EXISTENCE OF POSITIVE ENTIRE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS ON $\mathbb{R}^{\mathbb{N}}$

N. HIRANO

1. INTRODUCTION

In the present paper we are concerned with positive solutions of the following problem:

(P)
$$\begin{cases} -\Delta u + u = g(x, u), & x \in \mathbb{R}^N, \\ u \in H^1(\mathbb{R}^N), & N \ge 3, \end{cases}$$

where $g: \mathbb{R}^N \times \mathbb{R} \to \mathbb{R}$ is a continuous mapping. Recently, the existence of positive solutions of the semilinear elliptic problem

$$(P_Q) \qquad \begin{cases} -\Delta u + u = Q(x) \mid u \mid^{p-1} u, \quad x \in \mathbb{R}^N, \\ u \in H^1(\mathbb{R}^N), \quad N \ge 2, \end{cases}$$

has been studied by several authors, where 1 < p for $N = 2, 1 for <math>N \ge 3$ and Q(x) is a positive bounded continuous function. If Q(x) is a radial function, we can find infinity many solutions of problem (P_Q) by restricting our attention to the radial functions (cf. [2, 5]). If Q(x) is nonradial, we encounter a difficulty caused by the lack of a compact embedding of Sobolev type. To overcome this kind of difficulty, P. L. Lions developed the concentrate compactness method [8, 9], and established the following result: Assume that $\lim_{|x|\to\infty}Q(x) = \overline{Q}(>0)$ and $Q(x) \ge \overline{Q}$ on \mathbb{R}^N . Then the problem (P_Q) has a positive solution. This result is based on the observation that the ground state level c_Q of the functional

$$I_Q(u) = \frac{1}{2} \int_{\mathbb{R}^N} (|\nabla u|^2 + |u|^2) dx - \frac{1}{p+1} \int_{\mathbb{R}^N} Q(x) |u|^{p+1} dx$$

© 1996 Mancorp Publishing, Inc.

¹⁹⁹¹ Mathematics Subject Classification. Primary: 35J60, 35J65.

 $Key\ words\ and\ phrases.$ Positive solutions, concentrate compactness method, homology groups.

Received: January 10, 1996.

is lower than that of

$$I^{\infty}(u) = \frac{1}{2} \int_{\mathbb{R}^{N}} (|\nabla u|^{2} + |u|^{2}) dx - \frac{1}{p+1} \int_{\mathbb{R}^{N}} |u|^{p+1} dx,$$

then, under additional conditions on g, there exists a positive solution of (P) (cf. Ding and Ni [5], Stuart [14]). In [3], Cao proved the existence of a positive solution of (P_Q) for the case $c_Q \leq c_{\overline{Q}}$ under the hypothesis that $\lim_{|x|\to\infty} Q(x) = \overline{Q}$ and $Q(x) \geq 2^{(1-p)/2}\overline{Q}$ on \mathbb{R}^N . The difficultly in treating the case $c_Q = c_{\overline{Q}}$ is caused by the fact that we can not apply the concentrate compactness method directly. The argument in [3] is based on Lagrange's method of indeterminate coefficients. That is, if we find a solution u of the minimizing problem

$$\inf \left\{ \{ I_Q(u) : u \in V_\lambda \}, \\ V_\lambda = \left\{ \{ u \in H^1(\mathbb{R}^N), u > 0, \int_{\mathbb{R}^N} Q(x) \mid u \mid^{p+1} dx = 1 \right\} \right\},$$

then cu is a solution of (P_Q) for some c > 0. Lagrange's method does not work if g is not the form $Q(x)t^p$. Our purpose in this paper is to consider the existence of a positive solution of (P) for g satisfying $\lim_{|x|\to\infty} g(x,t) =$ $|t|^{p-1} t$. Our method employed here is based on the singular homology theory.

Throughout this paper, we assume that $g \in C^1(R) \cap C^2(R \setminus \{0\})$ and we impose the following conditions on g:

(g1) There exists a positive number d < 1 such that

$$-dt + (1-d) \mid t \mid^{p-1} t \le g(x,t) \le dt + (1+d) \mid t \mid^{p-1} t$$

for all $(x,t) \in \mathbb{R}^N \times [0,\infty)$; (g2) there exists a positive number C such that

 $|g_t(x,0)| < 1$ and $0 < t^3 g_{tt}(x,t) < C(1+|t|^{p+1})$

for all $(x,t) \in \mathbb{R}^N \times (0,\infty)$;

(g3)

$$\lim_{|x|\to\infty} g(x,t) = \mid t \mid^{p-1} t$$

uniformly on bounded intervals in $[0, \infty)$,

where $1 and <math>g_t(\cdot, \cdot)$ stands for the derivative of g with respect to the second variable.

Remark 1. (1) Throughout the rest of this paper, we assume for the simplicity of the proofs that g(x, -t) = -g(x, t) for $(x, t) \in \mathbb{R}^N \times [0, \infty)$. Since we are concerned with positive solutions, this assumption does not effect our result. By this assumption, the functional I is even and if u is a critical point of I, -u is also a critical point of I. (2) Functions of the form $g(x,t) = \sum_{i=1}^{m} q_i(x)t^i + q_p(x)t^p$ satisfy (g1) and (g2) if m is a positive integer with m < p, $q_i(x)$ $(1 \le i \le m)$ are sufficiently small and $|q_p(x) - 1| < 1 + d$. (g3) is satisfied if $\lim_{|x|\to\infty} q_i(x) = 0$ for $1 \le i \le p - 1$ and $\lim_{|x|\to\infty} q_p(x) = 1$.

Theorem. Suppose that (g2) and (g3) hold. Then there exists $d_0 > 0$ such that if (g1) holds with $d < d_0$, then the problem (P) has a positive solution.

2. Preliminaries

Throughout the rest of this paper, we assume that (g2) and (g3) hold. We put $H = H^1(\mathbb{R}^N)$. Then H is a Hilbert space with norm

$$|| u || = \left(\int_{\mathbb{R}^N} (|\nabla u|^2 + |u|^2) dx \right)^{1/2}.$$

The norm of the dual space $H^{-1}(\mathbb{R}^N)$ of H is also denoted by $\|\cdot\|$. B_r stands for the open ball centered at 0 with radius r. For subsets A, B of Hwith $A \subset B$, we denote by $int_B A$ and $\partial_B A$ the relative interior of A in Band the relative boundary of A in B, respectively. For subsets A, B of H, we write $A \cong B$ when A and B have the same homotopy type. The norm and inner product of $L^2(\mathbb{R}^N)$ are denoted by $|\cdot|_{L^2}$ and $\langle\cdot,\cdot\rangle$, respectively. For each $x \in \mathbb{R}^N$ and $u \in H$, we set $\tau_x u = u(\cdot + x)$. For each functional Fon H and $a \in \mathbb{R}$, we set

$$F_a = \{ u \in H : F(u) \le a \} \quad \text{and} \quad \dot{F}_a = \{ u \in H : F(u) < a \}.$$

We put

$$M = \left\{ u \in H \setminus \{0\} : \| u \|^2 = \int_{R^N} ug(x, u) dx \right\},$$
$$M^{\infty} = \left\{ u \in H \setminus \{0\} : \| u \|^2 = \int_{R^N} u^{p+1} dx \right\}.$$

From the assumption (g2), we find that for each $u \in H \setminus \{0\}$,

$$\frac{dI(tu)}{dt}(0) = 0, \qquad \frac{d^2I(tu)}{dt^2}(0) = |\nabla u|_{L^2}^2 + |u|_{L^2}^2 - \langle g_t(x,0)u,u \rangle > 0,$$

and

(2.1)
$$\frac{d^3 I(tu)}{dt^3}(t) = -\langle g_{tt}(x, tu) u^2, u \rangle < 0 \text{ for } t > 0.$$

