Gen. Math. Notes, Vol. 2, No. 1, January 2011, pp. 198-208
Copyright © ICSRS Publication, 2011
www.i-csrs.org
Available free online at http://www.geman.in

Not all Epimorphisms are Surjective in the Class of Diagonal Cylindric Algebras

Tarek Sayed Ahmed
Department of Mathematics, Cairo University
rutahmed@gmail.com

(Received 25.10.2010, Accepted 12.12.2010)

Abstract

Let α be an infinite ordinal. We show that not all epimorphisms are surjective in the class $\mathbf{D} \mathbf{i}_{\alpha}$ of diagonal cylindric algebras (regarded as a concrete category). It follows that $\mathbf{D i}_{\alpha}$ does not have the strong amalgamation property. This answers a question of Pigozzi.

Keywords: Algebraic logic, amalgmation property, cylindric algebras, diagonal algebras

2000 MSC No: 03G15. Secondary 03C05, 03C40

1 Introduction

The class of diagonal cylindric algebras is studied by Henkin Monk and Tarski, cf. Theorem 2.6.50 in [2]. In [10] p. 327 this class is denoted by $\mathbf{D i}_{\alpha}$ where α is an infinite ordinal. We follow the notation of [10] which is in conformity with that adopted in [2]. One of the main results in [10] is that $\mathbf{D i}_{\alpha}$ has the amalgamation property $A P$, cf. Theorem 2.2.20 therein, and it was asked in [10] whether this class has the strong $A P(S A P)$. Here we give a negative answer to this question. In fact, we prove a stronger result. We show that not all epimorphisms (i.e right cancellative maps) are surjective in $\mathbf{D i}_{\alpha}$. Independently of us Madárasz [7] proves that $\mathbf{D} \mathbf{i}_{\alpha}$ does not have SAP even if the amalgam is sought in the bigger class of representable cylindric algebras. ${ }^{1}$ In

[^0]our proof we use extensively the notation of [2] without reference or any kind of warning. All these are collected at the end of [2] under the title "index and symbols" p.489. In what follows α is an infinite ordinal.

2 The Main Result

Definition 2.1 $A \in \mathbf{D i}_{\alpha}$ if all non-zero $x \in A$ and finite $\Gamma \subseteq \alpha$, there are distinct $k, l \notin \Gamma$ such that $x \cdot \mathrm{~d}_{k l} \neq 0$.

Theorem 2.2 In $\mathbf{D i}_{\alpha}$ not all epimorphisms are surjective. In fact, there are $A, A_{0} \in \mathbf{D i}_{\alpha}$ such that the inclusion map $A \subseteq A_{0}$ is not surjective and such that for all $A_{1} \in \mathbf{D i}_{\alpha}$ and homomorphisms $m: A_{0} \rightarrow A_{1}$ and $n: A_{0} \rightarrow A_{1}$, if m and n coincide on A, then $m=n$. In particular, $\mathbf{D i}_{\alpha}$ does not have the strong amalgamation property.

We shall need several lemmas before embarking on the proof:
Lemma 2.3 Let $\alpha \in \Gamma \subseteq \beta$ and $i, j \in \beta \backslash \Gamma$. Let $A \in \mathbf{C A}_{\beta}$. Then ${ }_{\alpha} \mathbf{s}(i, j)$ is a complete one to one endomorphism of $C l_{\Gamma} A$. Furthermore, ${ }_{\alpha} s(0,1)$ is an automorphism if $|\Gamma|>1$

Proof We may assume that $i \neq j$ since ${ }_{\alpha} \mathbf{s}(i, i) \mid C l_{\Gamma} A=I d$ by [2] 1.5.13(iii) and 1.5.8(i). ${ }_{\alpha} \mathbf{s}(i, j)$ is a complete boolean endomorphism of $B l A$ by [2] 1.5.16. To prove that it is one to one on $C l_{\Gamma} A$ it is enough to show that $x>0 \rightarrow$ ${ }_{\alpha} \mathbf{s}(i, j) \mathrm{c}_{\alpha} x>0$. By definition

$$
{ }_{\alpha} \mathbf{s}(i, j) \mathbf{c}_{\alpha} x=\mathbf{s}_{i}^{\alpha} \mathbf{s}_{j}^{i} \mathbf{s}_{\alpha}^{j} \mathrm{c}_{\alpha} x=\mathrm{c}_{\alpha}\left(\mathrm{d}_{\alpha i} \cdot \mathrm{c}_{i}\left(\mathrm{~d}_{i j} \cdot \mathrm{c}_{j}\left(\mathrm{~d}_{j \alpha} \cdot \mathrm{c}_{\alpha} x\right)\right)\right) .
$$

By 1.3.8 [2], $0<x \rightarrow 0<\mathrm{d}_{k l} . \mathrm{c}_{l} x$ for every $k, l \in \beta$. The required follows. The rest of the statement follows from [2] 1.6.13 and 1.5.17.

