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Abstract 
 
     In this paper we prove several inclusion relations associated with ),( δn - 
neighborhood of certain subclasses of analytic functions of complex order with 
negative coefficients by making  use of  the familiar concept of neighborhoods of 
analytic functions.. Special cases of some of these inclusion relations are shown to 
yield known results. 
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1      Introduction 

Let )(nA denote the class of functions f  of the form : 
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which are analytic in the unit disk {zU = : }1: <∈ zandCz .  

     Following the works of Goodman [9] and Ruscheweyh [11], we define the 
),( δn -neighborhood of a function )()( nAzf ∈  by (see also [2], [3],[4], and [13] )  
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In particular, for the identity function  
                                 ,)( zze =  
we immediately have  

(1.4)           


 −=∈= ∑

∞

+= 1
, )(:)()(

nk

k
kn zbzzgnAgeN δ    and    



≤∑

∞

+=

δ
1nk

kbk . 

            The above concept of ),( δn -neighborhoods was extended and applied 
recently to families of analytically multivalent functions by Altintas et al. [6].The 
main object of the present paper is to investigate the ),( δn -neighborhoods of 
several subclasses )(nA  of normalized analytic functions in U  with negative and 
missing coefficients, which are introduced below by making use of the 
Ruscheweyh derivatives .   
A function )(nAf ∈ is said be starlike of complex orderγ )}0{\( C∈γ ,that is 

∈f ( )γ*
nS ,  if it satisfies the inequality: 
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Furthermore,  a function )(nAf ∈ is said be convex of complex 

orderγ )}0{\( C∈γ , that is , )(γnCf ∈ , if it also satisfies the following 

inequality                                     (1.6)                      
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The classes ( )γ*
nS and ( )γnC  stem essentially from the classes of starlike and 

convex functions of complex order, which were considered earlier by Nasr and 
Aou] (see also[5, 6]) . 
        Next, for the functions )2,1( =jf j  given by  
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     Let 21 ff ∗ denote the Hadamard product (or convolution ) of 1f  and 2f  , 
defined by 

(1.8)                 )( 21 ff ∗ += zz :)( ∑
∞

+=

∗=
1

122,1, .)()(:
nk

k
kk zffzaa  

Now we define the function );,( zcaφ  by  
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For ∆∈−≠−−≠ zac ;1,...,2,1,0   where n)(λ  is the Pochhammer symbol defined 

by  
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Carson and Shaffer [1] introduced a linear operator ,),( caL by  
                         )();,()().( zfzcazfcaL ∗= φ  
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Where * stands for the Hadamard product or convolution product of two power 
series 
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      We note that .)()()1,2(,)()(),( zfzzfLzfzfaaL ′==   
 

       Finally, in term of the Carlson and Shaffer[1]defined by (1.11), let 
),,( βλγnS  denote the subclass of )(nA  consisting of  functions f  which satisfy 

the following inequality : 
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Also let );,,( µβλγnR  denote the subclass of )(nA  consisting of functions 

f which satisfy the following inequality : 
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    Various further subclasses ),,,( βγ caSn  and );,,,( µβγ caRn  with 1=γ  were 

studied in many earlier works (cf., e.g.,[7] ); see also the references cited in these 
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earlier works ) . Clearly , in the case of (for example) the class ),,,( βγ caSn  , we 

have  
(1.14)                      ),,,( βγ caSn )(γ∗⊂ nS   and   )(),,,( γβγ nn CcaS ⊂  
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2      Inclusion Relations Involving )(, eNn δ . 

In our investigation of the inclusion relations involving )(, eNn δ , we shall require 

Lemma 1 and Lemma 2 below. 
 
Lemma 1    Let the function )(nAf ∈ be defined by (1.1). Then f is in the class 

),,,( βγ caSn if and only if  
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Proof. We first suppose that ),,,( βγ caSf n∈ , then using condition (1.13) we get  
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Where we have made use of (1.10) and the definition (1.1) .We now choose 
values of z on the real axis and let 1→z through the real values . Than  the 
inequality (2.3) immediately yields the desired condition (2.1). 
 
Conversely, by applying the hypothesis (2.1) and letting 1=z , we find that  
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 (2.4)                             γβ≤ . 

Hence, by the maximum modulus theorem, we have ),,( βcaSf n∈ , which 

completes the proof of Lemma 1. 
 
Similarly, we can prove the following Lemma.  
 