N. HIRANO

Then, noting that $(dI(tu)/dt)(\lambda) = 0$ if $\lambda u \in M$, we can see that there exists a positive number $\lambda_0(u)$ such that $I_u = \{\lambda u : \lambda > 0\}$ intersects M at exactly one point $\lambda_0(u)u$. Similarly, we can define a positive number $\lambda_{\infty}(u)$ by $\lambda_{\infty}(u)u \in M^{\infty}$. For simplicity, we write $\lambda_0 u$ and $\lambda_{\infty} u$ instead of $\lambda_0(u)u$ and $\lambda_{\infty}(u)u$ respectively, when it is clear in the context what it means. It also follows from the definition of M^{∞} that for each $u \in M^{\infty}$,

(2.2)
$$I^{\infty}(u) = \frac{p-1}{2(p+1)} \int_{R^{N}} \left(|\nabla u|^{2} + |u|^{2} \right) dx$$
$$= \frac{p-1}{2(p+1)} \int_{R^{N}} |\nabla u|^{p+1} dx.$$

It is known that there exists a positive radial solution u_{∞} of problem

$$(P_{\infty}) \qquad \begin{cases} -\Delta u + u = |u|^{p-1} u, \quad x \in \mathbb{R}^{N} \\ u \in H^{1}(\mathbb{R}^{N}), \end{cases}$$

such that $c = I^{\infty}(u_{\infty}) = \min\{I^{\infty}(u) : u \in M^{\infty}\}$. In [6], Kwong showed that u_{∞} is the unique positive solution up to the translation. It then follows as a direct consequence of the concentrate compactness lemma(cf. Lions [8]) that the second critical level of I^{∞} is 2c. That is,

Lemma 2.1. For each $0 < \epsilon < c$, $\inf\{ \| \nabla I^{\infty}(u) \| : u \in I_{2c-\epsilon} \setminus \dot{I}_{c+\epsilon} \} > 0$.

We put $c_1 = \inf\{I(u) : u \in M\}$. It then follows from the definition of I and M that if $u \in M$ satisfies $c_1 = I(u)$, then u is a solution of (P). It also follows that u is positive. In fact, if $u^+ = \max\{u, 0\} \not\equiv 0$ and $u^- = -\min\{u, 0\} \not\equiv 0$, then $u^{\pm} \in M$ and therefore $I(u) = I(u^+) + I(u^-) \ge 2c_1$. This is a contradiction. Then to find a positive solution of problem (P), we will find a critical point of M with critical level c_1 . We can see from (g3) that $\lim_{|x|\to\infty} I(u_{\infty}(\cdot + x)) = c$. Therefore we have that $c_1 \le c$. Moreover we have

Proposition 2.2. Suppose that (g1) holds with $d \leq \tilde{d}_0$, where \tilde{d}_0 is a positive number such that

$$\delta = \inf\left\{\frac{1-d}{2} - \frac{(1+d)^2}{(1-d)(p+1)} : 0 \le d \le \widetilde{d}_0\right\} > 0.$$

If $c_1 < c$, then there exists a positive solution of problem (P). Proof. Let $u \in H$. Then by (g1), we have

$$I(u) = \frac{1}{2} \int_{\mathbb{R}^N} \left(|\nabla u|^2 + |u|^2 \right) dx - \int_{\mathbb{R}^N} \int_0^{u(x)} g(x, t) dt dx$$

$$\geq \int_{\mathbb{R}^N} \left(\frac{1}{2} \left(|\nabla u|^2 + (1 - d) |u|^2 \right) - \frac{1 + d}{p + 1} |u|^{p + 1} \right) dx$$

Suppose that $u \in M$. Then again by (g1), we have

$$|| u ||^{2} = \int_{\mathbb{R}^{N}} ug(x, u) dx \ge \int_{\mathbb{R}^{N}} \left(-d | u |^{2} + (1 - d) | u |^{p+1} \right) dx.$$

Combining the inequalities above, we have

(2.3)
$$I(u) \ge \int_{\mathbb{R}^{N}} \left(\frac{1}{2} - \frac{1+d}{(1-d)(p+1)} | \nabla u |^{2} + \left(\frac{1-d}{2} - \frac{(1+d)^{2}}{(1-d)(p+1)} \right) | u |^{2} \right) dx$$
$$\ge \delta \int_{\mathbb{R}^{N}} \left(| \nabla u |^{2} + | u |^{2} \right) dx.$$

Let $\{u_n\} \subset M$ be a sequence such that $\lim_{n\to\infty} I(u_n) = c_1$ and $\lim_{n\to\infty} \nabla I(u_n) = 0$. It then follows from (2.3) that $\{u_n\}$ is bounded in H. Then by a parallel argument as in the proof of theorem I.2 of Lions [9], we can see that $\{u_n\}$ converges to $u \in H$ and $\nabla I(u) = 0$ and this completes the proof.

By Proposition 2.2, it is sufficient to consider the case that $c_1 = c$. In the sequel, we assume that $c_1 = c$. We prove Theorem by contradiction, that is, we assume in the following that the functional I does not have nontrivial critical points. Our purpose in the rest of this section is to prove the following Proposition.

Proposition 2.3. There exists a positive number $d_0 < \tilde{d}_0$ such that if (g1) holds with $d \leq d_0$, then for each $0 < \epsilon < c$,

$$H_*(I_{c+\epsilon}^{\infty}, I_{\epsilon}^{\infty}) = H_*(I_{c+\epsilon}, I_{\epsilon})$$

where $H_*(A, B)$ denotes the singular homology group for a pair (A, B) of topological spaces (cf. Spanier [11]).

In the following we denote by $M^{0,\infty}$ and M_{α} ($\alpha > 0$) the sets defined by $M^{0,\infty} = \{t\lambda_0 u + (1-t)\lambda_{\infty} u : u \in H \setminus \{0\}, t \in [0,1], \lambda_0 u \in M, \lambda_{\infty} u \in M^{\infty}\}$ and

(2.4)
$$M_{\alpha} = \{ (1+\tau)u : u \in M^{0,\infty}, \tau \in (-R(u), R(u)) \}$$

where

(2.5)
$$R(u) = \sup\left\{t > 0 : \max\left\{\frac{I(u)}{I((1+\tau)u)}, \frac{I^{\infty}((1+\tau)u)}{I^{\infty}(u)}\right\} < 1+\alpha$$
for all $\tau \in [-t,t]\right\}.$

From the definition, $M^{\infty}, M \subset M^{0,\infty}$ and M_{α} is an open neighborhood of $M^{0,\infty}$.