Lemma 2.4 Let $k, l, u \neq v$ all in α. Let $A \in \mathbf{C A}_{\alpha}$. Then the following hold for all $x \in A$:

$$
\begin{aligned}
& { }_{u} \mathbf{s}(k, l) \mathbf{c}_{u} \mathbf{c}_{v} x={ }_{u} \mathbf{s}(l, k) \mathbf{c}_{u} \mathbf{c}_{v} x \\
& { }_{u} \mathbf{s}(k, l){ }_{u} \mathbf{s}(k, l) \mathbf{c}_{u} \mathbf{c}_{v} x=\mathbf{c}_{u} \mathbf{c}_{v} x .
\end{aligned}
$$

Proof [2] 1.5.14, 1.5.17.
The equations in the above Lemma are sometimes called the merry go round indentities ($M G R$).

Lemma 2.5 Let A_{0} and $A_{1} \in \mathbf{D i}_{\alpha}$. Then there exist $B_{0}, B_{1} \in \mathbf{C A}_{\alpha+\omega}$ $i_{0}: A_{0} \rightarrow N r_{\alpha} B_{0}$ and $i_{1}: A_{1} \rightarrow N r_{\alpha} B_{1}$ such that for every homomorphism $f: A_{0} \rightarrow A_{1}$ there exists a homomorphism $g: B_{0} \rightarrow B_{1}$ such that $g \circ i_{0}=i_{1} \circ f$.

Proof The argument we use is a typical step-by step construction. Let $A_{0}, A_{1} \in \mathbf{D i}_{\alpha}$. We construct the desired algebras using ultraproducts. Let R be the set of all ordered quadruples $\langle\Gamma, n, k, l\rangle$ such that: $\Gamma \subseteq_{\omega} \omega, n \in \omega, k, l$ are one to one (finite) sequences with

$$
k, l \in{ }^{n}(\omega \sim \Gamma), \quad \operatorname{Rng}(k) \cap \operatorname{Rng}(l)=\emptyset .
$$

For $\Gamma \subseteq_{\omega} \omega$, and $n \in \omega$ put

$$
X_{\Gamma, n}=\{\langle\Delta, m, k, l\rangle \in R: \Gamma \subseteq \Delta, \quad n \leq m\} .
$$

It is straighforward to check that the set consisting of all the $X_{\Gamma, n}$'s is closed under finite intersections. Accordingly, we let M be the proper filter of $\wp(R)$ generated by the $X_{\Gamma, n}$'s. so that

$$
M=\left\{Y \subseteq R: X_{\Gamma, n} \subseteq Y, \exists \Gamma \subseteq_{\omega} \omega, n \in \omega\right\}
$$

For each $\langle\Gamma, n, k, l\rangle \in R$, choose a bijection $\rho(\langle\Gamma, n, k, l\rangle)$ from $\alpha+\omega$ onto α such that

$$
\rho(\langle\Gamma, n, k, l\rangle) \mid \Gamma \subseteq I d
$$

and

$$
\rho(\langle\Gamma, n, k, l\rangle)(\alpha+j)=k_{j}, \forall j<n .
$$

Now fix $i \in\{0,1\}$. Let

$$
\mathbf{F}\left(A_{i}\right)=\prod_{\phi \in R} R d^{\rho(\phi)} A_{i} / M
$$

Here $R d^{\rho(\phi)} A_{i}$ - the $\rho(\phi)$ reduct of A_{i} - is a $\mathbf{C A}_{\alpha+\omega}$, and so $\mathbf{F}\left(A_{i}\right)$ - an ultraproduct of these - is also a $\mathbf{C A}_{\alpha+\omega}$. Note too, that for each $\phi \in R$, the algebra $R d^{\rho \phi} A_{i}$ has universe A_{i}. Now let j_{i} be the function from A_{i} into $\mathbf{F}\left(A_{i}\right)$ defined as follows

$$
j_{i} x=\left\langle\left(s_{l_{0}}^{k_{0}}\right)^{A_{i}} \circ \ldots\left(s_{l_{n-1}}^{k_{n-1}}\right)^{A_{i}} x:\langle\Gamma, n, k, l\rangle \in R\right\rangle / M .
$$

