a positive solution, then, by the maximum principle,
we deduce that w > 0 in D and ∂w/∂n < 0 on ∂D. This implies that
wδn > 0 in D for all large n, which contradicts the fact that wδn changes
sign. Similarly w cannot be negative. Hence w must change sign.

It remains to show that w is outside [vλ, uλ]W 1,2
0

. It suffices to show that
w is outside [vλ, uλ]C1 . If this is not true, then choosing constant k > 0 such
that λ|u|r−1u + g(u) + ku is increasing for u in the range −‖vλ‖∞ ≤ u ≤



THE GENERALIZED CONLEY INDEX 125

‖uλ‖∞, we obtain that

−∆(uλ − w) + k(uλ − w) ≥ 0, �≡ 0, (uλ − w)|∂D = 0.

It follows then from the maximum principle that uλ − w > 0 in D and
∂(uλ−w)/∂n < 0 on ∂D. The same is true also for w−vλ. Thus w is in the
interior of [vλ, uλ]C1 , which contradicts our earlier observation. This finishes
the proof of Step 2.

Step 3. If Λ− < Λ+, then for λ ∈ (Λ−,Λ+], (1.5) has a sign-changing
solution not comparable with uλ. An analogous result hold if Λ− > Λ+.

The proof of Step 3 is a variant of that of Step 2. We will just sketch the
proof. Again we consider the modified problem (4.1) first and then pass to
the limit δ → 0. As before, for all small positive ε and any λ ∈ (Λ−,Λ+],
εφ1 and uλ is a pair of strict lower and upper solutions to (4.1), and it
follows that (4.1) has a minimal positive solution uδ. Using the Lemma in
the proof of Proposition 2′′ of [12], we can find a strict upper solution ũδ
of (4.1) satisfying uδ < ũδ ≤ uλ such that ω(ũδ) = u∗

δ is a positive solution
of (4.1) which is comparable with any positive solution of (4.1). Here ω(v)
denotes the omega limit set of the solution of the corresponding parabolic
problem of (4.1) which passes through v. Now using Proposition 2′ of [12]
to (4.1) with u = εφ1 and u = ũδ we conclude that (4.1) has a solution wδ

not comparable with at least one of uδ = ω(εφ1) and u∗
δ = ω(ũδ). It follows

that wδ must be a sign-changing solution as any positive solution of (4.1) is
comparable with both u∗

δ and the minimal positive solution uδ.
Now as in the proof of Step 2, we can show by a compactness argument

that for some δn → 0, wδn → w in C1, and w is a solution of (1.5). Since
wδn is not comparable with uδn which was shown in Step 2 to converge to
uλ in C1, we conclude that w �= 0. Since wδn changes sign, we conclude that
w �= uλ. Now as in the last part of the proof of Step 2, we find that if w
and uλ are comparable, then either w−uλ or uλ−w is in the interior of the
natural positive cone of C1

0 (D). But since wδn → w, uδn → uλ and u∗
δn

→ uλ
in C1, it follows that either both wδn −uδn and wδn −u∗

δn
, or both uδn −wδn

and u∗
δn

−wδn are in the interior of the positive cone in C1
0 if w is comparable

with uλ. But this contradicts the fact that wδn is not comparable with at
least one of uδn and u∗

δn
. This shows that w is a sign-changing solution

which is not comparable with uλ, as required. The case Λ− > Λ+ can be
considered in a similar way.

The proof of Theorem 4.2 is complete.

Remark 4.2. Note that our proof of (iii) gives information on the loca-
tion of the two sign-changing solutions, i.e., one is inside the order interval
[vλ, uλ], another is outside this interval. Here we use the convention for the
notation of this order interval as in the statement of Step 1. Note also that
the argument used in the proof of Step 3 also works for the case of Step
2 but it gives less information on the location of the second sign-changing
solution in this case.
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Theorem 4.3. If g satisfies (H1), (H2) and (H4), then the conclusions (i)-
(ii) in Theorem 4.2 are still true. Moreover,

(iii)′ For 0 < λ ≤ max{Λ+,Λ−}, (1.5) has at least one sign-changing
solution.