Lemma 2.4. There exist positive numbers d_1 and α_0 such that if (g1) holds with $d \leq d_1$, then for each positive number $\alpha < \alpha_0$,

(1)
$$I^{\infty}_{(7/6)c} \subset I_{(4/3)c} \cup (M_{\alpha})^{c},$$

(2)
$$I_{(4/3)c} \subset I^{\infty}_{(5/3)c} \cup (M_{\alpha})^{c},$$

 $I_{(4/3)c} \subset I_{(5/3)c}^{\infty} \cup (M_{\alpha})^{c},$ $I_{(5/3)c}^{\infty} \subset I_{(11/6)c} \cup (M_{\alpha})^{c}.$ (3)

Proof. The assertions (1), (2) and (3) can be proved by parallel arguments. We give only the proof of (2). Let $d_1 > 0$ such that

$$\frac{4}{5} < \rho = \min\left\{ \left(\frac{(1-d)^2}{2(1+d)} - \frac{1+d}{p+1}\right) \frac{2(p+1)}{p-1}, \\ \left(\frac{1-d}{1+d}\right)^{2/(p-1)} \left(\frac{2(p+1)}{p-1}\right) \left(\frac{1-d}{2} - \frac{(1+d)}{p+1}\right) \right\}, \text{ for } 0 \le d \le d_0.$$

We assume that (g1) holds with $d \leq d_1$. Fix $u \in H \setminus \{0\}$. Then we have from the definitions of M and M^{∞} that

(2.6)
$$\|\lambda_0 u\|^2 = \int_{\mathbb{R}^N} \lambda_0 u g(x, \lambda_0 u) dx$$
 and $\|\lambda_\infty u\|^2 = \int_{\mathbb{R}^N} |\lambda_\infty u|^{p+1} dx.$

By (g1) and (2.6), we have

$$\begin{split} \frac{1-d}{1+d} \int_{\mathbb{R}^N} |\lambda_0 u|^{p+1} \, dx &\leq \frac{1}{1+d} \int_{\mathbb{R}^N} (\lambda_0 u g(x,\lambda_0 u) + d \mid \lambda_0 u \mid^2) dx \\ &\leq \frac{1}{1+d} \int_{\mathbb{R}^N} (|\nabla \lambda_0 u|^2 \, dx + (1+d) \mid \lambda_0 u \mid^2) dx \\ &\leq \int_{\mathbb{R}^N} (|\nabla \lambda_0 u|^2 \, dx + |\lambda_0 u \mid^2) dx \\ &\leq \frac{1}{1-d} \int_{\mathbb{R}^N} (|\nabla \lambda_0 u|^2 \, dx + (1-d) \mid \lambda_0 u \mid^2) dx \\ &\leq \frac{1}{1-d} \int_{\mathbb{R}^N} (\lambda_0 u g(x,\lambda_0 u) - d \mid \lambda_0 u \mid^2) dx \\ &\leq \frac{1+d}{1-d} \int_{\mathbb{R}^N} |\lambda_0 u|^{p+1} \, dx. \end{split}$$

That is, we have

(2.7)
$$\frac{1-d}{1+d} \int_{R^N} |\lambda_0 u|^{p+1} dx \leq \int_{R^N} (|\nabla \lambda_0 u|^2 dx + |\lambda_0 u|^2) dx \\ \leq \frac{1+d}{1-d} \int_{R^N} |\lambda_0 u|^{p+1} dx.$$

We find from the second equality of (2.6) and (2.7) that

(2.8)
$$\frac{1-d}{1+d}\lambda_0^{p-1} \le \lambda_\infty^{p-1} \le \frac{1+d}{1-d}\lambda_0^{p-1}.$$

To prove the assertion, we will show that for $0 < \alpha < \alpha_0$,

$$I_{(4/3)c} \cap M_{\alpha} \subset I_{(5/3)c}^{\infty}.$$

Now let $u \in M^{0,\infty}$. From the definition of $M^{0,\infty}$, we have that $\lambda_0 \leq 1 \leq \lambda_\infty$ or $\lambda_\infty \leq 1 \leq \lambda_0$ holds. We first consider the case that $\lambda_\infty \leq 1 \leq \lambda_0$. Since $\lambda_\infty \leq 1$, we have that

$$||u||^2 = \int_{\mathbb{R}^N} (|\nabla u|^2 + |u|^2) dx \le \int_{\mathbb{R}^N} |u|^{p+1} dx.$$

Then we find that

(2.9)
$$I^{\infty}(u) \le \frac{p-1}{2(p+1)} \int_{\mathbb{R}^N} |u|^{p+1} dx.$$

On the other hand, recalling that the second equality of (2.6) holds, we obtain from (g1), (2.9) and (2.8) that

$$I(u) \geq \frac{1-d}{2} \int_{\mathbb{R}^{N}} (|\nabla u|^{2} + |u|^{2}) dx - \frac{1+d}{p+1} \int_{\mathbb{R}^{N}} |u|^{p+1} dx$$

$$= \left(\frac{1-d}{2} \lambda_{\infty}^{p-1} - \frac{1+d}{p+1}\right) \int_{\mathbb{R}^{N}} |u|^{p+1} dx$$

$$\geq \left(\frac{(1-d)^{2}}{2(1+d)} - \frac{1+d}{p+1}\right) \frac{2(p+1)}{p-1} I^{\infty}(u)$$

$$\geq \rho I^{\infty}(u).$$

We choose a positive number $\alpha_1 < 1$ such that $4/5 < \rho/(1 + \alpha_1)^2$. Now suppose that $(1 + \tau)u \in M_{\alpha_1}, \tau \in R$. Then, by (2.10), we have

$$I((1+\tau)u) \ge (1/(1+\alpha_1))I(u) \ge (\rho/(1+\alpha_1))I^{\infty}(u)$$

$$\ge (\rho/(1+\alpha_1)^2)I^{\infty}((1+\tau)u).$$

Assume that $(1 + \tau)u \in I_{(4/3)c}$. Then it follows from the inequalities above that

$$I^{\infty}((1+\tau)u) \le (4/3)c(1+\alpha_1)^2/\rho \le (5/3)c.$$

We next assume that $\lambda_0 \leq 1 \leq \lambda_{\infty}$. Then by (2.2),

(2.11)
$$I^{\infty}(u) \le I^{\infty}(\lambda_{\infty}u) = \frac{p-1}{2(p+1)}\lambda_{\infty}^{2}\int_{R^{N}}(|\nabla u|^{2} + |u|^{2})dx.$$

On the other hand, we have by (2.8) that

$$\lambda_{\infty} \le \left(\frac{1+d}{1-d}\right)^{1/(p-1)}$$

Then, noting that $\lambda_{\infty}^{-(p-1)} \leq 1$, we have from (g1) and (2.11) that

$$I(u) \geq \frac{1-d}{2} \int_{R^{N}} (|\nabla u|^{2} + |u|^{2}) dx - \frac{1+d}{p+1} \int_{R^{N}} |u|^{p+1} dx$$

$$\geq \left(\frac{1-d}{2} - \frac{1+d}{p+1} \lambda_{\infty}^{-(p-1)}\right) \int_{R^{N}} (|\nabla u|^{2} + |u|^{2}) dx$$

$$(2.12) \qquad = \lambda_{\infty}^{-2} \frac{2(p+1)}{p-1} \left(\frac{1-d}{2} - \lambda_{\infty}^{-(p-1)} \frac{(1+d)}{p+1}\right) I^{\infty}(u)$$

$$\geq \left(\frac{1-d}{1+d}\right)^{2/(p-1)} \frac{2(p+1)}{p-1} \left(\frac{1-d}{2} - \frac{(1+d)}{p+1}\right) I^{\infty}(u)$$

$$\geq \rho I^{\infty}(u).$$

Then we have that there exists $\alpha_2 > 0$ such that for all $u \in M_{\alpha_2}$ with $I(u) \leq (4/3)c$, $I^{\infty}(u) \leq (5/3)c$. Thus we obtain that the assertion holds with $\alpha_0 = \min\{\alpha_1, \alpha_2\}$.

Throughout the rest of this section we fix the positive number $\alpha < \alpha_0$.

