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Abstract

The aim of this paper is to introduce the concept of convergence
of a sequence on hypernormed spaces and establish a few basic prop-
erties of convergent sequences and Cauchy sequences on hypernormed
spaces. Also we have established a necessary and sufficient condition
for a Cauchy sequence to be convergent sequence in this spaces. In fact,
also it has been shown that limit of a convergent sequence in such type
spaces is not necessarily unique.
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1 Introduction

The notion of hyperstructure was first introduced by F. Marty [2] in 1934.
Then he established the definition of hypergroup in 1935 in the paper [3].
Thereafter many researchers have studied this field in different views. To get
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an idea, see the references [4, 1, 9, 10] etc. In the definition of hypervec-
tor space, many researchers [5] have taken only the multiplication structure
as a hyperstructure. In our paper [6], we have generalized this concept by
considering all the structures of hypervector spaces as a hyperstructures and
established a few important results, theorems there. Later on, this concept
has been more generalize than the previous concepts of hypervector spaces[6]
in our papers [7, 8]. In fact, only a few algebraic properties have been devel-
oped there and no mathematical analysis has been done there. In this present
paper, our aim is to develop the mathematical analysis on hypervector space.

In §3 of this paper, first we have defined the norm on a hypervector space

and then we have established some important results, propositions and the-
orems which will be needed to prove the theorems in §4. In §4, after the
introduction of convergent sequences and Cauchy sequences on normed hy-
pervector spaces, it is shown that the limit of a convergent sequence is not
necessarily unique and a convergent sequence is bounded. Also we have es-
tablished that all subsequential limits are equal and a necessary and sufficient
condition for a Cauchy sequence to be convergent sequence on this spaces.

2 Preliminaries

Definition 2.1 :[4] A hyperoperation over a non-empty set X is a map-
ping of X×X into the set of all non-empty subsets of X.
A non-empty set X with exactly one hyperoperation ′#′ is called a hyper-
groupoid.
Let (X , #) be a hypergroupoid. For every point x ∈ X and every non-empty
subset A of X, we define x # A =

⋃
a∈A{x # a}.

Definition 2.2 [6] A hypergroupoid (X , #) is called a hypergroup if
(i) x# (y # z) = (x # y) #z, ∀ x, y, z ∈ X.
(ii) ∃ 0 ∈ X such that for every a ∈ X, there is unique element b ∈ X for
which 0 ∈ a # b and 0 ∈ b#a. Here b is denoted by −a.
(iii) ∀ a, b, c ∈ X if a ∈ b#c, then b ∈ a#(−c).

Proposition 2.3 [4] (i) In a hypergroup (X , #) , −(−a) = a, ∀ a ∈ X.
(ii) 0 # a = {a}, ∀ a ∈ X if (X , #) is a commutative hypergroup.
(iii) In a commutative hypergroup (X , #), 0 is unique.

Definition 2.4 [4] A hyperring is a non-empty set equipped with a hyper-
addition ′#′ and a multiplication ′.′ such that (X , #) is a commutative hyper-
group and (X , ·) is a semigroup and the multiplication is distributive across the
hyperaddition both from the left and from the right and a.0 = 0.a = 0, ∀a ∈ X
, where 0 is the zero element of the hyperring.
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Definition 2.5 [6] A hyperfield is a non-empty set X equipped with a
hyperaddition ′#′ and a multiplication ′.′ such that
( i ) (X , # , ·) is a hyperring.
( ii ) ∃ an element 1 ∈ X, called the identity element such that a.1 = a,
∀ a ∈ X.
( iii ) For each non zero element a ∈ X, ∃ an element a−1 such that a.a−1=1.
( iv ) a.b = b.a, ∀ a, b ∈ X.

Definition 2.6 [7] Let (F ,⊕ , ·) be a hyperfield and (V , #) be an additive
commutative hypergroup. Then V is said to be a hypervector space over
the hyperfield F if there exists a hyperoperation ∗ : F × V → P ∗ ( V ) such
that
( i ) a ∗ (α # β) ⊆ a ∗ α # a ∗ β , ∀ a ∈ F and ∀α, β ∈ V .
( ii ) (a ⊕ b) ∗ α ⊆ a ∗ α # b ∗ α , ∀ a, b ∈ F and ∀α ∈ V .
( iii ) (a . b) ∗ α = a ∗ (b ∗ α), ∀ a, b ∈F and ∀α ∈ V .
( iv ) (−a) ∗ α = a ∗ (−α), ∀ a ∈F and ∀α ∈ V .
( v ) α ∈ 1F ∗ α, θ ∈ 0 ∗ α and 0 ∗ θ = θ, ∀α ∈ V .
where 1F is the identity element of F , 0 is the zero element of F and θ is zero
vector of V and P ∗( V ) is the set of all non-empty subset of V .