In [10] it is proved in Theorem 2.2.19 that $j_{i} \in \operatorname{Ism}\left(A_{i}, N r_{\alpha} \mathbf{F}\left(A_{i}\right)\right)$. Let g be the function from $\mathbf{F}\left(A_{0}\right)$ into $\mathbf{F}\left(A_{1}\right)$ defined by:

$$
g\left(\left\langle x_{\phi}: \phi \in R\right\rangle / M\right)=\left\langle f x_{\phi}: \phi \in R\right\rangle / M .
$$

Then it is straightforward to check that g is the desired "lifting" function.
Proof of the Main theorem Let $\alpha \geq \omega$ and F is field of characteristic 0. Let

$$
V=\left\{s \in{ }^{\alpha} F:\left|\left\{i \in \alpha: s_{i} \neq 0\right\}\right|<\omega\right\} .
$$

As is the custom in algebraic logic V a weak space is denoted by ${ }^{\alpha} F^{(\mathbf{0})}$, where $\mathbf{0}$ is the constant 0 sequence. Note that V is a vector space over the field F. Let

$$
C=\left\langle\wp(V), \cup, \cap, \sim, \emptyset, V, \mathrm{c}_{i}, \mathrm{~d}_{i j}\right\rangle_{i, j \in \alpha}
$$

Let y denote the following α-ary relation:

$$
y=\left\{s \in V: s_{0}+1=\sum_{i>0} s_{i}\right\}
$$

and

$$
w=\left\{s \in V: s_{1}+1=\sum_{i \neq 1} s_{i}\right\}
$$

For each $s \in y$ we let y_{s} be the singleton containing s, i.e. $y_{s}=\{s\}$. Let

$$
\begin{gathered}
A=S g^{C}\left(\left\{y, y_{s}: s \in y\right\}\right) \\
A_{0}=S g^{C}\left(\left\{y, w, y_{s}: s \in y\right\}\right)
\end{gathered}
$$

Here $S g$ is short for the subalgebra generated by. Clearly A and A_{0} are in $\mathbf{D} \mathbf{i}_{\alpha}$. We first show that $w \notin A$. We follow closely the argument in [8], where a similar construction using the field of rationals is used. Let

$$
\begin{gathered}
P l=\left\{\left\{s \in{ }^{\alpha} F^{(\mathbf{0})}: t+\sum\left(r_{i} s_{i}\right)=0\right\}:\left\{t, r_{i}: i<\alpha\right\} \subseteq F\right\} \\
P l^{<}=\left\{p \in P l: \exists i<\alpha, \mathrm{c}_{i} p=p\right\}
\end{gathered}
$$

Note that for $p \in P l, p=\left\{s \in{ }^{\alpha} F^{(\mathbf{0})}: t+\sum_{i} r_{i} s_{i}=0\right\}$ say, then $\mathrm{c}_{i} p=p$ (i.e. p is parallel to the i-th axis) iff $r_{i}=0$. Note too, that

$$
\begin{gathered}
\left\{y, w, \mathrm{~d}_{i j}: i, j \in \alpha\right\} \subseteq P l \\
y, w \notin P l^{<}, 1 \in P l^{<}
\end{gathered}
$$

and

$$
\left\{\mathrm{d}_{i j}: i \neq j, i, j \in \alpha\right\} \subseteq P l^{<} \leftrightarrow \alpha \geq 3
$$

Now let

$$
\begin{gathered}
G=\left\{y,-y, p,-p, \mathrm{c}_{(\Delta)}\{\mathbf{0}\},-\mathrm{c}_{(\Delta)}\{\mathbf{0}\}: p \in P l^{<} \cup\left\{\mathrm{d}_{01}\right\} \Delta \subseteq_{\omega} \alpha, 0 \in \Delta\right\} . \\
G^{*}=\left\{\bigcap_{i \in n} g_{i}: n \in \omega, g_{i} \in G\right\} .
\end{gathered}
$$

and

$$
G^{* *}=\left\{\bigcup_{i \in n} g_{i}: n \in \omega, g_{i} \in G^{*}\right\}
$$

It is easy to see that $\left\{y, y_{s}: s \in y\right\} \subseteq G^{* *}$, and $G^{* *}$ is a boolean field of sets. We prove that $w \notin G^{* *}$ and that $G^{* *}$ is closed under cylindrifications. To this end, we set:

$$
L=\left\{p \in P l^{<}: \mathrm{c}_{0} p \neq p\right\}, \quad P(0)=L \cup\left\{\mathrm{~d}_{01}\right\} .
$$

