

Gen. Math. Notes, Vol. 1, No. 1, November 2010, pp. 1-7 ISSN 2219-7184; Copyright ©ICSRS Publication, 2010 www.i-csrs.org Available free online at http://www.geman.in

On *n*-normed linear space valued strongly ∇_r -Cesàro and strongly ∇_r -lacunary summable sequences

B.Surender Reddy¹, Hemen Dutta² and Iqbal H. Jebril³

¹Department of Mathematics, Osmania University, Hyderabad, A.P., India. E-mail: bsrmathou@yahoo.com ²Department of Mathematics, Gauhati University, Kokrajhar Campus, Assam, India E-mail: hemen_dutta08@rediffmail.com ³Department of Mathematics, King Faisal University, Saudi Arabia E-mail: iqbal501@hotmail.com

(Received 2.9.2010, Accepted 1.10.2010)

Abstract

In this article we introduce the spaces $|\sigma_1|(X, \nabla_r)$ and $N_{\theta}(X, \nabla_r)$ of Xvalued strongly ∇_r -Cesàro summable and strongly ∇_r -lacunary summable sequences respectively, where X, a real linear n-normed space and ∇_r is a new difference operator, where r is a non-negative integer. This article extends the notion of strongly Cesàro summable and strongly lacunary summable sequences to n-normed linear space valued (n-nls valued) difference sequences. We study these spaces for existence of norm as well as for completeness. Further we investigate the relationship between these spaces.

Keywords: *n*-norm; Difference sequence space; Cesàro summable sequence; Lacunary summable sequence; Completeness.

2000 MSC No: 46B04, 40A05, 46A45.

1 Introduction

Let w denote the space of all real or complex sequences. By c, c_0 and ℓ_{∞} , we denote the Banach spaces of convergent, null and bounded sequences $x = (x_k)$, respectively normed by $||x|| = \sup |x_k|$.

Let Z be a sequence space, then Kizmaz [8] introduced the following sequence spaces: $Z(\Delta) = \{x = (x_k) \in w : (\Delta x_k) \in Z\}$, for $Z = \ell_{\infty}$, c, c₀, where $\Delta x_k = x_k - x_{k+1}$, for all $k \in N$.

The following definitions can be found in [5].

The spaces $|\sigma_1|$ of strongly Cesàro summable sequence is defined as follows: $|\sigma_1| = \{x = (x_k) : \text{there exists } L \text{ such that } \frac{1}{p} \sum_{k=1}^p |x_k - L| \to 0\},\$

which is a Banach space normed by

$$||x|| = \sup_{p} \left(\frac{1}{p} \sum_{k=1}^{p} |x_k| \right).$$

By a lacunary sequence $\theta = (k_p)$, $p = 1, 2, 3, \ldots$, where $k_0 = 0$, we mean an increasing sequence of non-negative integers with $h_p = (k_p - k_{p-1}) \to \infty$ as $p \to \infty$. We denote $I_p = (k_{p-1}, k_p]$ and $\eta_p = \frac{k_p}{k_{p-1}}$ for $p = 1, 2, 3, \ldots$ The space of strongly lacunary summable sequence N_{θ} is defined as follows:

$$N_{\theta} = \{x = (x_k) : \lim_{p \to \infty} \frac{1}{h_p} \sum_{k \in I_p} |x_k - L| = 0, \text{ for some } L\}.$$

The space N_{θ} is a Banach space with the norm

$$||x||_{\theta} = \sup_{p} \frac{1}{h_p} \sum_{k \in I_p} |x_k|.$$

The concept of 2-normed spaces was initially developed by Gähler in the mid of 1960's, which can be found in [6] while that of *n*-normed spaces can be found in [9]. Since then, many others have studied this concept and obtained various results; see for instance [1, 3, 4, 7].

Definition 1.1 Let $n \in N$ and X be a real linear space of dimension $d \ge n \ge 2$. A real valued function $\|\bullet, \bullet, \cdots, \bullet\| : X^n \to R$ satisfying the following four properties:

 (nN_1) : $||x_1, x_2, \ldots, x_n|| = 0$ if and only if x_1, x_2, \ldots, x_n are linearly dependent vectors,

 $(nN_2): ||x_1, x_2, ..., x_n|| = ||x_{j_1}, x_{j_2}, ..., x_{j_n}||$ for every permutation $(j_1, j_2, ..., j_n)$ of (1, 2, ..., n) i.e., $||x_1, x_2, ..., x_n||$ is invariant under any permutation of $x_1, x_2, ..., x_n$.

 $(nN_3): ||\alpha x_1, x_2, \dots, x_n|| = |\alpha| ||x_1, x_2, \dots, x_n||$ for all $\alpha \in R$

 $(nN_4): ||x + x', x_2, \dots, x_n|| \le ||x, x_2, \dots, x_n|| + ||x', x_2, \dots, x_n||$ for all

 $x, x', x_2, \ldots, x_n \in X$, is called an n-norm on X and the pair $(X, ||\bullet, \bullet, \cdots, \bullet||)$ is called linear n-normed space.