If we assume further that g satisfies (H6) (which implies (H1) and (H2)),
then

(iv) for any 0 < λ < max{Λ+,Λ−}, (1.5) has at least two sign-changing
solutions.

Proof. (i) We consider the case λ = Λ+ only. By Theorem 4.1, (1.5) has a
minimal positive solution uλ for any λ ∈ (0,Λ+). As in [2], one easily sees
that uλ′ ≤ uλ′′ if 0 < λ′ ≤ λ′′ < Λ+. Also, if wλ is defined as in the proof
of Theorem 4.2, then wλ ≤ uλ and wλ is a lower solution of (1.5) for any
λ ∈ (0,Λ+). Fix any such λ and then let λ′ ∈ (λ,Λ+). Then wλ and uλ′

is a pair of lower and upper solutions of (1.5) with wλ ≤ uλ′ . Thus, as in
the proof of Lemma 4.1 in [2], one can use [6] to conclude that (1.5) has
a solution ũλ between wλ and uλ′ which minimizes Jλ on [wλ, uλ′ ]C1 . In
particular, Jλ(ũλ) ≤ Jλ(wλ). This implies that

Jλ(ũλ) ≤ M ≡ max
Λ+/2≤λ≤Λ+

Jλ(wλ), ∀λ ∈ (Λ+/2,Λ+).

Now (H2) infers that sup{‖ũλ‖W 1,2
0

: Λ+/2 < λ < Λ+} < ∞. Hence this

set is weakly precompact in W 1,2
0 and precompact in Lγ . Now choosing

a sequence λn → Λ+ such that ũλn → u weakly in W 1,2
0 and strongly in

Lγ , and passing to the limit in (1.5) with (λ, u) = (λn, ũλn), using (H1),
we conclude that u is a weak solution of (1.5) with λ = Λ+. u must be a
positive solution since u ≥ wΛ+/2. A bootstrap argument then shows that
u is a classical solution. Moreover, as before, (1.5) has a minimal positive
solution at λ = Λ+.

(ii) and (iii)′ These follow from simple variations of the proofs of (ii)
and Step 1 in (iii) of Theorem 4.2. Note that (H1) and (H2) guarantee that
we still have the P.S. condition and the mountain pass theorem applies as
before.

(iv) We may assume that Λ− < Λ+. The proofs for the other cases are
similar or simpler. By (iii)′ and its proof we need only show that (1.5) has
a sign-changing solution not comparable with uλ for any 0 < λ < Λ ≡
max{Λ+,Λ−}. We use a degree argument.

Let λ, λ′, λ′′ ∈ (0,Λ) be fixed with λ′′ < λ < λ′. Choose constant k > 0 so
that g(uλ(x) +u) − g(uλ(x)) + ku is positive when u > 0 and negative when
u < 0, and it is strictly increasing for u in the range [−‖uλ−uλ′′‖∞−1, ‖uλ′ −
uλ‖∞ + 1]. Define K = (−∆ + kI)−1 with Dirichlet boundary conditions
and define G by

G(u) = H(uλ+u)−H(uλ)+ku, where H(u)(x) = λ|u(x)|r−1u(x)+g(u(x)).

Then, as in [11], A = KG is completely continuous as a mapping of both
H = W 1,2

0 (D) to itself and E = C1
0 (D) to itself. Moreover, A is strongly

increasing in [uλ′′ − uλ, uλ′ − uλ]E under the order induced by the natural
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positive cone P in E, and maps both P and −P to themselves. Finally, u
is a solution of (1.5) if and only if u − uλ is a fixed point of A. Therefore, it
suffices to show that A has a sign-changing fixed point.