Lemma 2.5. There exists a continuous mapping $\gamma_1 : [0,1] \times (I_{(11/6)c} \cup M^c_{\alpha}) \rightarrow I_{(11/6)c} \cup M^c_{\alpha}$ such hat

$$\begin{array}{ll} (i) & \gamma_1(0,x) = x & for \ all \ x \in I_{(11/6)c} \cup M^c_{\alpha}, \\ (ii) \ \gamma_1(t,x) = x & for \ all \ (t,x) \in [0,1] \times (I_{(4/3)c} \cup M^c_{\alpha}), \\ (iii)I(\gamma_1(t,x)) \le I(\gamma_1(0,x)) & for \ all \ (t,x) \in [0,1] \times (I_{(11/6)c} \cup M^c_{\alpha}), \\ (iv) \ \gamma_1(1,I_{(11/6)c} \cup M^c_{\alpha}) \subset I_{(4/3)c} \cup M^c_{\alpha}. \end{array}$$

Proof. We set

$$M_o = \{\lambda u : u \in M, \lambda > 1\} \quad \text{and} \quad M_i = \{\lambda u : u \in M, \lambda < 1\}$$

Let U be an open set such that

 $(M_{\alpha})^c \subset U$ and $U \cap M_{\alpha/2} = \phi$.

Then since $M \subset M_{\alpha/2}$, we can see that

$$\langle \nabla I(v), v \rangle > 0$$
 on $M_i \cap U$ and $\langle \nabla I(v), v \rangle < 0$ on $M_o \cap U$

Then by arguing standard way (cf. Lemma 1.6 of Rabinowitz [10]), we can construct a pseudo-gradient vector field \tilde{V} associated with ∇I such that

(a) $\| \widetilde{V}(u) \| \leq 2 \| \nabla I(u) \|$, for $u \in H$; (b) $\langle \nabla I(u), \widetilde{V}(u) \rangle \geq \| \nabla I(u) \|^2$, for $u \in H$; (c) $\langle \widetilde{V}(v), v \rangle > 0$ on $M_i \cap U$; (d) $\langle \widetilde{V}(v), v \rangle < 0$ on $M_o \cap U$. We put

$$h_1(v) = \| v - M_{\alpha}^c \| / (\| v - U^c \| + \| v - M_{\alpha}^c \|) \quad \text{for } v \in H,$$

$$h_2(v) = \| v - U^c \| / (\| v - U^c \| + \| v - M_{\alpha}^c \|) \quad \text{for } v \in H$$

and

(2.13)
$$V(v) = h_1(v)\widetilde{V}(v) + h_2(v)\operatorname{sgn}(\langle \widetilde{V}(v), v \rangle)v \quad \text{for } v \in H.$$

Then V is Lipschitz continuous on $I_{(11/6)c} \cup (M_{\alpha})^c$. Consider the ordinary differential equation

(2.14)
$$\frac{d\eta}{dt} = -V(\eta), \qquad \eta(0,v) = v \qquad \text{for } v \in I_{(11/6)c} \cup (M_{\alpha})^{c}.$$

The solution $\eta : \mathbb{R}^+ \times H \to H$ defines a semiflow on H. It follows from the definition of V that $\eta(t,v) \in (M_{\alpha})^c$ for $(t,v) \in [0,\infty) \times (M_{\alpha})^c$. In fact, if $v \in (M_{\alpha})^c$, then for each t > 0, $\eta(t,v) = \lambda_t v$, where $\lambda_t \in \mathbb{R}$ such that $\lambda_t v \in (M_{\alpha})^c$. We also have from (a)-(c) and (2.13) that $\langle V(v), \nabla I(v) \rangle > 0$ on $U \cup I_{(11/6)c}$ and then

$$I(\eta(t, v)) < I(\eta(s, v))$$
 for $t > s$ and $v \in U \cup I_{(11/6)c}$.

Thus we find that $\eta(t,v) \in I_{(11/6)c} \cup (M_{\alpha})^c$ for $(t,v) \in [0,\infty) \times I_{(11/6)c} \cup (M_{\alpha})^c$. It follows from Lemma 2.1 that

$$\inf\{\|\nabla I(u)\|: u \in I_{(11/6)c} \setminus I_{(4/3)c}\} > 0.$$

Then we have

$$\inf\{\|V(u)\|: u \in (U \cup I_{(11/6)c}) \setminus I_{(4/3)c}\} > 0.$$

Therefore, there exists T > 0 such that

(2.15)
$$\eta(t,v) \in int(I_{(4/3)c} \cup (M_{\alpha})^{c}) \text{ for all } t > T$$

and all $v \in I_{(11/6)c} \cup (M_{\alpha})^{c}$.

Here we put

$$\gamma(t,v) = \eta(t_v \cdot t,v) \qquad \text{for } (t,v) \in [0,1] \times I_{(11/6)c} \cup (M_\alpha)^c,$$

where

$$t_v = \inf\{t \ge 0 : \eta(t, v) \in I_{(4/3)c} \cup (M_{\alpha})^c\} \quad \text{for } v \in I_{(11/6)c} \cup (M_{\alpha})^c.$$

Then, by (2.15), we have $\gamma_1 : [0,1] \times I_{(11/6)c} \cup (M_{\alpha})^c \to I_{(11/6)c} \cup (M_{\alpha})^c$ satisfying the desired properties.

By a parallel argument as in the proof of Lemma 2.5, we have

Lemma 2.6. There exists a continuous mapping $\gamma_2 : [0,1] \times I^{\infty}_{(5/3)c} \cup M^c_{\alpha} \to I^{\infty}_{(5/3)c} \cup M^c_{\alpha}$ such that

 $\begin{array}{ll} (\mathrm{v}) \ \ \gamma_{2}(0,x) = x & for \ all \ x \in I^{\infty}_{(5/3)c} \cup M^{c}_{\alpha}; \\ (\mathrm{vi}) \ \ \gamma_{2}(t,x) = x & for \ all \ (t,x) \in [0,1] \times (I^{\infty}_{(7/6)c} \cup M^{c}_{\alpha}); \\ (\mathrm{vii}) \ \ I^{\infty}(\gamma_{2}(t,x)) \leq I^{\infty}(\gamma_{2}(0,x)) & for \ all \ (t,x) \in [0,1] \times (I^{\infty}_{(5/3)c} \cup M^{c}_{\alpha}); \\ (\mathrm{viii}) \ \ \gamma_{2}(1,I^{\infty}_{(5/3)c} \cup M^{c}_{\alpha}) \subset I^{\infty}_{(7/6)c} \cup M^{c}_{\alpha}. \end{array}$

Lemma 2.7. For each $0 < \epsilon < c$, I_{ϵ}^{∞} and I_{ϵ} have the same homotopy type.

Proof. Let $0 < \epsilon < c$. Then we have by (2.1) that there exist continuous mappings $t_1 : H \setminus \{0\} \to R^+$ and $t_2 : H \setminus \{0\} \to R^+$ such that for each $u \in H \setminus \{0\}, t_1(u) < t_2(u)$ and

$$\{I(tu) : t \geq 0\} \cap I_{\epsilon} = \{tu : t \in [0, t_1(u)] \cup [t_2(u), \infty)\}$$

Similarly, there exist continuous mappings $t_1^{\infty} : H \setminus \{0\} \to R^+$ and $t_2^{\infty} : H \setminus \{0\} \to R^+$ such that for each $u \in H \setminus \{0\}$, $t_1^{\infty}(u) < t_2^{\infty}(u)$ and

$$\{I^{\infty}(tu) \ : \ t \geq 0\} \cap I^{\infty}_{\epsilon} = \{tu \ : \ t \in [0, t^{\infty}_{1}(u)] \cup [t^{\infty}_{2}(u), \infty)\}.$$

Then we find that I_{ϵ}^{∞} and I_{ϵ} have the same homotopy type.

We can now prove Proposition 2.3.