The standard *n*-norm on X, a real inner product space of dimension $d \ge n$ is as follows:

$$||x_1, x_2, \dots, x_n||_S = \begin{vmatrix} < x_1, x_1 > & \cdots & < x_1, x_n > \\ \vdots & \vdots & \vdots \\ < x_n, x_1 > & \cdots & < x_n, x_n > \end{vmatrix}^{\frac{1}{2}}$$

where $\langle ., . \rangle$ denotes the inner product on X. If $X = R^n$, then this *n*-norm is exactly the same as the Euclidean *n*-norm, $||x_1, x_2, ..., x_n||_E$ as mention below. For n=1, this *n*-norm is the usual norm $||x_1|| = \langle x_1, x_1 \rangle^{\frac{1}{2}}$.

A trivial example of an *n*-normed space is $X = R^n$ equipped with the following Euclidean *n*-norm:

$$\|x_1, x_2, \dots, x_n\|_E = abs \left(\begin{vmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & \vdots & \vdots \\ x_{n1} & \cdots & x_{nn} \end{vmatrix} \right)$$

where $x_i = (x_{i1}, ..., x_{in}) \in \mathbb{R}^n$ for each i = 1, 2, ..., n.

Definition 1.2 A sequence (x_k) in a linear *n*-normed space $(X, ||\bullet, \bullet, \dots, \bullet||)$ is said to convergent to $L \in X$ if $\lim_{k \to \infty} ||x_k - L, w_2, w_3, \dots, w_n|| = 0$, for every $w_2, w_3, \dots, w_n \in X$.

Definition 1.3 A sequence (x_k) in a linear *n*-normed space $(X, ||\bullet, \bullet, \cdots, \bullet||)$ is called Cauchy sequence if $\lim_{k,m\to\infty} ||x_k - x_m, w_2, w_3, \ldots, w_n|| = 0$, for every $w_2, w_3, \ldots, w_n \in X$.

Definition 1.4 A linear n-normed space X is said to be complete if every Cauchy sequence in X is convergent. A complete n-normed space is called an n-Banach space.

Now we state the following important result [7] on *n*-norms as Lemma.

Lemma 1.5 A standard n-normed space is complete if and only if it is complete with respect to usual norm $\|.\|_S = <.,.>^{\frac{1}{2}}$.

2 The Spaces $|\sigma_1|(X, \nabla_r)$ and $N_{\theta}(X, \nabla_r)$

Throughout this section $(X, \|\bullet, \bullet, \cdots, \bullet\|_X)$ will be a real linear *n*-normed space and w(X) will denotes X-valued sequence space. The *n*-norm $\|\bullet, \bullet, \cdots, \bullet\|_X$ on X is either a standard *n*-norm or a non-standard *n*-norm. In general we write $\|\bullet, \bullet, \cdots, \bullet\|_X$ and for standard case we write $\|\bullet, \bullet, \cdots, \bullet\|_S$. Let r be a non-negative integer. Then we define the following sequence space:

 $|\sigma_1|(X, \nabla_r) = \{x \in w(X) : \lim_{p \to \infty} \frac{1}{p} \sum_{k=1}^p \|\nabla_r x_k - L, z_1, z_2, \dots, z_{n-1}\|_X = 0, \text{ for every } z_1, z_2, \dots, z_{n-1} \in X \text{ and for some } L\}, \text{ where } \nabla_r x_k = x_k - x_{k-r} \text{ with } \nabla_0 x_k = x_k, \text{ for all } k \in N \text{ (See for details in [2]). In this expansion, we take } x_k = 0, \text{ for all non-positive values of } k.$ For L = 0, we write this space as $|\sigma_1|^0(X, \nabla_r)$.

We call $|\sigma_1|(X, \nabla_r)$, the set of all X-valued strongly ∇_r -Cesàro summable sequences.

Let θ be a lacunary sequence and r be a non-negative integer. Then we define the following space:

 $N_{\theta}(X, \nabla_r) = \{ x \in w(X) : \lim_{p \to \infty} \frac{1}{h_p} \sum_{k \in I_p} \| \nabla_r x_k - L, z_1, z_2, \dots, z_{n-1} \|_X = 0, \text{ for } every \ z_1, z_2, \dots, z_{n-1} \in X \text{ and for some } L \}.$ For L = 0, we write this space as $N_{\theta}^0(X, \nabla_r).$

We call $N_{\theta}(X, \nabla_r)$, the set of all X-valued strongly ∇_r -lacunary summable sequences.

In the special case where $\theta = (2^p)$, we have $N_{\theta}(X, \nabla_r) = |\sigma_1|(X, \nabla_r)$. For r = 0, we write the above two spaces as $|\sigma_1|(X)$ and $N_{\theta}(X)$ respectively.