Lemma 2    Let the function )(nAf ∈ be defined by (1.1). Then f is in the class 

);,,( µβcaRn  if and only if  
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Remark 1   A special case of Lemma 1 when 
  
               ,1,1 == γn and )10(1 <≤−= ααβ  
was given earlier by Ahuja [1] . 
  Our first inclusion relation involving )(, eNn δ  is given by Theorem 1 below. 

 
Theorem 1   If  

(2.6)                         ,)1(

)(

)(
)(

)1(
<

+

+
= γ

γβ

γβ
δ

n

n

c

a
n

n
 

then 
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Proof. For a function ),,,( βγ caSf n∈ of the form (1.1), Lemma 1 immediately 

yields 
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Which, in view of definition (1.4), proves Theorem 1. 
Similarly apply Lemma 2 instead of Lemma 1, we can prove the following 
Theorem. 
 
Theorem 2   If  
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Proof .  Suppose that a function ∈f );,,,( µβγ caR  is of the form (1.1) . Then we 
find  from the assertion (2.5) of lemma 2 that 
    

                               ,)1(
)(

)(

1

γβµ ≤+ ∑
∞

+=nk
k

n

n ak
c

a
 

Which yield the following coefficient inequality ; 
          

 (2.12)                  

n

nnk
k

c

a
k

a

)(

)(
)1(1 +

≤∑
∞

+= µ

γβ
 

Making use of (2.5) in conjunction with (2.12), we also have  
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which, in light of the definition (1.4), completes the proof of Theorem 2 . 
 
Remark 2   By suitably specializing the various parameters involved in Theorem 
1 and Theorem 2, we can derive the corresponding inclusion relations for many 
relatively more familiar function classes (see also Equation (1.15) and Remark 1 
above ) . 

 

 

3   Neighborhoods for the class ),,,()( βγα caSn  and ),,,()( βγα caRn . 
 
         In this section, we determine the Neighborhoods for each of  the class  

),,,( βγα caSn  and ),,,,( βγα caRn , 

which we define as follows. A function )(nAf ∈ is said to be in the class  

),,,( βγα caSn if there exist a function ),,,( βγ caSg n∈ such that  
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Analogously, a function )(nAf ∈ is said to be in the class );,,,,( µβγα caRn if 

there exist a function ),,,( βγ caRg n∈ such that the inequality (3.1)holds true. 

 
Theorem 3   If  ),,,( βγ caSg n∈ and  
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(3.3)                        )(, gNn δ ⊂ ),,,()( βγα caSn . 

 
Proof.  Suppose that )(, gNf n δ∈ . We then find from the definition (1.2) that  
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(3.7)                                         = α−1 , 
provided that α  is given by (3.2). thus, by definition, ),,,()( βγα caSf n∈ for 

α given by (3.2). This evidently completes our proof of Theorem 3. 
 
Theorem 4. If  ),,,( βγ caRg n∈ and  
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Remark 5. By suitable specializing the various parameters in Theorem 3 and 
Theorem 4, we can derive the corresponding neighborhood results for many 
relative more familiar function classes as in [8].  
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3. Subordination Theorem 
       Before stating and proving our subordination Theorem for the class 

),,,()( βαα caSn         

we shall make use of the following definition results . 
 
Definition 4.1  For two functions f  and g  analytic functions in U  , we say that 
the function f  is subordination to g  in U  , denoted by )( gf p if there exists a 
function 

)(zW , analytic in U  with 0)0( =w  and )(1)( Uzzzw ∈<≤ , such that 

)).(()( zwgzf =  

Definition 4.2  A sequence { }∞
=1nnb  of complex numbers is called subordination 

factor sequence if whenever )(zf  is analytic univalent and convex in U  , then 

(4.1)                       ∑
∞

+=

=∈
1

)1,(,)(
nk

i
n

nn aUzzfzab p  . 

 

Lemma 4.1 . (cf.Wilf [8] ) the sequence { }∞
=1nnb  is subordination factor sequence 

if and only if  

(4.2)                      .021Re
1

Uzzb
nk

k
n ∈>







 + ∑

∞

+=

 

 
Theorem 4.1 let )(zf  of the form (1.1) satisfy the coefficient inequality 
( 2.5 ) ,then 

(4.3)                  












∗
++
+

)())((
])()()[(2

)()(
zgzgf

cna

na

nn

n
p

γβγβ
γβ

 

,}))1({\,,0,11( NkUz ∈∀∈><<− βα  
for every function )(zg  in the class of convex functions . In particular  
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in the subordination result (4.3) can not be replace by any larger one . 
 
Proof . let )(zf  be defined by (1.1) , the coefficient inequality (4.3) of our 
Theorem   will  hold true if the sequence  
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Thus from relation (4.1) we obtain 
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