Proof of Proposition 2.3. Let $0 < \epsilon < c$. Then $I_{c+\epsilon}^{\infty}$ and $I_{c+\epsilon}$ have the same homotopy types as $I_{(7/6)c}^{\infty}$ and $I_{(7/6)c}$, respectively. We also have that I_{ϵ}^{∞} and I_{ϵ} have the same homotopy types with as $I_{(1/3)c}^{\infty}$ and $I_{(1/3)c}$, respectively. Then to prove the assertion, it is sufficient to show that

$$H_*(I^{\infty}_{(7/6)c}, I^{\infty}_{(1/3)c}) \cong H_*(I_{(7/6)c}, I_{(1/3)c})$$

We first define a mapping $\widetilde{\gamma} : [0,1] \times (I_{(11/6)c} \cup (M_{\alpha})^c) \to I_{(11/6)c} \cup (M_{\alpha})^c$ by

$$\widetilde{\gamma}(t,u) = \begin{cases} \gamma_1(2t,u), & \text{for } t \in [0,1/2], \\ \gamma_2(2(t-1/2),\gamma_1(1,u)), & \text{for } t \in (1/2,1]. \end{cases}$$

Then from (iii), we have that

(2.16)
$$\widetilde{\gamma}(t,u) \in I_{(11/6)c} \cup (M_{\alpha})^c$$

for $(t, u) \in [0, 1/2] \times (I_{(11/6)c} \cup (M_{\alpha})^c)$. On the other hand, we have, by combining (iv) and (vii) with (3) of Lemma 2.4, that (2.16) holds for $(t, u) \in$ $[1/2, 1] \times (I_{(11/6)c} \cup (M_{\alpha})^c)$. Thus we have that $\tilde{\gamma}$ is well defined and a strong deformation retraction from $I_{(11/6)c} \cup (M_{\alpha})^c$ onto $I_{(7/6)c}^{\infty} \cup (M_{\alpha})^c$. We next define a mapping $\gamma_3: [0,1] \times (I^{\infty}_{(7/6)c} \cup M^c_{\alpha}) \to I^{\infty}_{(7/6)c}$. For each $u \in (M_{\alpha})^c$ with $I^{\infty}(u) > (7/6)c$, we set

$$\begin{aligned} \tau_u^+ &= \min\{\tau > 1 \ : \ I^{\infty}(\tau u) \le (7/6)c\}, \\ \tau_u^- &= \max\{\tau < 1 \ : \ I^{\infty}(\tau u) \le (7/6)c\}, \\ M_o^{\infty} &= \{\lambda u \ : \ u \in M^{\infty}, \lambda > 1\} \end{aligned}$$

and

$$M_i^{\infty} = \{ \lambda u : u \in M^{\infty}, \lambda < 1 \}.$$

Then we put

$$\gamma_{3}(t,x) = \begin{cases} t\tau_{u}^{+}u + (1-t)u & \text{if } u \in M_{o}^{\infty} \setminus (I_{(7/6)c}^{\infty} \cup M_{\alpha}), \\ t\tau_{u}^{-}u + (1-t)u & \text{if } u \in M_{i}^{\infty} \setminus (I_{(7/6)c}^{\infty} \cup M_{\alpha}), \\ u & \text{if } u \in I_{(7/6)c}^{\infty}. \end{cases}$$

It then easy to see that γ_3 is a strong deformation retraction from $I^{\infty}_{(7/6)c} \cup (M_{\alpha})^c$ to $I^{\infty}_{(7/6)c}$. Therefore we obtain that $I^{\infty}_{(7/6)c}$ is a strong deformation retract of $I_{(11/6)c} \cup (M_{\alpha})^c$. It then follows that

(2.17)
$$H_*(I_{(7/6)c}^{\infty}, I_{(1/3)\epsilon}^{\infty}) = H_*(I_{(11/6)c} \cup (M_{\alpha})^c, I_{(1/3)\epsilon}^{\infty}).$$

Then by Lemma 2.7,

(2.18)
$$H_*(I_{(11/6)c} \cup (M_\alpha)^c, I_{(1/3)\epsilon}^\infty) = H_*(I_{(11/6)c} \cup (M_\alpha)^c, I_{(1/3)\epsilon})$$

On the other hand, we can see by a parallel argument as above that $I_{(7/6)c}$ is a strong deformation retract of $I_{(11/6)c} \cup (M_{\alpha})^c$. Then from (2.17) and (2.18), we have $H_*(I^{\infty}_{(7/6)c}, I^{\infty}_{(1/3)c}) \cong H_*(I_{(7/6)c}, I_{(1/3)c})$, which completes the proof.

3. Proof of the Theorem

We start with the following proposition.

Proposition 3.1. For each positive number $\epsilon < c$,

$$H_q(I_{c+\epsilon}^{\infty}, I_{\epsilon}^{\infty}) = \begin{cases} 2 & \text{if } q = 0\\ 0 & \text{if } q \neq 0 \end{cases}$$

Proposition 3.1 was proved in [6]. For completeness, we give the proof of it in the appendix. We next consider a triple $(U, K, \epsilon) \subset H \times H \times R^+$ satisfying the following conditions:

- (1) $U \cap (-U) = \phi;$
- (2) $\{\tau_x u_\infty : |x| \ge r\} \subset intK$ for some r > 0;
- (3) $cl(I_{c+\epsilon} \cap K) \subset int_{I_{c+\epsilon}}(I_{c+\epsilon} \cap U);$
- (4) I_{ϵ} is a strong deformation retract of $I_{c+\epsilon} \setminus (K \cup (-K));$
- (5) $H_{N-1}(I_{c+\epsilon} \cap U) = 1, \quad H_1(I_{c+\epsilon} \cap U) = 0;$
- (6) $H_{N-1}((I_{c+\epsilon} \cap U) \setminus K) = 2$ or $H_0((I_{c+\epsilon} \cap U) \setminus K) = 1$ holds.

Proposition 3.2. There exists a triple $(U, K, \epsilon) \subset H \times H \times R^+$ which satisfies (1) - (6).

The proof of Proposition 3.2 is given in Section 4.

Lemma 3.3. Suppose that there exist a triple $(U, K, \epsilon) \subset H \times H \times R^+$ satisfying (1) – (6). Suppose, in addition, that $H_{N-1}((I_{c+\epsilon} \cap U) \setminus K) \geq 2$. Then $H_N(I_{c+\epsilon}, I_{\epsilon}) \geq 2$.

Proof. We put $\widetilde{K} = K \cup (-K)$. Since I_{ϵ} is a strong deformation retract of $I_{c+\epsilon} \setminus \widetilde{K}$, we find that

$$H_q(I_{c+\epsilon} \setminus K, I_{\epsilon}) \cong H_q(I_{\epsilon}, I_{\epsilon}) \cong 0.$$

Then we have from the exactness of the singular homology groups of the triple $(I_{c+\epsilon}, I_{c+\epsilon} \setminus \widetilde{K}, I_{\epsilon})$ that

$$0 \to H_q(I_{c+\epsilon}, I_{\epsilon}) \to H_q(I_{c+\epsilon}, I_{c+\epsilon} \setminus K) \to 0.$$

That is,

$$H_q(I_{c+\epsilon}, I_{\epsilon}) \cong H_q(I_{c+\epsilon}, I_{c+\epsilon} \setminus K).$$

From (1) and (3), we find

$$H_q(I_{c+\epsilon}, I_{c+\epsilon} \setminus \widetilde{K}) \cong H_q(W, W \setminus K) \oplus H_q(-W, (-W) \setminus (-K)),$$

where $W = I_{c+\epsilon} \cap U$. Then since $H_{N-1}(W \setminus K) \ge 2$, we have from (5) and the exactness of the sequence

(3.1)
$$\begin{array}{c} \rightarrow H_q(W, W \setminus K) \rightarrow H_{q-1}(W \setminus K) \\ \rightarrow H_{q-1}(W) \rightarrow H_{q-1}(W, W \setminus K) \rightarrow, \end{array}$$

with q = N, that $H_N(I_{c+\epsilon}, I_{\epsilon}) \cong H_N(W, W \setminus K) \oplus H_N(W, W \setminus K) \ge 2$.