Result 2.7 In a hypervector space V , Show that −α ∈ −1F ∗ α.

Proof: Since α ∈ 1F ∗ α, ∀ α ∈ V ⇒ −α ∈ 1F ∗ −α, ∀ α ∈ V
⇒ −α ∈ −1F ∗ α, ∀ α ∈ V, as (−1F ) ∗ α = 1F ∗ (−α).

Definition 2.8 [7] Let R be the set of all real numbers. The hyperfield
defined on R is called the real hyperfield.

3 Hypernorm spaces

Definition 3.1 Let (V , # , ∗) be a hypervector space over the real hyperfield
R. A Hypernorm on V is a mapping ‖ · ‖ : V → R, where R is a usual real
space, such that for all a ∈ R and α, β ∈ V conditions hold
(i) ‖α‖ ≥ 0.
(ii) ‖α‖ = 0 if and only if α = θ.
(iii) sup ‖α#β‖ ≤ ‖α‖+ ‖β‖, where ‖α # β‖ = { ‖x‖, x ∈ α # β }.
(iv) sup ‖a ∗ α‖ ≤ |a| · ‖α‖, where ‖a ∗ α‖ = { ‖x‖, x ∈ a ∗ α }.

If ‖ ·‖ is a hypernorm on V then the tuple (V, #, ∗) is said to be a normed
hypervector space or hypernormed space.
Throughout our discussion, instead of normed hypervector space (V, #, ∗), V
will be consider as a normed hypervector space.
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Result 3.2 Let V be a normed hypervector space, then ‖ − α‖ = ‖α‖,
∀ α ∈ V.

Proof: Let α ∈ V. We have −α ∈ −1 ∗ α ⇒ ‖− α‖ ≤ sup ‖ − 1 ∗ α‖
⇒ ‖ − α‖ ≤ | − 1|‖α‖ = ‖α‖. That is, ‖ − α‖ ≤ ‖α‖.
Again α ∈ (−1) ∗ (−α) ⇒ ‖α‖ ≤ sup ‖(−1) ∗ (−α)‖ ⇒ ‖α‖ ≤ | − 1|‖ − α‖.
That is, ‖α‖ ≤ ‖ − α‖.
Hence, ‖ − α‖ = ‖α‖, ∀ α ∈ V.

Result 3.3 Let V be a normed hypervector space and α, β ∈ V, then
inf ‖α#− β‖ = inf ‖β#− α‖.

Proof: Let γ ∈ α#− β ⇔ α ∈ γ#(−(−β))
⇔ α ∈ γ#β ⇔ β ∈ α#− γ ⇔ −γ ∈ β#− α.
Now by the result 3.2, we have ‖γ‖ = ‖ − γ‖, ∀ γ ∈ V . Therefore
‖α#− β‖ = {‖x‖ : x ∈ α#− β} = {‖y‖ : y ∈ β#− α} = ‖β#− α‖.
Hence inf ‖α#− β‖ = inf ‖β#− α‖.

Theorem 3.4 Let V be a normed hypervector space and α, β, γ ∈ V, then
inf ‖α#− β‖ ≤ inf ‖α#− γ‖+ inf ‖γ#− β‖.

Proof: Let x ∈ α#− γ and y ∈ γ#− β
⇒ −γ ∈ x#− α and γ ∈ y#− (−β), ( by the last axiom of definition 2.2)
⇒ −γ ∈ x#− α and γ ∈ y#β
⇒ γ#− γ ⊆ x#− α#y#β
⇒ θ ∈ x#y#− α#β, as θ ∈ γ#− γ
⇒ θ ∈ (x#y)#z, for some z ∈ −α#β
⇒ −z ∈ x#y
⇒ ‖− z‖ ≤ sup ‖x#y‖ ≤ ‖x‖+ ‖y‖
⇒ ‖z‖ ≤ ‖x‖+ ‖y‖, as ‖ − z‖ = ‖z‖
⇒ inf{‖z‖ : z ∈ −α#β} ≤ ‖x‖+ ‖y‖.
Therefore, inf ‖ − α#β‖ ≤ ‖x‖+ ‖y‖, ∀ x ∈ α#− γ and ∀ y ∈ γ#− β
⇒ inf ‖α#− β‖ ≤ ‖x‖+ ‖y‖, ∀ x ∈ α#− γ and ∀ y ∈ γ#− β,

by result 3.3.