As in [11], by using a priori estimates from [14] or [18] for positive solutions
of the corresponding elliptic equation of Au = u, we obtain via a simple
homotopy that

degP (I − A,P ∩ BR, 0) = 0,
where BR = {u ∈ E : ‖u‖E < R} contains all the possible positive solutions
of Au = u.

Since uλ′ is a strict upper solution of (1.5), A maps the order interval
[0, uλ′ − uλ]E to its relative interior in P , which we denote by C+. Since
C+ is a bounded convex set in P , it follows from the basic properties of the
degree (see e.g., [3] and [23]) that

degP (I − A,C+, 0) = 1.

Hence, by the additivity property of the degree,

degP (I − A, (P ∩ BR) \ C+, 0) = 0 − 1 = −1.

Let C− denote the relative interior of [uλ′′ − uλ, 0]E in −P , and enlarge
R when necessary, we obtain similarly

deg−P (I − A, (−P ) ∩ BR, 0) = 0, deg−P (I − A,C−, 0) = 1

and
deg−P (I − A, (−P ) ∩ BR \ C−, 0) = −1.

Let C be the interior of [uλ′′ − uλ, uλ′ − uλ]E in E. Then A maps C into
C and we obtain as before that

degE(I − A,C, 0) = 1.

Notice that now the degree is on the whole space E.
Suppose that (1.5) has only one sign-changing solution obtained in (iii)′.

Then necessarily, A has no sign-changing fixed point, and thus we can classify
all the solutions of Au = u into three types:

(a) Solutions contained in C; (b) Positive solutions outside C –they form
a compact set K+ contained in P ∩BR\C+; (c) Negative solutions outside C
–they form a compact set K− contained in −P ∩BR \C−. By the maximum
principle, and compactness of K+, one easily deduces that K+ lies in the
interior of P . Similarly, K− is in the interior of −P . Hence we can find small
neighborhoods N+ and N− of K+ and K− in E respectively such that they
are in the interior of P and −P respectively. Now by the excision property
of the degree,

degP (I − A,N+, 0) = degP (I − A,P ∩ BR \ C+, 0) = −1,

deg−P (I − A,N−, 0) = deg−P (I − A,−P ∩ BR \ C−, 0) = −1.
Since N+ and N− are in the interior of P and −P respectively, we also have,
by the properties of the degree, that

degE(I − A,N+, 0) = degP (I − A,N+, 0) = −1,
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degE(I − A,N−, 0) = deg−P (I − A,N−, 0) = −1.
Finally, as in [11] section 3, we use the assumptions (H1), (H2), the fact

that the solution set of (1.5) is bounded (since we assume that there is only
one sign-changing solution), and obtain

degE(I − A,BM , 0) = 0,

where M > 0 is large enough such that BM contains all the three types of
solutions listed above. By the additivity of the degree, we obtain

0 = degE(I − A,BM , 0)

= degE(I − A,C, 0) + degE(I − A,N+, 0) + degE(I − A,N−, 0) = −1.
This contradiction finishes our proof.

Remark 4.3. The result of Theorem 4.3 (iv) seems difficult to obtain by
Morse theory or our generalized Conley index approach. The difficulty comes
from the fact that |u|r−1u is not locally Lipschitz near 0. Note that the
modification trick used in the proof of Theorem 4.2 is difficult to use for the
superlinear case because a priori bounds for sign-changing solutions of the
modified equations are at least difficult to obtain (if obtainable at all) and
such bounds are essential for the limiting process to work.

Remark 4.4. From the proof, it is clear that condition (H6) can be replaced
by any other conditions which guarantee that the positive and negative so-
lutions of (1.5) are a priori bounded.

Remark 4.5. It is possible to show that the conclusion of (iv) in Theorem
4.3 is also true for the case that λ = max{Λ+,Λ−}. We did not include
this case in Theorem 4.3 because its proof is rather different from that of
Theorem 4.3 above and is very technical.