Next we define

$$
G_{1}=\left\{g \in G^{*}: g \subseteq y\right\}
$$

and

$$
G_{2}=\left\{g \in G^{*}: g \nsubseteq y, \quad g \subseteq p, p \in P(0)\right\}
$$

We have $G_{1} \cap G_{2}=\emptyset$. Now let

$$
G_{3}=\left\{p_{1} \cap p_{2} \ldots \cap p_{k}: k \in \omega,\left\{p_{1}, p_{2}, \ldots, p_{k}\right\} \subseteq G \sim(\{y\} \cup P(0))\right\} .
$$

It is easy to see that $G^{*}=G_{1} \cup G_{2} \cup G_{3}$. To prove that $w \notin G^{* *}$ we need: If $g \in G_{3}$ and $0 \neq g$, then $g \not \subset w$. But this follows from the following. Assume that $g=p_{1} \cap p_{2} \ldots \cap p_{k}$ say, with $p_{i} \in G$ and $p_{i} \notin(\{y\} \cup P(0))$ for $1 \leq i \leq k$, and let $z \in g$. Let [] be the function from $P l$ into F defined as follows:

$$
[p]=\left\{1 / r_{0}\left(-t-\sum r_{i} z_{i}\right)\right\}, p=-\left\{s \in^{\alpha} F^{(\mathbf{0})}: t+\sum r_{i} s_{i}=0\right\}, r_{0} \neq 0
$$

and else

$$
[p]=0
$$

Let

$$
r \in F \sim\left(\left(\bigcup_{1 \leq i \leq k}\left[p_{i}\right]\right) \cup[-w]\right)
$$

be arbitrary, and let

$$
z_{r}^{0}=z \sim\left\{\left(0, z_{0}\right)\right\} \cup\{(0, r)\} .
$$

Then

$$
z_{r}^{0} \in g \sim w, \quad g \nsubseteq w .
$$

(Here we are using that when $\mathrm{c}_{(\Delta)}\{0\} \in G$, then $0 \in \Delta$.) We now proceed to show that $w \notin G^{* *}$. Assume that

$$
x=\bigcup\left\{g_{i}^{1}: i<n_{1}\right\} \cup \bigcup\left\{g_{i}^{2}: i<n_{2}\right\} \cup \bigcup\left\{g_{i}^{3}: i<n_{3}\right\}
$$

where

$$
\left\{g_{i}^{j}: i<n_{j}\right\} \subseteq G_{j}, g_{i}^{j} \subseteq w, \forall j \in\{1,2,3\} .
$$

We show that $x \neq w$. By the above, we have $x \subseteq \bigcup_{i<n} p_{i}$ for some $\left\{p_{i}: i<\right.$ $n\} \subseteq P(0)$. Note that if $\alpha>2$ then $P(0)=L$ and $P(0)=L \cup\left\{\mathrm{~d}_{01}\right\}$ otherwise. If $\alpha=2$ then $w \subseteq-\mathrm{d}_{01}$ otherwise $P(0)=L$. Now it is enough to show that w is not contained in $\cup E$ for any finite $E \subseteq L$. But it can be seen by
implementing easy linear algebraic arguments that, for every $n \in \omega$, and for every system

$$
\begin{gathered}
t_{0}+\sum\left(r_{0 i} x_{i}\right)=0 \\
\cdot \\
t_{n}+\sum\left(r_{n i} x_{i}\right)=0
\end{gathered}
$$

of equations, such that for all $j \leq n$, there exists $i<\alpha$, such that

$$
r_{j i}=0 \quad r_{j 0} \neq 0,
$$

the equation

$$
\sum_{i<\alpha} x_{i}=2 x_{1}+1
$$

has a solution s in the weak space ${ }^{\alpha} F^{(0)}$, such that s is not a solution of

$$
t_{j}+\sum_{i<\alpha}\left(r_{j i} x_{i}\right)=0,
$$

for every $j \leq n$. We have proved that $w \notin G^{* *}$. To show that $w \notin A$, we will show that $G^{* *}$ is closed under the cylindric operations (i.e it is the universe of a $\mathbf{C A}_{\alpha}$. It is enough to show that (since the \mathbf{c}_{i} 's are additive), that for $j \in \alpha$ and $g \in G^{*}$ arbitrary, we have $\mathrm{c}_{j} g \in G^{* *}$. For this purpose, put for every $p \in P l$

$$
p(j \mid 0)=\mathrm{c}_{j}\left\{s \in p: s_{j}=0\right\}, \quad(-p)(j \mid 0)=-p(j \mid 0) .
$$