Thus inf ‖α#− β‖ ≤ inf{‖x‖ : x ∈ α#− γ}+ inf{‖y‖ : y ∈ γ#− β}.
Hence inf ‖α#− β‖ ≤ inf ‖α#− γ‖+ inf ‖γ#− β‖.

Theorem 3.5 Let V be a normed hypervector space and α, β ∈ V . If
inf ‖β#− α‖ = 0, then ‖α‖ = ‖β‖.

Proof: By the theorem 3.4, we have inf ‖β#θ‖ ≤ inf ‖β#− α‖+ inf ‖α#θ‖
⇒ ‖β‖ ≤ inf ‖β#− α‖+ ‖α‖, as α#θ = α, ∀ α ∈ V
⇒ ‖β‖ ≤ ‖α‖.
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Again By the theorem 3.4, we have
inf ‖α#θ‖ ≤ inf ‖α#− β‖+ inf ‖β#θ‖
⇒ ‖α‖ ≤ inf ‖α#− β‖+ ‖β‖, as α#θ = α, ∀ α ∈ V
⇒ ‖α‖ ≤ inf ‖β#− α‖+ ‖β‖, by result 3.3
⇒ ‖α‖ ≤ ‖β‖. Hence ‖α‖ = ‖β‖.

Proposition 3.6 Let V be a normed hypervector space over a real hyperfield
R, A ⊆ V and a ∈ R. Then sup ‖a ∗ A‖ ≤ |a| sup ‖A‖.

Proof: Let α ∈ A. Then sup ‖a ∗ α‖ = |a| · ‖α‖ ≤ |a| sup ‖A‖.
Therefore sup ‖a ∗ α‖ ≤ |a| sup ‖A‖, for all α ∈ A
⇒ supα∈A sup ‖a ∗ α‖ ≤ |a| sup ‖A‖.
Hence sup ‖a ∗ A‖ ≤ |a| sup ‖A‖.

Proposition 3.7 Let V be a normed hypervector space over a real hyperfield
R and A,B ⊆ V . Then sup ‖A#B‖ ≤ sup ‖A‖+ sup ‖B‖.

Proof: Let α ∈ A and β ∈ B.
Then sup ‖α#β‖ ≤ ‖α‖+ ‖β‖ ≤ sup ‖A‖+ sup ‖B‖, ∀ α ∈ A and ∀ β ∈ B.
Therefore supα∈A,β∈B sup ‖α#β‖ ≤ sup ‖A‖+ sup ‖B‖.
Hence sup ‖A#B‖ ≤ sup ‖A‖+ sup ‖B‖.

4 sequence in normed hypervector spaces

Definition 4.1 A sequence {αn} in a normed hypervector space V is said
to converge to a point α ∈ V if for any ε (> 0), there exists a positive integer
n0 such that inf ‖αn#(−α)‖ < ε, ∀ n ≥ n0.
If a sequence {αn} ⊆ V converges to a point α in V , then we write
limn→∞ αn = α or αn → α as n →∞ and we call α is a limit of {αn} in V.

Definition 4.2 A sequence {αn} in a normed hypervector space V is said
to be a Cauchy sequence if for any ε (> 0), there exists a positive integer n0

such that inf ‖αn#(−αm)‖ < ε, ∀ m,n ≥ n0.
The normed hypervector space V is said to be complete if every cauchy se-
quence in V converges to some point in V .

Theorem 4.3 If αn → α and αn → β as n →∞ in a normed hypervector
space V , then inf ‖α#− β‖ = 0.

Proof: Let ε > 0, then there exists a positive Integer n0 such that
inf ‖αn#− α‖ < ε

2
and inf ‖βn#− β‖ < ε

2
, ∀ n ≥ n0.

Now by the theorem 3.4, we have
inf ‖α#− β‖ ≤ inf ‖α#− αn‖+ inf ‖αn#− β‖ for all positive integer n.
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⇒ inf ‖α#− β‖ ≤ inf ‖αn#− α‖+ inf ‖αn#− β‖ for all positive integer n,
by using result 3.3

⇒ inf ‖α#− β‖ < ε
2

+ ε
2

= ε, this is true for any ε > 0.
Therefore inf ‖α#− β‖ = 0.