Remark 4.6. Under the condition (H4), if 0 is an isolated solution of (1.5),
then it can be shown that the critical groups of 0 as a critical point of the
corresponding functional are all trivial. It can also be proved that the fixed
point index of 0 for the corresponding abstract operator is zero. Note that
this latter conclusion does not follow directly from the well-known relation
between the fixed point index and the critical groups because the right side
of (1.5) is not smooth enough. Note also that it follows easily from this
fixed point index result that 0 is never isolated if g is an odd function. This
implies a partial answer to a recent question of Bartsch and Willem in [T.
Bartsch and M. Willem, On an elliptic equation with concave and convex
nonlinearities, Proc. Amer. Math. Soc. 123 (1995), 3555-3561].

5. Appendix

In this section, we prove Lemmas 2.1 and 2.2.

Proof of Lemma 2.1. We follow [19]. Define

g(s) =
(∫

D
u2(s, x)dx

)1/2
.
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Then
(1/2)(g2(s))′ =

∫
D

uutdx = −
∫
D

[
|∇u|2 − uf(u)

]
dx

= −2J(u(s, ·)) −
∫
D

[F (u) − uf(u)] dx ≥ −2J(u(s, ·)) +
∫
D

qF (u)dx − C1

≥ −2J(u(s, ·)) + C2

∫
D

|u|q+1dx − C3 ≥ −2J(u(s, ·)) + C4g
q+1(s) − C3.

Thus for s ∈ [T1, T2],

g(s)g′(s) ≥ −2 max{|a|, |b|} + C4g
q+1(s) − C3 = −C5 + C4g

q+1(s).

Here, and in what follows, we use Ci to denote positive constants independent
of u and T1, T2.

Suppose T1 ≤ s ≤ t ≤ max{s + 1, T2}. It follows that

g2q(s) ≤ max{1, C−2
4 [2g′(s)2 + 2C2

5 ]},∫ t

s
g2q(τ)dτ ≤ 1 + C−2

4

∫ t

s
[2g′(τ)2 + 2C2

5 ]dτ

≤ C6 + C7

∫ t

s
g′(τ)2dτ.

On the other hand,

g′(s) = g(s)−1
∫
D

u(s, ·)ut(s, ·)dx ≤ ‖ut(s, ·)‖L2 .

Hence
g′(s)2 ≤

∫
D

u2
t (s, ·)dx = −(d/ds)J(u(s, ·)),

and ∫ t

s
g′(τ)2dτ ≤

∫ t

s

∫
D

u2
t (τ, x))dxdτ

≤ −
∫ t

s
(d/dτ)J(u(τ, ·))dτ ≤ b − a.

(5.1)

It follows that ∫ t

s
g2q(τ)dτ ≤ C6 + C7(b − a) = C8.(5.2)

Using (5.1), (5.2) and the following Sobolev inequality:

‖g‖L∞ ≤ C(‖g′‖L2 + ‖g‖L2)λ‖g‖1−λ
L2q , λ = 1/(q + 1),

we conclude that

|g(s)| ≤ C9, ∀s ∈ [T1, T2].(5.3)

Using∫
D

u(s, x)ut(s, x)dx ≥ −2J(u(s, ·)) + C2

∫
D

|u(s, x)|q+1dx − C3

and (5.3) we deduce(∫
D

|u(τ, x)|q+1dx

)2
≤ C−2

2

[
2
(∫

D
uutdx

)2
+ 2(2J(u) + C3)2

]
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≤ C10

∫
D

u(τ, x)2dx
∫
D

u2
t (τ, x)dx + C11 ≤ C10C

2
9

∫
D

u2
t (τ, x)dx + C11.

Hence , by (5.1), for any T1 ≤ s ≤ t ≤ max{s + 1, T2},∫ t

s

(∫
D

|u(τ, x)|q+1dx

)2
dτ ≤ C10C

2
9

∫ t

s

∫
D

u2
t (τ, x)dxdτ

+ C11(t − s) ≤ C12.