Lemma 3.4. Suppose that $(U, K, \epsilon) \subset H \times H \times R^+$ satisfies (1) - (6). Suppose in addition that $H_0(I_{c+\epsilon} \cap U) = H_0((I_{c+\epsilon} \cap U) \setminus K) = 1$. Then $H_1(I_{c+\epsilon}, I_{\epsilon}) = 0$ or $H_0(I_{c+\epsilon}, I_{\epsilon}) = 2$ holds.

Proof. From the argument in the proof of Proposition 3.2, we have

$$H_1(I_{c+\epsilon}, I_{\epsilon}) \cong H_1(I_{c+\epsilon} \cap U, (I_{c+\epsilon} \cap U) \setminus K) \oplus H_1(I_{c+\epsilon} \cap U, (I_{c+\epsilon} \cap U) \setminus K).$$

Then since $H_1(I_{c+\epsilon} \cap U) = 0$ and $H_0(I_{c+\epsilon} \cap U) = H_0((I_{c+\epsilon} \cap U) \setminus K) = 1$, the assertion follows from the exactness of the sequence (3.1) with q = 1.

We can now prove the Theorem.

Proof of the Theorem. Let (U, K, ϵ) satisfy (1) - (6). We have by Proposition 2.3 and Proposition 3.1 that $H_1(I_{c+\epsilon}, I_{\epsilon}) = 2$ and $H_q(I_{c+\epsilon}, I_{\epsilon}) = 0$ for $q \neq 1$. Now suppose that $(I_{c+\epsilon} \cap U) \setminus K$ is disconnected. Then since $H_0((I_{c+\epsilon} \cap U) \setminus K) \geq 2$, we find by (6) that $H_{N-1}(I_{c+\epsilon}, I_{\epsilon}) = 2$. This is a contradiction. On the other hand, if $U \setminus K$ is connected, then $H_0((I_{c+\epsilon} \cup U) \setminus K) = 1$. Then by Lemma 3.4, we have $H_1(I_{c+\epsilon}, I_{\epsilon}) = 0$ or $H_0(I_{c+\epsilon}, I_{\epsilon}) = 2$. This is a contradiction. Thus we obtain that there exists a positive solution of (P).

4. Proof of Proposition 3.2

We shall construct a triple (U, K, ϵ) satisfying (1) - (6). First we state the following lemma.

Lemma 4.1. If $0 < \epsilon < c < d < 2c$ and $\{u_n\} \subset I_d \setminus I_{\epsilon}$ is a sequence such that $\nabla I(u_n) \to 0$, then $u_n \to \tau_{x_n} u_\infty$ where $\{x_n\} \subset \mathbb{R}^N$ with $\lim_{n\to\infty} |x_n| = \infty$.

Since we are assuming that I has no critical point in $\dot{I}_{2c} \setminus I_c$, the assertion of Lemma 4.1 is a direct consequence of the arguments in [8, 9]. Thus, we omit the proof (cf. also [3]).

We fix a positive number $\rho < 1$. Recalling that the mappings $t \to I^{\infty}((\pm t + 1)u_{\infty})$ are decreasing as t varies from 0 to ± 1 , we have $I_c^{\infty} \cap \{tu_{\infty} : t \in [-\rho + 1, \rho + 1]\} = \{u_{\infty}\}$. Then we can choose positive numbers r_0 and δ such that

$$(4.1) \qquad \{tv : t \in [-\rho+1, -\rho/2+1] \cup [\rho/2+1, \rho+1], v \in S_0\} \subset I_{c-\delta}^{\infty}$$

where $S_0 = (u_{\infty} + B_{r_0}) \cap M^{\infty}$. We note that S_0 is a contractible neighborhood of u_{∞} in M^{∞} . We may choose r_0 so small that

$$(4.2) S_0 \subset I^{\infty}_{(4/3)c}.$$

Next, we fix a contractible neighborhood \widetilde{S}_0 of u_∞ in M^∞ such that $\widetilde{S}_0 \subset int_{M^\infty}S_0$. We put

$$D_0 = \{ \tau_x v : v \in S_0, x \in \mathbb{R}^N \text{ with } | x | \ge R_0 \},$$

$$\widetilde{D}_0 = \{ \tau_x v : v \in \widetilde{S}_0, x \in \mathbb{R}^N \text{ with } | x | \ge 2R_0 \},$$

where R_0 is a positive number. Then $\widetilde{D}_0 \subset D_0 \subset M^{\infty}$. Now we define subsets U, K of H by

(4.3)
$$U = \{tv : t \in [-\rho + 1, \rho + 1], v \in D_0\}, \\ K = \{tv : t \in [-\rho/2 + 1, \rho/2 + 1], v \in \widetilde{D}_0\}.$$

Since $\{\tau_x u_\infty : x \in \mathbb{R}^N\} \cap \{\tau_x(-u_\infty) : x \in \mathbb{R}^N\} = \phi$, by choosing r_0 and ρ sufficiently small, we have that $U \cap (-U) = \phi$. That is, (1) holds. Since (4.1) holds and $\lim_{|x|\to\infty} I(\tau_x u_\infty) = c$, we can choose \mathbb{R}_0 so large that

(4.4)
$$\{tv : t \in [-\rho+1, -\rho/2+1] \cup [\rho/2+1, \rho+1], v \in D_0\} \subset I_c.$$

We also have by (4.2) that R_0 can be chosen so large that $U \subset I_{(6/5)c}$. It follows from the definition of U and K that

(4.5)
$$\{\tau_x u_\infty : |x| \ge 3R_0\} \subset intK \subset K \subset intU.$$

N. HIRANO

That is, (2) holds with $r = 3R_0$. From the definition, it is obvious that (3) holds. As a direct consequence of (3) of Lemma 4.1 and (4.5), we have

(4.6)
$$\inf\{\|\nabla I(v)\|: v \in I_d \setminus (I_\epsilon \cup K \cup (-K))\} > 0$$

for all $0 < \epsilon < c < d < 2c$. Then by deformation lemma(cf. [3]), there exists $\epsilon_0 > 0$ such that for each $0 < \epsilon < \epsilon_0$, I_{ϵ} is a strong deformation retract of $I_{c+\epsilon} \setminus (K \cup (-K))$. That is, (4) holds for all $0 < \epsilon < \epsilon_0$.