Then it is not hard to see that

$$
p(j \mid 0)=\left\{s \in{ }^{\alpha} F^{(\mathbf{0})}: t+\sum_{i \neq j}\left(r_{i} s_{i}\right)=0\right\},
$$

if

$$
p=\left\{s \in^{\alpha} F^{(\mathbf{0})}: t+\sum_{i<\alpha}\left(r_{i} s_{i}\right)=0\right\},
$$

and so

$$
p(j \mid 0) \in P l^{<} \forall p \in P l .
$$

Let j and g be as indicated above. We can assume that

$$
\begin{gathered}
g=e \cap p_{1} \cap \ldots \cap p_{n} \cap-P_{1} \ldots \cap-P_{m} \cap z \\
\cap-\mathrm{c}_{\left(\Delta_{1}\right)}\{\mathbf{0}\} \ldots \cap-\mathrm{c}_{\left(\Delta_{N}\right)}\{\mathbf{0}\},
\end{gathered}
$$

where

$$
e \in\{y,-y, 1\}
$$

$$
\begin{gathered}
n, m, N \in \omega \sim\{0\}, p_{i}, P_{i} \in P l^{<} \cup\left\{\mathrm{d}_{01}\right\} \\
\mathrm{c}_{j} p_{i} \neq p_{i}, \mathrm{c}_{j} P_{i} \neq P_{i}, \\
z \in\left\{\mathrm{c}_{(\Delta)}\{0\}, 1: \Delta \in \wp_{\omega} \alpha, 0 \in \Delta, j \notin \Delta\right\},
\end{gathered}
$$

and

$$
\left\{\Delta_{1}, \ldots, \Delta_{n}\right\} \subseteq\left\{x \in \wp_{\omega} \alpha: j \notin x, 0 \in x\right\}
$$

We distinguish between 2 cases:
Case 1.

$$
z=\mathrm{c}_{(\Delta)}\{0\}, j \notin \Delta .
$$

Then

$$
\begin{gathered}
\mathrm{c}_{j}\left(e \cap p_{1} \ldots \cap p_{n} \cap-P_{1} \ldots \cap-P_{m}\right. \\
\left.\cap \mathrm{c}_{(\Delta)}\{\mathbf{0}\} \cap-\mathrm{c}_{\left(\Delta_{1}\right)}\{\mathbf{0}\} \ldots \cap-\mathrm{c}_{\left(\Delta_{N}\right)}\{\mathbf{0}\}\right) \\
p_{1}(j \mid 0) \cap \ldots p_{n}(j \mid 0) \cap-P_{1}(j \mid 0) \ldots \cap-P_{m}(j \mid 0) \\
\cap \mathrm{c}_{j} \mathrm{c}_{(\Delta)}\{\mathbf{0}\} \cap-\mathrm{c}_{j} \mathrm{c}_{\left(\Delta_{1}\right)}\{\mathbf{0}\} \cap \cap-\mathrm{c}_{j} \mathrm{c}_{\left(\Delta_{N}\right)}\{\mathbf{0}\} .
\end{gathered}
$$

Case 2.

$$
z=1
$$

Then

$$
\begin{gathered}
\mathrm{c}_{j}\left(e . p_{1} \cap \ldots \cap p_{n} \cap-P_{1} \ldots \cap-P_{m}\right. \\
\left.\cap-\mathrm{c}_{\left(\Delta_{1}\right)}\{\mathbf{0}\} \ldots \cap-\mathrm{c}_{\left(\Delta_{N}\right)}\{\mathbf{0}\}\right) \\
=f(e) \cap_{k \leq n}\left(\left(\cap_{i \leq n} \mathrm{c}_{j}\left(p_{k} \cap p_{i}\right) \cap \cap_{i \leq m} \mathrm{c}_{j}\left(p_{k}-P_{i}\right)\right.\right. \\
\left.\cap_{i \leq N} \mathrm{c}_{j}\left(p_{k}-\mathrm{c}_{\left(\Delta_{i}\right)}\{\mathbf{0}\}\right)\right) .
\end{gathered}
$$

where

$$
\begin{gathered}
f(y)=\left(\left(\cap_{i \leq n} \mathrm{c}_{j}\left(y \cap p_{i}\right) \cap \cap_{i \leq m} \mathrm{c}_{j}\left(y-P_{i}\right)\right.\right. \\
\left.\cap_{i \leq N} \mathrm{c}_{j}\left(y-\mathrm{c}_{\left(\Delta_{i}\right)}\{\mathbf{0}\}\right)\right) . \\
f(-y)=\cap_{k \leq n} \mathrm{c}_{j}\left(p_{k}-y\right) \\
f(1)=1 .
\end{gathered}
$$