(5.4)

The estimate in Lemma 2.1 now follows from (5.1), (5.3), (5.4) and the
following well known inequality (see, e.g., [7] and [19]):

sup
s≤τ≤t

‖u(τ, ·)‖Lr

≤ C

(∫ t

s

∫
D

(
|ut(τ, x)|2 + |u(τ, x)|2

)
dxdτ

) 1−ξ
2

·
(∫ t

s

(∫
D

|u(τ, x)|q+1dx

)2
dτ

) ξ
2q+2

,

where 1 ≤ r < (2q + 4)/3 and ξ = (q + 1)/(q + 2).
This completes the proof of Lemma 2.1.

Proof of Lemma 2.2. Let

D(A0) = {u ∈ C2(D) : Bu|∂D = 0}, A0 = −∆u + u.

Then it is well known (see, e.g, Lemmas 1 and 3 in [25]) that, for any
p ∈ [1,∞], A0 is closable in Lp(D) and its closure Ap is a generator of
an analytic semigroup Sp(t) in Lp(D), Sp(t) ⊂ Sp′(t) if p ≤ p′, and for
1 ≤ p ≤ p′ ≤ ∞,

‖Sp(t)u‖Lp′ ≤ Cm(t)−( N
2p

− N
2p′ )e−λt‖u‖Lp ,(5.5)

for all u ∈ Lp(D), t ∈ (0,∞) and some λ > 0. Here m(t) = min{1, t}. Thus
if f1(u) = f(u) + u and u(t, x) is a solution of (1.2), then

u(t, ·) = S(t)u(0, ·) +
∫ t

0
S(t − s)f1(u(s, ·))ds,(5.6)

for all t > 0 such that u(t, ·) is defined. Here we have dropped p from Sp(t)
because u(t, ·) ∈ Xθ ⊂ C1(D), and thus we can regard S(t) as Sp(t) for any
p.

Since γ < 1 + (4q + 8)/(3N), we can find r ∈ (1, (2q + 4)/3) such that
(γ − 1)N/(2r) < 1. Now by some elementary arguments (see the proof of
Lemma 12 in [25] for details), there exists a finite sequence r = p0 < p1 <
... < pk = ∞ and ε > 0 such that for δi = N/(2pi−1) − N/(2pi),

(γ − 1)(δi + N/(2pi)) + ε < 1, γ/pi < 1, γδi < 1, i = 1, ..., k.

Let u be any solution of (1.2) with u(t, ·) ∈ J−1[a, b] for t ∈ [T1, T2]. By
Lemma 2.1, there exists M0 > 0 independent of u and T1, T2 such that

sup
t∈[T1,T2]

‖u(t, ·)‖Lp0 ≤ M0.
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Define
‖u‖p,δ,T = sup{m(t)δ‖u(t, ·)‖Lp : t ∈ (0, T ]},

and use the notation ‖.‖p = ‖.‖Lp . Then using (5.5) and (5.6) we obtain, for
T ∈ [0, 1],

‖u‖pi,δi,T ≤ sup
{
tδi‖Spi−1(t)u(0, ·)‖pi

}
+ sup

{
tδi
∫ t

0
‖Spi/γ(t − s)f1(u(s, ·))‖pids

}
≤ C1‖u(0, ·)‖pi−1

+ sup
{
tδi
∫ t

0
C(t − s)−N(γ−1)/(2pi)‖f1(u(s, ·))‖pi/γds

}
≤ C1‖u(0, ·)‖pi−1

+ sup
{
tδiC2

∫ t

0
(t − s)−N(γ−1)/(2pi)‖1 + |u|‖γpi

ds

}
.

Here, and in what follows, we use Ci to denote positive constants independent
of u and T1, T2.