We will see that there exists $0 < \epsilon < \epsilon_0$ such that (U, K, ϵ) satisifies (5) and (6). Here we note that

(4.7)
$$c_2 = \inf\{I(\lambda_0(v)v) : v \in D_0 \setminus D_0\} > c_1$$

In fact, if $c_2 = c_1$, there exists a sequence $\{u_n\} \subset M$ such that $u_n = \lambda_0(v_n)v_n$, $v_n \in D_0 \setminus \widetilde{D}_0$ for each $n \geq 1$ and that $\lim_{n \to \infty} I(u_n) = c$. This implies that $\nabla I(u_n) \to 0$ and then by Lemma 4.1, $u_n \to \tau_{x_n} u_\infty$, where $\{x_n\} \subset \mathbb{R}^N$ with $\lim |x_n| = \infty$. This implies that $v_n \to \tau_{x_n} u_\infty$ and this contradicts to the definition of $\{v_n\}$. Here we choose a positive number ϵ such that $\epsilon < c_2 - c$. Here we define subsets of M and H. Noting that

$$\lim_{|x| \to \infty} I(\tau_x u_\infty) = c$$

We can choose contractible neighborhoods S_1 , S_2 of u_{∞} in M^{∞} and positive numbers R_1, R_2 such that $S_2 \subset int_{M^{\infty}} S_1 \subset S_0, R_1 < R_2$ and

$$U_i = \{ t\tau_x v : t \in [-\rho + 1, \rho + 1], |x| \ge R_i, v \in S_i \} \subset I_{c+\epsilon}.$$

We also set

$$U_{1,+} = \{tv : t \in [-\rho+1, -\rho/2+1], v \in D_0\},\$$

$$U_{1,-} = \{tv : t \in [\rho/2+1, \rho+1], v \in D_0\}$$

and

$$\begin{split} U_{2,+} &= \{ tv \; : \; t \in [-\rho+1, -\rho/4+1], v \in D_0 \}, \\ U_{2,-} &= \{ tv \; : \; t \in [\rho/4+1, \rho+1], v \in D_0 \}. \end{split}$$

Then from the definitions above and (4.2), we have that

$$\widetilde{U}_2 = U_2 \cup U_{2,+} \cup U_{2,-} \subset \widetilde{U}_1 = U_1 \cup U_{1,+} \cup U_{1,-} \subset I_{c+\epsilon}$$

and

(4.8)
$$\widetilde{U}_1 \cong \widetilde{U}_2 \cong \{\tau_x u_\infty : |x| \ge R_1\} \cong S^{N-1}.$$

Then we have that (5) holds, as a direct consequence of the following lemma 4.5.

Lemma 4.2. \widetilde{U}_1 is a deformation reatract of $I_{c+\epsilon} \cap U$.

Proof. To prove the assertion it is sufficient to show the existence of a semiflow $\eta : [0, \infty) \times (I_{c+\epsilon} \cap U) \to I_{c+\epsilon} \cap U$ such that for each $v \in I_{c+\epsilon} \cap U$, there exists $t_v \geq 0$ satisfying $\eta(t, v) \in int_{I_{c+\epsilon} \cap U} \widetilde{U}_1$ for all $t \geq t_v$. In fact, if there exists such a semiflow, we can construct a strong deformation retraction as in the proof of Lemma 2.5. By (4.7) and the definition of I,

$$I(v) > c + \epsilon$$
 for $v \in \partial_{M^{\infty}} D_0$,

and we have

$$D_2 = \{ v \in D_0 : I(v) \le c + \epsilon \} \subset int_{M^{\infty}} D_0,$$

Here we fix an open neighborhood D_1 of D_2 in M^{∞} such that

$$D_2 \subset int_{M^{\infty}} D_1 \subset cl(D_1) \subset int_{M^{\infty}} D_0$$

and set

$$W_i = \{tv : t \in [-\rho + 1, \rho + 1], v \in D_i\}, i = 1, 2.$$

Then

$$U_1 \subset W_2 \subset W_1 \subset I_{c+\epsilon} \cap U.$$

We note that

(4.9)
$$I(\lambda_0(v)v) > c + \epsilon \quad \text{for } v \in D_0 \backslash D_2.$$

Let V_1 be a Lipschitz continuous vector field associate with ∇I and V_2 be a vector field defined on $(I_{c+\epsilon} \cap U) \setminus W_2$ by

$$V_2(u) = \begin{cases} u & \text{if } \lambda_0(u) > 1\\ -u & \text{if } \lambda_0(u) < 1. \end{cases}$$

Since $\lambda_0(u) \neq 1$ on $(I_{c+\epsilon} \cap U) \setminus W_2$ by (4.9), we can see that V_2 is well defined and continuous on $(U \cap I_{c_1+\overline{\epsilon}}) \setminus W_2$. We now set

$$V(u) = \parallel U_{2,-} \cup U_{2,+} - u \parallel (\parallel W_1^c - u \parallel V_1(u) + \parallel W_2 - u \parallel V_2(u))$$

Then V is a Lipschitz continuous vector field on $I_{c+\epsilon} \cap U$ and the solution η of (2.14) defines a semiflow. We shall see that

(4.10)
$$\eta(t,v) \in I_{c+\epsilon} \cap U$$
 for all $(t,v) \in [0,\infty) \times (I_{c+\epsilon} \cap U)$.

We first note that from the definition of V, $\langle \nabla I(v), V(v) \rangle > 0$ on $I_{c+\epsilon} \cap U$. Then it follows that $\eta(t, v) \leq \eta(s, v)$ for all $t > s \geq 0$ and $v \in I_{c+\epsilon} \cap U$. Since $W_1 \setminus (U_{1,-} \cup U_{1,+}) \subset int(I_{c+\epsilon} \cap U)$, to show (4.10), it is sufficient to show that (4.10) holds for all $v \in W_1^c \cap (I_{c+\epsilon} \cap U)$. If $v \in W_1^c \cap (I_{c+\epsilon} \cap U)$, then from the definition of V, we can see that $\eta(t, v) \in W_1^c \cap (I_{c+\epsilon} \cap U)$ for $t \ge 0$ and then (4.10) holds. Moreover we have that for each $v \in W_1^c \cap (I_{c+\epsilon} \cap U)$, $\eta(t, v) \in U_{1,-} \cup U_{1,+}$ for t sufficiently large. On the other hand, it follows from the definition of V that

(4.11)
$$\inf\{\|V(u)\|: u \in (I_{c+\epsilon} \cap U) \setminus U_2\} > 0.$$

Then we can see that for any $v \in I_{c+\epsilon} \cap U$, there exists $t_v \ge 0$ such that $\eta(t,v) \in \widetilde{U}_1$ for all $t \ge t_v$. This completes the proof.

We lastly show that (6) holds. (6) is a consequence of the following Lemma.

Lemma 4.3. If $(I_{c+\epsilon} \cap U) \setminus K$ is disconnected, then $H_{N-1}((I_{c+\epsilon} \cap U) \setminus K) = 2$.

Proof. Let V_{\pm} be the components of $(I_{c+\epsilon} \cap U) \setminus K$ containing $U_{1,\pm}$, respectively. We will see that $(I_{c+\epsilon} \cap U) \setminus K$ consists of exactly two components V_{\pm} and that $V_{\pm} \cong S^{N-1}$. Let $v \in D_0$. Then from the definition of M and U, we have that

(4.12)
$$\{ tv : t \in [-\rho + 1, \rho + 1] \} \cap (I_{c+\epsilon} \setminus K)$$
$$= \{ tv : t \in [-\rho + 1, t_1(v)] \cup [t_2(v), \rho + 1] \},$$

where $-\rho/2 + 1 \leq t_1(v) \leq t_2(v) \leq \rho/2 + 1$. This implies that if $t_1(v) = t_2(v)$ for some $v \in D_0$, then $(I_{c+\epsilon} \cap U) \setminus K$ is connected. Therefore $t_1(v) < t_2(v)$ for all $v \in D_0$. Then, again by (4.12), $(I_{c+\epsilon} \cap U) \setminus K \cong U_{1,+} \cup U_{1,-}$. Then since $U_{1,\pm} \cong S^{N-1}$, the assertion follows.