Theorem 4.4 Let V be a normed hypervector space and α, β, γ ∈ V . If
inf ‖β#− α‖ = 0 and inf ‖γ#− α‖ = 0, then inf ‖β#− γ‖ = 0.

Proof: By the theorem 3.4, we have
inf ‖β#− γ‖ ≤ inf ‖β#− α‖+ inf ‖α#− γ‖
⇒ inf ‖β#− γ‖ ≤ inf ‖β#− α‖+ inf ‖γ#− α‖ = 0.
Again, we know that inf ‖β#− γ‖ ≥ 0.
Hence inf ‖β#− γ‖ = 0.

Definition 4.5 Let V be a normed hypervector space and α ∈ V. Then the
set {β ∈ V : inf ‖β# − α‖ < r}, where r > 0 is called a open hyperball of
redious r with centre at α in V.

Remark 4.6 By the theorem 4.3, it is clear that if a convergent sequence
has many limit points, then every open hyperball with centre at any limit point
must contain all the other limit points.

Remark 4.7 By the theorems 4.3 and 3.5, it is clear that all the limits of
a convergent sequence have the same norm.

Definition 4.8 A subset F of a normed hypervector space V is said to be
bounded if there exists a real number M such that ‖α‖ ≤ M, ∀ α ∈ F.

Theorem 4.9 Every convergent sequence in a normed hypervector space V
is bounded.

Proof: Let the sequence αn → α as n →∞ in V .
Then there exists a positive number n0 such that
inf ‖αn#− α‖ < 1, ∀ n ≥ n0.
Let x ∈ αn#− α ⇒ αn ∈ x#α ⇒ ‖αn‖ ≤ sup ‖x#α‖ ≤ ‖x‖+ ‖α‖.
Therefore for any x ∈ αn#− α, we have ‖αn‖ ≤ ‖x‖+ ‖α‖.
So, ‖αn‖ ≤ inf{‖x‖ : x ∈ αn#−α}+‖α‖. That is ‖αn‖ ≤ inf ‖αn#−α‖+‖α‖.
Thus ‖αn‖ ≤ 1 + ‖α‖, ∀ n ≥ n0.
Let M = max{‖α1‖, ‖α2‖, · · · , ‖αn0−1‖, 1 + ‖α‖}.
Therefore, ‖αn‖ ≤ M for all positive integer n.
This completes the proof.

Theorem 4.10 Every convergent sequence of a hyperreal space R is bounded.
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Proof: Since the hyperreal space R is also a normed hypervector space
over itself where the norm of a point is defined by its absolute value. So the
theorem follows by the theorem 4.9.

Theorem 4.11 Let {αn} and {βn} be two convergent sequences that con-
verge to α and β respectively. Then for every γ ∈ α#β, there exists a sequence
{γn}, where γn ∈ αn#βn ∀ n, such that γn → γ.

Proof: Since αn → α and βn → β, for any positive number ε > 0, there
exists a positive integer n0 such that
inf ‖αn#− α‖ < ε

2
∀ n ≥ n0 and inf ‖βn#− β‖ < ε

2
∀ n ≥ n0.

Let x ∈ αn#− α and y ∈ βn#− β
⇒ αn ∈ x#α and βn ∈ y#β, ( by the last axiom of definition 2.2)
⇒ α ∈ αn#− x and β ∈ βn#− y
⇒ α#β ⊆ αn#− x#βn#− y
Let γ be any element of α#β.
Therefore γ ∈ αn#βn#− x#− y
Therefore for every n, there exists tn ∈ αn#βn and zn ∈ −x#− y such that
γ ∈ tn#zn ⇒ zn ∈ γ#− tn
⇒ inf ‖γ#− tn‖ ≤ ‖zn‖ ≤ sup ‖ − x#− y‖ ≤ ‖ − x‖+ ‖ − y‖ = ‖x‖+ ‖y‖
⇒ inf ‖tn#− γ‖ ≤ ‖x‖+ ‖y‖.
Since tn#− γ ⊆ (αn#βn)#− γ, inf ‖(αn#βn)#− γ‖ ≤ inf ‖tn#− γ‖.
So, inf ‖(αn#βn)#− γ‖ ≤ ‖x‖+ ‖y‖, this is true for all x ∈ αn#− α and for
all y ∈ βn#− β. Therefore,
inf ‖(αn#βn)#− γ‖ ≤ inf{‖x‖ : x ∈ αn#− α}+ inf{‖y‖ : y ∈ βn#− β}.
⇒ inf ‖(αn#βn)#− γ‖ ≤ inf ‖αn#− α‖+ inf ‖βn#− β‖.
Therefore for every n, there exists γn ∈ αn#βn such that
inf ‖γn#−γ‖ ≤ inf ‖αn#−α‖+inf ‖βn#−β‖ for all positive integer n. Thus
inf ‖γn#− γ‖ < ε

2
+ ε

2
= ε whenever n ≥ n0.