Since

tδiC2

∫ t

0
(t − s)−N(γ−1)/(2pi)‖1 + |u|‖γpi

ds

≤ tδiC2

∫ t

0
(t − s)−N(γ−1)/(2pi)s−δiγds‖1 + |u|‖γpi,δi,T

≤ T 1−(γ−1)(δi+N/(2pi))C2‖1 + |u|‖γpi,δi,T

≤ C2T
ε‖1 + |u|‖γpi,δi,T

≤ C3T
ε(1 + ‖u‖pi,δi,T )γ ,

we obtain

‖u‖pi,δi,T ≤ C4(‖u(0, ·)‖pi−1 + T ε(1 + ‖u‖pi,δi,T )γ).

Thus, for any t0 ∈ [T1, T2] and any t ∈ (0,max{1, T2 − t0}], the quantities

Ui(t0, t) = sup{sδi‖u(t0 + s, ·)‖pi : s ∈ [0, t]} = ‖u(t0 + ·, ·)‖pi,δi,t

satisfy

(5.7) Ui(t0, t) ≤ C4‖u(t0, ·)‖pi−1 + C4t
ε(1 + Ui(t0, t))γ , i = 1, ..., k.

Now we need another elementary result from [25] (see Lemma 22 in [25]):
Let a ≥ 0 be a constant, and b = b(t) and x = x(t) be continuous functions

satisfying
b(t), x(t) ≥ 0 for t ≥ 0, b(0) = x(0) = 0.

Then

x(t) ≤ a+ b(t)(1 +x(t))γ , b(t) < b0 ≡ (γ − 1)(γ−1)(1 +a)−(γ−1)γ−γ , ∀t > 0

imply that
x(t) < y0 ≡ (1 + γa)(γ − 1)−1,∀t > 0.

Let T = max{1, T2 − t0} and define

ai = C4‖u(t0, ·)‖pi−1 , bi(t) = C4t
ε for t ∈ [0, T ], bi(t) = C4T

ε for t ≥ T,
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xi(t) = Ui(t0, t) for t ∈ [0, T ], xi(t) = Ui(t0, T ) for t ≥ T.

Then (5.7) can be rewritten as

xi(t) ≤ ai + bi(t)(1 + xi(t))γ .

Thus,

xi(t) < yi ≡ (1 + γai)(γ − 1)−1, ∀t > 0, whenever
bi(t) ≤ bi ≡ (γ − 1)(γ−1)(1 + ai)−(γ−1)γ−γ , ∀t > 0.

(5.8)

Substituting back, we obtain from (5.8), for i = 1, . . . , k,

(5.9)a (1 + ‖u(t0 + t, ·)‖pi) ≤ K0(1 + ‖u(t0, ·)‖pi−1)t
−δi

whenever

(5.9)b t0, t0 + t ∈ [T1, T2], 0 ≤ t ≤ 1; C5t
ε(1 + ‖u(t0, ·)‖pi−1)

γ−1 ≤ 1.

Here and in the following, Ki also denote positive constants independent of
u and T1, T2.

Choose h0 ∈ (0, 1] such that

C5h
ε
0(1 + M0)γ−1 ≤ 1.

Since ‖u(t, ·)‖p0 ≤ M0 for all t ∈ [T1, T2], we have

C5h
ε
0(1 + ‖u(t0, ·)‖p0)γ−1 ≤ 1, ∀t0 ∈ [T1, T2].(5.10)

Let h be any number in (0, h0] satisfying T1 + kh ≤ T2. Since any t ∈
[T1+h, T2] can be written as t = t0+h with t0 ∈ [T1, T2], by (5.9) and (5.10),
we have

1 + ‖u(t, ·)‖p1 = 1 + ‖u(t0 + h, ·)‖p1 ≤ K0(1 + ‖u(t0, ·)‖p0)h−δ1

≤ K0(1 + M0)h−δ1 ≡ K1h
−δ1 , ∀t ∈ [T1 + h, T2].