5. Appendix

We put $\mathcal{C} = \bigcup \{ \tau_x u_\infty : x \in \mathbb{R}^N \}$ and

$$T_{u_{\infty}}(\mathcal{C}) = \{\lim_{t \to 0} (u_{\infty}(\cdot + tx) - u_{\infty}(\cdot))/t : x \in \mathbb{R}^N\}.$$

It is obvious that $\dim T_{u_{\infty}}(\mathcal{C}) = N$. We denote by \widetilde{H} the subspace such that $\widetilde{H} \oplus T_{u_{\infty}}(\mathcal{C})$. Then $H = \tau_x \widetilde{H} \oplus \tau_x T_{u_{\infty}}(\mathcal{C})$ for each $x \in \mathbb{R}^N$. For each r > 0, we set $B_r^0 = B_r \cap \widetilde{H}$. Since \mathcal{C} is a smooth N-manifold, we have that there exists a positive number $r_0 < || u_{\infty} || / 4$ such that for $x, y \in \mathbb{R}^N$ with $x \neq y$,

(5.1)
$$\tau_x(u_{\infty} + B_{r_0}^0) \cap \tau_y(u_{\infty} + B_{r_0}^0) = \phi$$

We choose a closed contractible neighborhood S_0 of u_{∞} in $M^{\infty} \cap (u_{\infty} + B_{r_0}^0)$ and $0 < \rho < 1$ such that

(5.2)
$$\sup\{I^{\infty}((\pm \rho/2 + 1)v) : v \in S_0\} < c.$$

Since I(v) > c for all $v \in S_0 \setminus \{u_\infty\}$, we have that

(5.3)
$$\inf\{I^{\infty}(v) : v \in \partial_{M^{\infty} \cap (u_{\infty} + B^{0}_{r_{0}})}S_{0}\} > c.$$

Here we recall that mappings $t \to I^{\infty}((\pm t + 1)v)$ are decreasing as t varies from 0 to $\pm \rho$. Then from (5.2), we have

(5.4)
$$I_c^{\infty} \cap \{tv : t \in [-\rho+1, \rho+1]\} = \{tv : t \in [-\rho+1, \lambda_-(v)]\} \cup \{tv : t \in [\lambda_+(v), \rho+1]\}$$

where

$$\begin{cases} \lambda_{-}(v) < 1 < \lambda_{+}(v) & \text{for } v \in S_0 \setminus \{u_{\infty}\} \\ \lambda_{-}(v) = \lambda_{+}(v) = 1 & \text{for } v = u_{\infty}. \end{cases}$$

That is, for each $v \in S_0 \setminus \{u_\infty\}$, the set $I_c^\infty \cap \{tv : t \in [-\rho + 1, \rho + 1]\}$ consists of two intervals, and each interval has one end point in one of the sets

$$V_{\pm} = \{ (\pm \rho + 1)v : v \in S_0 \}.$$

Then noting that $\lambda_{-}(\cdot)$ and $\lambda_{+}(\cdot)$ are continuous and V_{\pm} are contractible, we have from observations above that

(5.5)
$$I_c^{\infty} \cap (V \setminus \{u_{\infty}\}) \cong V_- \cup V_+ \cong \{0,1\} \text{ and } I_c^{\infty} \cap V \cong [0,1]$$

Now let $0 < \epsilon < c$. First we note that

$$I^{\infty}(u) = \tau_x \cdot I^{\infty}(u) = I^{\infty}(\tau_x u)$$
 for all $x \in \mathbb{R}^N$ and $u \in H$.

Then we have that $I_c^{\infty} \cap (\cup \{\tau_x V : x \in \mathbb{R}^N\})$ and $I_{\epsilon}^{\infty} \cap (\cup \{\tau_x V : x \in \mathbb{R}^N\})$ have the same homotopy type with that of $I_c^{\infty} \cap V$ and $I_{\epsilon}^{\infty} \cap V$, respectively. On the other hand, by the same argument for the second deformation lemma in Chang [4], we have that I_c^{∞} is a strong deformation rectraction of $I_{c+\epsilon}^{\infty}$. Then we find

$$H_q(I_{c+\epsilon}^{\infty}, I_{c-\epsilon}^{\infty}) \cong H_q(I_c^{\infty}, I_{c-\epsilon}^{\infty}).$$

We also have by the deformation property that

$$H_q(I_c^{\infty} \setminus \mathcal{C}, I_{c-\epsilon}^{\infty}) \cong H_q(I_{c-\epsilon}^{\infty}, I_{c-\epsilon}^{\infty}) \cong 0.$$

From the exactness of the singular homology groups, we have

$$H_q(I_c^{\infty} \setminus \mathcal{C}, I_{c-\epsilon}) \to H_q(I_c^{\infty}, I_{c-\epsilon}^{\infty})$$

$$\to H_q(I_c^{\infty}, I_c^{\infty} \setminus \mathcal{C}) \to H_{q-1}(I_c^{\infty} \setminus \mathcal{C}, I_{c-\epsilon}^{\infty}) \to \cdots$$

and we find

$$0 \to H_q(I_c^{\infty}, I_{c-\epsilon}^{\infty}) \to H_q(I_c^{\infty}, I_c^{\infty} \backslash \mathcal{C}) \to 0.$$

That is,

$$H_q(I_c^{\infty}, I_{c-\epsilon}^{\infty}) \cong H_q(I_c^{\infty}, I_c^{\infty} \setminus \mathcal{C}).$$

Then from the excision property of homology groups and (5.5), we have

$$H_*(I_{c+\epsilon}^{\infty}, I_{\epsilon}^{\infty}) \cong H_*(I_c^{\infty}, I_c^{\infty} \setminus \mathcal{C})$$

$$\cong H_*(I_c^{\infty} \cap (\cup_x \tau_x V), I_c^{\infty} \cap ((\cup_x \tau_x V) \setminus \mathcal{C}))$$

$$\cong H_*(I_c^{\infty} \cap V, I_c^{\infty} \cap (V \setminus \{u_{\infty}\}))$$

$$\cong H_*([0, 1], \{0, 1\}).$$

This completes the proof.

References

- 1. V. Benci and G. Cerami, *Positive solutions of some nonlinear elliptic problems in exterior domains*, Arch. Rational Mech. Anal. **99** (1987), 283-300..
- H. Berestycki and P. L. Lions, Nonlinear scalar field equations, I, II, Arch. Rational Mech. Anal. 82 (1982), 313-376.
- D. M. Cao, Positive solutions and bifurcation from the essential spectrum of a semilinear elliptic equation on R^N, Nonlinear Anal. TMA 15 (1990), 1045-1052.
- K. C. Chang, Indefinite dimensional Morse theory and its applications, Séminaire de Mathématiques Supérieures, 97, Univ. de Montreal (1985).
- 5. W. Y. Ding and W. M. Ni, On the existence of positive solutions of a semilinear elliptic equation, Arch. Rational Mech. Anal. **91** (1986), 283-307.
- 6. N. Hirano, Existence of entire positive solutions for nonhomogenuous elliptic equations (to appear).
- 7. M. K. Kwong, Uniqueess of positive solutions of $\Delta u u + u^p = 0$ in \mathbb{R}^N , Arch. Rational Mech. Anal. **105** (1989), 243-266.
- P. L. Lions, The concentration-compactness principle in the calculus of variations, the locally compact case. Part I, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 109-145.
- P. L. Lions, The concentration-compactness principle in the calculus of variations, the locally compact case. Part II, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 223-283.
- H. P. Rabinowitz, Variational methods for nonlinear eigenvalue problems, Proc. Sympos. on Eigenvalues of Nonlinear Problems (1974), Edizioni Cremonese, Rome, 141-195.
- 11. E. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.
- W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), 149-162.
- 13. C. A. Stuart, Bifurcation from the essential spectrum for some noncompact nonlinearities (to appear).

Department of Mathematics, Faculty of Engineering, Yokohama National University, Tokiwadai, Hodogayaku, Yokohama Japan

E-mail address: hirano@sci.math.ynu.ac.jp