Therefore there exists a sequence {γn} which converges to γ.
This completes the proof.

Theorem 4.12 Let the sequence {αn} converges to α in V and the sequence
{λn} converges to λ in R. Then for every β ∈ λ ∗ α, there exists a sequence
{βn}, where βn ∈ λn ∗ αn ∀ n such that βn → β in V.

Proof: Since {αn} and {λn} are convergent sequences in V and R respec-
tively, so by theorems 4.9 and 4.10, {αn} and {λn} are bounded sequences.
Therefore there exist positive integers M and N such that
‖αn‖ ≤ M and |λn| ≤ N , for all positive integer n.
Again, since αn → α and λn → λ, for any positive number ε > 0, there exists
a positive integer n0 such that
inf ‖αn#− α‖ < ε

M+N
, ∀ n ≥ n0 and inf |λn ⊕−λ| < ε

M+N
, ∀ n ≥ n0.
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Let x ∈ αn#− α and a ∈ λn ⊕−λ
⇒ α ∈ αn#− x and λ ∈ λn ⊕−a
⇒ λ ∗ α ⊆ (λn ⊕−a) ∗ (αn#− x) = {b ∗ β : b ∈ λn ⊕−a, β ∈ αn#− x}.
Let β be any element of λ ∗ α.
Therefore β ∈ (λn⊕−a) ∗ (αn#−x) ⊆ {λn ∗ (αn#−x)}#{(−a) ∗ (αn#−x)}
⇒ β ∈ λn ∗ αn#λn ∗ (−x)#(−a) ∗ αn#(−a) ∗ (−x)
⇒ β ∈ tn#yn, for some tn ∈ λn∗αn and yn ∈ λn∗(−x)#(−a)∗αn#(−a)∗(−x)
⇒ yn ∈ β#− tn
⇒ inf ‖β#− tn‖ ≤ ‖yn‖ ≤ sup ‖λn ∗ (−x)#(−a) ∗ αn#(−a) ∗ (−x)‖
⇒ inf ‖β#− tn‖ ≤ sup ‖λn ∗ (−x)‖+ sup ‖(−a) ∗αn‖+ sup ‖(−a) ∗ (−x)‖, by
proposition 3.7
⇒ inf ‖β#− tn‖ ≤ |λn|‖ − x‖+ | − a|‖αn‖+ | − a|‖ − x‖
⇒ inf ‖tn#−β‖ ≤ |λn|‖x‖+ |a|‖αn‖+ |a|‖x‖, as inf ‖β#−tn‖ = inf ‖tn#−β‖
⇒ inf ‖tn#− β‖ ≤ N‖x‖+ |a|M + |a|‖x‖,
Since tn#− β ⊆ (λn ∗ αn)#− β, inf ‖(λn ∗ αn)#− β‖ ≤ inf ‖tn#− β‖.
Therefore, inf ‖(λn ∗αn)#− β‖ ≤ N‖x‖+ |a|M + |a|‖x‖, this is true for every
x ∈ αn#− α and for every a ∈ λn ⊕−λ, which implies
inf ‖(λn ∗ αn)# − β‖ ≤ N inf{‖x‖ : x ∈ αn# − α} + M inf{|a| : a ∈
λn ⊕−λ}+ inf{|a| : a ∈ λn ⊕−λ}. inf{‖x‖ : x ∈ αn#− α}
⇒ inf ‖(λn ∗ αn)#− β‖ ≤ N inf ‖αn#− α‖+ M inf |λn ⊕−λ|+
inf |λn ⊕−λ|. inf ‖αn#− α‖, this is true for each n.
Therefore for each n, there exists βn ∈ λn ∗ αn such that
inf ‖βn#−β‖ ≤ N inf ‖αn#−α‖+M inf |λn⊕−λ|+inf |λn⊕−λ|. inf ‖αn#−α‖
⇒ inf ‖βn#− β‖ ≤ N ε

M+N
+ M ε

M+N
+ ε

M+N
. ε
M+N

⇒ inf ‖βn#− β‖ ≤ {1 + ε
(M+N)2

}ε < 2ε.