Let α1 = max{δ1(γ − 1)/ε, 1} and choose h1 ∈ (0, 1) such that

C5h
ε
1(K1)γ−1 ≤ 1.

Then, for t0 ∈ [T1 + h, T2],

C5(h1h
α1)ε(1 + ‖u(t0, ·)‖p1)γ−1

≤ C5h
ε
1h
δ1(γ−1)(K1h

−δ1)γ−1

≤ C5h
ε
1(K1)γ−1 ≤ 1.

Hence, by (5.9),

1 + ‖u(t0 + h1h
α1 , ·)‖p2 ≤ K0(1 + ‖u(t0, ·)‖p1)(h1h

α1)−δ2

≤ K0(K1h
−δ1)h−δ2

1 h−α1δ2

≤ K2h
−δ1−α1δ2 = K2h

−β2 , ∀t0 ∈ [T1 + h, T2].
Any t ∈ [T1+2h, T2] can be written as t = t0+h1h

α1 with t0 ∈ [T1+h, T2].
Thus it follows

1 + ‖u(t, ·)‖p2 ≤ K2h
−β2 , ∀t ∈ [T1 + 2h, T2].

Now let α2 = max{β2(γ − 1)/ε, 1} and choose h2 ∈ (0, 1) such that

C5h
ε
2(K2)γ−1 ≤ 1.
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Then, for t0 ∈ [T1 + 2h, T2],

C5(h2h
α2)ε(1 + ‖u(t0, ·)‖p2)γ−1

≤ C5h
ε
2h
β2(γ−1)(K2h

−β2)γ−1

≤ C5h
ε
2(K2)γ−1 ≤ 1.

Hence, by (5.9),

1 + ‖u(t0 + h2h
α2 , ·)‖p3 ≤ K0(1 + ‖u(t0, ·)‖p2)(h2h

α2)−δ3

≤ K0(K2h
−β2)h−δ3

2 h−α2δ3

≤ K3h
−β2−α2δ3 = K3h

−β3 , ∀t0 ∈ [T1 + 2h, T2].

Any t ∈ [T1+3h, T2] can be written as t = t0+h2h
α2 with t0 ∈ [T1+2h, T2].

Thus

1 + ‖u(t, ·)‖p3 ≤ K3h
−β3 , ∀t ∈ [T1 + 3h, T2].

We continue the above argument, and arrive at

1 + ‖u(t, ·)‖pk
≤ Kkh

−βk , ∀t ∈ [T1 + kh, T2].

Hence

‖u(t, ·)‖∞ ≤ Kkh
−βk , ∀t ∈ [T1 + kh, T2].(5.11)

For any t ∈ (T1, T2], we have either (i) t − T1 > kh0 or (ii) t − T1 ≤ kh0.
In case (i), T2 − T1 > kh0 and hence we can take h = h0. Now since
t ∈ [T1 + kh0, T2] , we use (5.11) with h = h0 and obtain

‖u(t, ·)‖∞ ≤ Kkh
−βk
0 .

In case (ii), we can take h = (t − T1)/k and obtain from (5.11) that

‖u(t, ·)‖∞ = ‖u(T1 + kh, ·)‖∞ ≤ Kkh
−βk = Kkk

βk(t − T1)−βk .

Combining these two cases, we can write

‖u(t, ·)‖∞ ≤ Kkk
βk(min{t − T1, kh0})−βk , ∀t ∈ (T1, T2].

Clearly there exists K > 0 depending only on kh0 such that m(t − T1) ≤
K min{t − T1, kh0} for all t > T1. Therefore, if we take M = Kkk

βkK−βk

and δ = βk, then

‖u(t, ·)‖∞ ≤ [m(t − T1)]−δM, ∀t ∈ (T1, T2].

Since such M and δ are independent of u and T1, T2, our proof of Lemma
2.2 is complete.
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