Now for every $p, q \in P l$, there are $p^{\prime}, q^{\prime}, p^{\prime \prime}$ and $q^{\prime \prime} \in P l^{<}$such that

$$
\begin{gathered}
\mathrm{c}_{j}(p \cap q)=p^{\prime} \cap q^{\prime}, \\
\mathrm{c}_{j}(p \sim q)=p^{\prime \prime} \sim q^{\prime \prime}
\end{gathered}
$$

and if $j \in \Delta p \sim \Gamma$, then

$$
\mathrm{c}_{j}\left(p \backslash \mathrm{c}_{(\Gamma)}\{\mathbf{0}\}\right)={ }^{\alpha} F^{(\mathbf{0})} \sim p(j \mid 0) \cup\left(p(j \mid 0) \sim \mathrm{c}_{j} \mathrm{c}_{(\Gamma)}\{\mathbf{0}\}\right) .
$$

We have proved that $w \notin A$. Now let $A_{1} \in \mathbf{D i}_{\alpha}$ and assume that h and k are given homomorphisms from A_{0} to A_{1} that agree on A. It clearly suffices to show that $k(w)=h(w)$. By the above Lemma, $B_{0},, B_{1}$ be ω-extensions of A_{0} and A_{1} via i_{0} and i_{1}, respectively, that is $i_{0}: A_{0} \rightarrow N r_{\alpha} B_{0}$ and $i_{1}: A_{1} \rightarrow N r_{\alpha} B_{1}$. Let $k^{*}: B_{0} \rightarrow B_{1}$ be a homomorphism such that

$$
k^{*} \circ i_{0}=i_{1} \circ k,
$$

and let $h^{*}: B_{0} \rightarrow B_{1}$ be a homomorphism such that

$$
h^{*} \circ i_{0}=i_{1} \circ h .
$$

We define

$$
\tau_{\alpha}(x)={ }_{\alpha} \mathbf{s}(0,1) x .
$$

We will show that (*)

$$
\tau_{\alpha}^{B_{0}}\left(i_{0} y\right)=i_{0} w
$$

By $\left({ }^{*}\right)$ we will be done because of the following:

$$
k^{*} \circ i_{0}(w)=k^{*}\left(\tau_{\alpha}^{B_{0}}\left(i_{0} y\right)\right)=\tau_{\alpha}^{B_{1}}\left(k^{*} \circ i_{0}(y)\right) .
$$

But since h and k agree on A and $y \in A$, we have

$$
k^{*} \circ i_{0}(y)=i_{1} \circ k(y)=i_{1} \circ h(y)=h^{*} \circ i_{0}(y) .
$$

From which we get that

$$
\begin{aligned}
& k^{*} \circ i_{0}(w)=\tau_{\alpha}^{B_{1}}\left(k^{*} \circ i_{0}(y)\right)=\tau_{\alpha}^{B_{1}}\left(h^{*} \circ i_{0}(y)\right) \\
& \quad=h^{*}\left(\tau_{\alpha}^{B_{0}}\left(i_{0}(y)\right)=h^{*}\left(i_{0} w\right)=h^{*} \circ i_{0}(w) .\right.
\end{aligned}
$$

We have shown that

$$
k^{*} \circ i_{0}(w)=h^{*} \circ i_{0}(w) .
$$

Thus

$$
i_{1} \circ k(w)=i_{1} \circ h(w) .
$$

But since i_{1} is one to one, it readily follows thus that

$$
k(w)=h(w) .
$$

We are done modulu $\left(^{*}\right)$. We now prove $\left(^{*}\right)$. We write i instead of i_{0}. Now $t_{\alpha}^{B_{0}} x={ }_{\alpha} \mathbf{s}(0,1)^{B_{0}} x$ is always evaluated in B_{0}, hence for better readability we omit the superscript B_{0}. Let $\tau(x)$ be the following $\mathbf{C A}_{2}$ term:

$$
\tau(x)=s_{1}^{0} c_{1} x \cdot s_{0}^{1} c_{0} x .
$$

Let

$$
X=\left\{y_{s}: s \in y\right\}, \quad a \in X
$$

We show that

$$
\text { (1) } \quad i(\tau(a)) \leq \tau_{\alpha}(i(y)) \text {. }
$$

We start by showing that

$$
(+) \quad i(\tau(a))=\tau_{\alpha}(i(a))
$$

Note first that $a=\mathrm{c}_{1} a . \mathrm{c}_{0} a$. Now we have

$$
\begin{gathered}
{ }_{\alpha} s(0,1) i(a)={ }_{\alpha} \mathbf{s}(0,1)\left(\mathrm{c}_{1} i(a) \cdot \mathrm{c}_{0} i(a)\right) \\
\quad={ }_{\alpha} \mathbf{s}(0,1) \mathrm{c}_{1} i(a) \cdot{ }_{\alpha} \mathrm{s}(1,0) \mathrm{c}_{0} i(a)
\end{gathered}
$$

Here we use that ${ }_{\alpha} s(0,1)$ is an endomorphism and the $M G R$, namely that

$$
\begin{gathered}
{ }_{\alpha} \mathbf{s}(0,1) \mathrm{c}_{0} i(a)={ }_{\alpha} \mathrm{s}(0,1) \mathrm{c}_{\alpha} \mathrm{c}_{\alpha+1} \mathrm{c}_{0} i(a) \\
={ }_{\alpha} \mathbf{s}(1,0) \mathrm{c}_{\alpha} \mathrm{c}_{\alpha+1} \mathrm{c}_{0} i(a)={ }_{\alpha} \mathbf{s}(1,0) \mathrm{c}_{0} i(a) .
\end{gathered}
$$

We compute

$$
\begin{aligned}
& { }_{\alpha} \mathbf{s}(0,1) \mathrm{c}_{1} i(a)=\mathrm{s}_{0}^{\alpha} \mathrm{s}_{1}^{0} \mathrm{~s}_{\alpha}^{1} \mathrm{c}_{1}(i(a))=\mathrm{s}_{0}^{\alpha} \mathrm{s}_{1}^{0} \mathrm{c}_{i}(i(a)) \\
& =\mathrm{s}_{0}^{\alpha} \mathrm{s}_{1}^{0} \mathrm{c}_{\alpha} \mathrm{c}_{1}(a)=\mathrm{s}_{0}^{\alpha} \mathrm{c}_{\alpha} \mathrm{s}_{1}^{0} \mathrm{c}_{i}(i(a))=\mathrm{s}_{1}^{0} \mathrm{c}_{1}(i(a)) .
\end{aligned}
$$

Similarly

$$
{ }_{\alpha} \mathrm{s}(1,0) \mathrm{c}_{0} i(a)=\mathrm{s}_{0}^{1} \mathrm{c}_{0} i(a) .
$$

From this we get $(+)$. (1) follows from (+) by noting that $\tau_{\alpha}(i(a)) \leq \tau_{\alpha}(i(y))$.
Let $X "=\left\{\tau\left(y_{s}\right): s \in y\right\}$. Then clearly $w=\bigcup X$ ". Now A is atomic. Indeed, A contains all singletons. To see this, let $s \in{ }^{\alpha} F^{(\mathbf{0})}$ be arbitrary. Then

$$
\left\langle s_{0}, s_{0}+1-\sum_{i>1} s_{i}, s_{i}\right\rangle_{i>1}
$$

and

$$
\left\langle\sum_{0<i<\alpha} s_{i}-1, s_{i}\right\rangle_{i \geq 1}
$$

are elements in y. Since

$$
\{s\}=\mathrm{c}_{1}\left\{\left\langle s_{0}, s_{0}+1-\sum_{i>1} s_{i}, s_{i}\right\rangle_{i>1}\right\} \cap \mathrm{c}_{0}\left\{\left\langle\sum_{0 \neq i<\alpha} s_{i}-1, s_{i}\right\rangle_{i \geq 1}\right\},
$$

it follows that $\{s\} \in A$. Let $\operatorname{At}(A)$ denote the set of all atoms of A, i.e. the singletons. We can assume that $B_{0}=S g^{B_{0}} i\left(A_{0}\right)$. Upon noting that A contains all singletons, we obtain the following density condition.

$$
(2)(\forall d)\left(d \in N r_{\alpha} B_{0} \wedge d \neq 0 \rightarrow \exists a \in \operatorname{At}(A) \wedge i(a) \leq d\right) .
$$