Therefore there exists a sequence {βn} which converges to β.
This completes the proof.

Theorem 4.13 Let V be a normed hypervector space and α, β ∈ V , then
| ‖α‖ − ‖β‖ |≤ inf ‖α#− β‖.
Proof: Let x ∈ α#− β ⇒ α ∈ x#β
⇒ ‖α‖ ≤ sup ‖x#β‖ ≤ ‖x‖+ ‖β‖
⇒ ‖α‖ − ‖β‖ ≤ ‖x‖, this is true for every x ∈ α#− β
⇒ ‖α‖ − ‖β‖ ≤ inf{‖x‖ : x ∈ α#− β}
⇒ ‖α‖ − ‖β‖ ≤ inf ‖α#− β‖. · · · (1)
Again let x ∈ α#− β ⇒ −β ∈ x#− α
⇒ ‖− β‖ ≤ sup ‖x#− α‖ ≤ ‖x‖+ ‖ − α‖
⇒ ‖β‖ ≤ ‖x‖+ ‖α‖
⇒ ‖β‖ − ‖α‖ ≤ ‖x‖, this is true for every x ∈ α#− β
⇒ ‖β‖ − ‖α‖ ≤ inf{‖x‖ : x ∈ α#− β}
⇒ ‖β‖ − ‖α‖ ≤ inf ‖α#− β‖. · · · (2)
Therefore from (1) and (2), we get | ‖α‖ − ‖β‖ |≤ inf ‖α#− β‖.
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Corollary 4.14 Let {αn} be a convergent sequence in a normed hypervector
space V converging to α. Then the sequence {‖αn‖} converges to ‖α‖ in R.

Proof: Follows from the theorem 4.13.

Theorem 4.15 In a normed hypervector space V, every convergent sequence
is a cauchy sequence.

Proof: Let the sequence {αn} be converge to α in V. Therefore for any
ε > 0, there exists a positive integer n0 such that inf ‖αn#−α‖ < ε

2
, ∀ n ≥ n0.

Now by the theorem 3.4 we have
inf ‖αn#− αm‖ ≤ inf ‖αn#− α‖+ inf ‖α#− αm‖
⇒ inf ‖αn#− αm‖ ≤ inf ‖αn#− α‖+ inf ‖αm#− α‖, by result 3.3.
⇒ inf ‖αn#− αm‖ < ε

2
+ ε

2
= ε whenever n,m ≥ n0.

Therefore the sequence {αn} in V is a Cauchy sequence.
This completes the proof.

Theorem 4.16 If a sequence {αn} converges to α in a normed hypervector
space V, then every subsequence of {αn} also converges to α in V.

Proof: Let {αnk
} be a subsequence of {αn}. Since {αn} is a convergent

sequence, by the theorem 4.15, {αn} is a Cauchy sequence in V. Therefore for
any ε > 0, there exists a positive integer n0 such that
inf ‖αn#− α‖ < ε

2
∀ n ≥ n0 and inf ‖αn#− αm‖ < ε

2
∀ n, m ≥ n0.

Now by the theorem 3.4 we have
inf ‖αnk

#− α‖ ≤ inf ‖αnk
#− αn‖+ inf ‖αn#− α‖

⇒ inf ‖αnk
#− α‖ < ε

2
+ ε

2
= ε whenever nk, n ≥ n0

⇒ inf ‖αnk
# − α‖ < ε whenever nk ≥ n0. Therefore the subsequence {αnk

}
converges to α. This completes the proof.

Theorem 4.17 In a normed hypervector space V, every Cauchy sequence
is convergent if and only if it has a convergent subsequence.

Proof: If a Cauchy sequence is convergent, then obviously it has a conver-
gent subsequence.
Conversely, let {αn} be a Cauchy sequence in V and {αnk

} be a subsequence
of {αn} that converges to α.
Therefore for any ε > 0, there exists a positive integer n0 such that
inf ‖αn#− αm‖ < ε

2
∀ n,m ≥ n0 and inf ‖αnk

#− α‖ < ε
2
∀ nk ≥ n0.

Now by theorem 3.4 we have
inf ‖αn#− α‖ ≤ inf ‖αn#− αnk

‖+ inf ‖αnk
#− α‖

⇒ inf ‖αn#− α‖ < ε
2

+ ε
2

= ε whenever nk, n ≥ n0.
Therefore the sequence {αn} converges to α in V. This completes the proof.
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