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Abstract
The aim of this paper is to show some monotonicity properties of some

function involving generalization gamma function. The results are analogue of
results concerning of q-Gamma function who proved Chrysi G. Kokologianaki.
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1 Introduction and preliminaries

The gamma function

Γ(x) =

∞∫

0

tx−1e−tdt, x > 0

was first introduced by the Swiss mathematician Leonhard Euler (1707-1783)
in his goal to generalize the factorial to non integer values. Later, because of its
great importance, it was studied by other eminent mathematicians like Adrien-
Marie Legendre (1752-1833), Carl Friedrich Gauss (1777-1855), Christoph Gu-
dermann (1798-1852), Joseph Liouville (1809-1882), Karl Weierstrass (1815-
1897), Charles Hermite (1822-1901), ... as well as many others.

The gamma function belongs to the category of the special transcenden-
tal functions and we will see that some famous mathematical constants are
occurring in its study
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Gamma function is one of the most important special functions with appli-
cations in various fields, like analysis, mathematical physics, probability theory
and statistics. Many interesting historical information on this function can be
found in Davis’ survey paper [4].

The logarithmic derivative of the gamma function is called the digamma
function. It is know as the psi function and is denoted by ψ(x).

ψ(x) =
d

dx
ln Γ(x) =

Γ
′
(x)

Γ(x)
.

The following integral and series representations are valid (see [1]):

ψ(x) = −γ +

∞∫

0

e−t − e−xt

1− e−t
dt = −γ − 1

x
+

∑

n≥1

x

n(n + x)
(1)

Euler, gave another equivalent definition for the Γ(x) (see [6]),

Γp(x) =
p!px

x(x + 1) · · · (x + p)
=

px

x(1 + x
1
) · · · (1 + x

p
)
, x > 0, (2)

where
Γ(x) = lim

p→∞Γp(x). (3)

The p-analogue of the psi function is defined as the logarithmic derivative
of the Γp function (see [6]), that is

ψp(x) =
d

dx
ln Γp(x) =

Γ′p(x)

Γp(x)
. (4)

Theorem 1.1 The function ψp defined in (1.4) satisfies the following prop-
erties (see [6]). It has the following series representation ψp(x) = ln p −∑p

k=0
1

x+k

= ln p −
∞∫
0

e−xt

1−e−t (1 − e−pt)dt. It is increasing on (0,∞) and it is strictly com-

pletely monotonic on (0,∞). This means that the inequality

(−1)m
(
ψ
′
p(x)

)
> 0 (5)

holds for m = 0, 1, 2, . . .
It’s derivatives are given by (see [6]):

ψ(n)
p (x) =

p∑

k=0

(−1)n−1 · n!

(x + k)n+1
= (−1)n+1

∞∫

0

tne−xt

1− e−t
(1− e−pt)dt. (6)

For 0 < x < y
ψp(x)− ψp(y) < 0 (7)
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Recall that a function h is (strictly) completely monotonic on (0,∞) if

(−1)nf (n)(x) ≥ 0,

for every x ∈ (0,∞).

2 Main Results

Theorem 2.1 Let A ≤ 0 and b ≥ 0. Then the function

fp(x) = xA
[
Γp

(
1 +

b

x

)]x

decreases with respect to x > 0.

The function fp(x) is positive for x > 0. Taking the derivatives of fp(x) with
respect to x we obtain:

f
′
p(x) =

[A

x
− b

x
ψp

(
1 +

b

x

)]
fp(x)

The function

hp(x) =
A

x
− b

x
ψp

(
1 +

b

x

)

or by setting y = 1
x

sp(y) = Ay − byψp(1 + by)

is negative for y > 0 if A ≤ 0 because s
′
p(y) < 0 and sp(y) < sp(0) for y > 0.

This means that the function hp(x) is also negative for x > 0, so from eku1 we
obtain the desired function.

Theorem 2.2 (i) Let x > 0,Mx + N > 0, 0 < a + bx ≤ d + ex and A, c, f
real numbers with AM ≤ 0 and 0 < cb ≤ fe. Then the function

Gp(x) = (Mx + N)A

[
Γp(a + bx)

]c

[
Γp(d + ex)

]f

decrease with x.
(ii) Let A ≤ 0,M ≥ 0.0 < a < d and c > 0. Then the function

gp(x) = (Mx + N)A
[Γp(a + x)

Γp(d + x)

]c

is logarithmically completely monotonic for x > max{0,−N/M}.
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The derivative of the function Gp(x) with respect of x is

G
′
p(x) =

[ AM

Mx + N
+ cbψp(a + bx)− feψp(d + ex)

]
Gp(x) (8)

Using proposition (1.1) for n = 0 and if AM ≤ 0 and 0 < cd ≤ fe from deri1
we obtain the desired result.

(ii) The function gp(x) becomes from Gp(x) for b = e = 1 and f = c > 0
so deri1 gives

g
′
p(x) =

AM

Mx + N
+ c

[
ψp(a + x)− ψp(d + x)

]
gp(x) < 0 (9)

Let α(x) = AM
Mx+N

and β(x) = ψp(a + x) − ψp(d + x), then deri2 can be
written as

g
′
p(x)

gp(x)
= α(x) + cβ(x)

or
(ln gp(x))

′
= α(x) + cβ(x) < 0 (10)

We can verify by induction that α(k)(x) = (−1)kk!AMk+1

(Mx+N)k+1 , for k = 0, 1, 2, . . . ,

so the function α
′
(x) is completely monotonic, for A ≤ 0 and M ≥ 0. Also

using proposition (1.1) the function β
′
(x) is completely monotonic for x > 0,

if 0 < a < d, so from palidhje we obtain the desired result.

Theorem 2.3 The function

θ(x) = ψ′p(x) + log
(
e

1
(x+p+1)2

− 1
x2 − 1

)
(11)

is strictly increasing on (0,∞).

It is well known that for x > 0

Γp(x + 1) =
px

x + p + 1
Γp(x). (12)

Taking the logarithm on both sides and differentiating yields

ψp(x + 1) =
1

x
− 1

x + p + 1
+ ψp(x).

Therefore, the exponential function of θ satisfies eθ(x) = eψ′p(x)·elog

(
e

1
(x+p+1)2

− 1
x2 −1

)
=

eψ′p(x) ·
(
e

1
(x+p+1)2

− 1
x2 − 1

)

= e
ψ′p(x)+ 1

(x+p+1)2
− 1

x2 − eψ′p(x) = eψ′p(x+1) − eψ′p(x). Let s(x) = eψ′p(x+1) − eψ′p(x).
Then

s′(x) = eψ′p(x+1)ψ′′p(x + 1)− eψ′p(x)ψ′′p(x) = h(x + 1)− h(x),

where h(x) = eψ′p(x)ψ′′p(x). Then h′(x) = eψ′p(x)((ψ′′p(x))2 + ψ′′′p (x)), from
psiseries2weconcludethath’(x)¿0sothefunctionhisstrictlyincreasing.Itmeanss’(x)¿0forx∈
(0,∞) and this yields that s and θ are strictly increasing functions on (0,∞).
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