From (1), (2) we get the desired conclusion i.e that $i(w)=\tau_{\alpha}(i(y))$, because, roughly, any atom in A below w is of the form $\tau(a)$ for singleton a below y. In more detail, we we shall show that

$$
i(w) \leq \tau_{\alpha}(i(y)), \quad \tau_{\alpha}(i(y)) \leq i(w) .
$$

Let us start with the first inclusion. Assume seeking a contradiction that it does not hold. This means that

$$
i(w)-\tau_{\alpha}(i(y)) \neq 0 .
$$

But then applying (2), we get an atom $z \in A$, such that $i(z) \leq i(w)$ and

$$
i(z) \leq-\tau_{\alpha}(i(y)) .
$$

But $z=\tau(a)$ for some $a \in X$, thus

$$
i(z)=\tau(i(a)) \leq \tau_{\alpha}(i(y)) .
$$

But this means that $i(z) \leq-\tau_{\alpha}(i(y)) \cdot \tau_{\alpha}(i(y))=0$. This is impossible since z is an atom and i is one to one. Now we want to establish the other inclusion, namely that

$$
\tau_{\alpha}(i(y)) \leq i(w) .
$$

Now assume again, seeking a contradiction, that it is not the case that

$$
\tau_{\alpha}(i(y)) \leq i(w)
$$

Thus we have

$$
\tau_{\alpha}(i(y)) \cdot-i(w) \neq 0
$$

By (2) there exists an atom $z \in A$ such that

$$
i(z) \leq \tau_{\alpha}(i(y)), \quad i(z) \leq-i(w)
$$

From the first inclusion we get

$$
i(z) \cdot{ }_{\alpha} \mathrm{s}(0,1) i(y) \neq 0,
$$

hence

$$
(++) \quad i(z) \leq_{\alpha} \mathbf{s}(0,1) i(y),
$$

since z is a singleton. Let

$$
a=\mathbf{s}_{0}^{1} c_{0} z \cdot \mathbf{s}_{1}^{0} c_{1} z={ }_{\alpha} \mathbf{s}(0,1) z .
$$

Applying ${ }_{\alpha} s(0,1)$ to both sides of $(++)$ we get

$$
i(a) \leq_{\alpha} \boldsymbol{s}(0,1)_{\alpha} \boldsymbol{s}(0,1) i(y)=i(y) .
$$

The latter equality follows from the $M G R$, indeed

$$
{ }_{\alpha} \mathbf{s}(0,1)_{\alpha} \boldsymbol{s}(0,1) i(y)={ }_{\alpha} \boldsymbol{s}(0,1)_{\alpha} \boldsymbol{s}(0,1) \mathbf{c}_{\alpha} \mathbf{c}_{\alpha+1} i(y)=i(y) .
$$

Then $a \leq y$ and so $z=\tau(a) \leq w$. From this we get $i(z) \leq i(w)$ which is a contradiction since z is an atom and i is one to one and $i(z) \leq-i(w)$. By this $\left(^{*}\right)$ is proved and so is our main Theorem.

3 Conclusion

This paper solves a long outstanding problem in algebraic logic posed by Pigozzi in his landmark paper [10] published in algebra universalis in 1971. The proof is an adaptation of techniques of Nemeti used in [8], to solve a problem on neat reducts for cylindric algebras. The notion of neat reducts is strongly related to the amalgamation property, see [1]. More on that and related problems can be found in [4].

References

[1] T. Sayed Ahmed, Some results about neat reducts, Algebra Universalis, 1(2010), 17-36.
[2] L. Henkin, J.D. Monk and A. Tarski, Cylindric Algebras Part I, North Holland, (1971).
[3] L. Henkin, J.D. Monk and A. Tarski, Cylindric Algebras Part II, North Holland, (1985).
[4] J. Madárasz and T. Sayed Ahmed, Amalgamation, interpolation and epimorphisms, Algebra Universalis, 56(2)(2007), 179-210.
[5] J. Madárasz, On epimorphisms in varieties of cylindric algebras, Submitted.
[6] M. Marx, L. Polos and M. Masuch, editors Arrow logic and Multi-modal logic, Studies in Logic Language and Information, CSLI Publications, Centre for the Study of Language and Information, (1996).
[7] J. Madarász, Epimorphisms in varieties of Cylindric Algebras, (Submitted).
[8] I. Németi, The Class of Neat Reducts of Cylindric Algebras is Not a Variety But is closed w.r.t. HP, Notre Dame Journal of Formal logic, 24(3)(July 1983), 399-409.
[9] J. Madarász, Interpolation and Amalgamation, Pushing the Limits. Part II, Studia Logica
[10] D. Pigozzi, Amalgamation, congruence extension and interpolation properties in algebras, Algebra Universalis, 1(1971), 269-349.

[^0]: ${ }^{1}$ This result is only announced in [4] without proof.