It is obvious that $|\sigma_1|(X) \subset |\sigma_1|(X, \nabla_r)$ and $N_{\theta}(X) \subset N_{\theta}(X, \nabla_r)$. This means that every X-valued strongly Cesàro summable sequence is strongly ∇_r -Cesàro summable and every X-valued strongly lacunary summable sequence is strongly ∇_r -lacunary summable.

Theorem 2.1 (i) If X is an n-Banach space then $|\sigma_1|(X, \nabla_r)$ is a Banach space normed by

$$\|x\| = \sup_{p \ge 1, \ z_1, z_2, \dots, z_{n-1} \in X} \left(\frac{1}{p} \sum_{k=1}^p \|\nabla_r x_k, z_1, z_2, \dots, z_{n-1}\|_X \right)$$
(2.1)

(ii) If X is an n-Banach space then $N_{\theta}(X, \nabla_r)$ is a Banach space normed by

$$\|x\|_{\theta} = \sup_{p \ge 1, \ z_1, z_2, \dots, z_{n-1} \in X} \left(\frac{1}{h_p} \sum_{k \in I_p} \|\nabla_r x_k, z_1, z_2, \dots, z_{n-1}\|_X \right)$$
(2.2)

Proof. (i) It is easy to see that $|\sigma_1|(X, \nabla_r)$ is a normed linear space. To prove completeness, one may use same arguments as applied in [1] and [2].

(ii) Proof of this part follows by applying similar arguments as applied to prove part (i).

The following Corollary is due to Lemma 1.5.

Corollary 2.2 Let X be equipped with standard *n*-norm. Then

(i) If X is a Banach space then $|\sigma_1|(X, \nabla_r)$ is a Banach space normed by

$$||x|| = \sup_{p \ge 1, \ z_1, z_2, \dots, z_{n-1} \in X} \left(\frac{1}{p} \sum_{k=1}^p ||\nabla_r x_k, z_1, z_2, \dots, z_{n-1}||_S \right)$$

(ii) If X is a Banach space then $N_{\theta}(X, \nabla_r)$ is a Banach space normed by

$$\|x\|_{\theta} = \sup_{p \ge 1, \ z_1, z_2, \dots, z_{n-1} \in X} \left(\frac{1}{h_p} \sum_{k \in I_p} \|\nabla_r x_k, z_1, z_2, \dots, z_{n-1}\|_S \right)$$

Proposition 2.3 Let $\theta = (k_p)$ be a lacunary sequence with $\liminf_p \eta_p > 1$, then $|\sigma_1|(X, \nabla_r) \subseteq N_{\theta}(X, \nabla_r)$.

Proof. Let $\liminf_p \eta_p > 1$. Then there exists v > 0 such that $1 + v \leq \eta_p$ for all $p \geq 1$. Let $x \in |\sigma_1|(X, \nabla_r)$. Then there exists some $L \in X$ such that

$$\lim_{t \to \infty} \frac{1}{t} \sum_{k=1}^{t} \|\nabla_r x_k - L, z_1, z_2, \dots, z_{n-1}\|_X = 0 \text{ for every } z_1, z_2, \dots, z_{n-1} \in X$$

Now we write $\frac{1}{h_p} \sum_{k \in I_p} \|\nabla_r x_k - L, z_1, z_2, \dots, z_{n-1}\|_X$ $= \frac{1}{h_p} \sum_{1 \le i \le k_p} \|\nabla_r x_i - L, z_1, z_2, \dots, z_{n-1}\|_X - \frac{1}{h_p} \sum_{1 \le i \le k_{p-1}} \|\nabla_r x_i - L, z_1, z_2, \dots, z_{n-1}\|_X$ $= \frac{k_p}{h_p} \left(\frac{1}{k_p} \sum_{1 \le i \le k_p} \|\nabla_r x_i - L, z_1, z_2, \dots, z_{n-1}\|_X \right)$ $- \frac{k_{p-1}}{h_p} \left(\frac{1}{k_{p-1}} \sum_{1 \le i \le k_{p-1}} \|\nabla_r x_i - L, z_1, z_2, \dots, z_{n-1}\|_X \right)$ (2.3)

Now we can have

$$\frac{k_p}{h_p} \le \frac{1+v}{v}$$
 and $\frac{k_{p-1}}{h_p} \le \frac{1}{v}$, since $h_p = k_p - k_{p-1}$

Hence using (2.3), we have $x \in N_{\theta}(X, \nabla_r)$.

Proposition 2.4 Let $\theta = (k_p)$ be a lacunary sequence with $\limsup_p \eta_p < \infty$, then $N_{\theta}(X, \nabla_r) \subseteq |\sigma_1|(X, \nabla_r)$. **Proof.** Let $\limsup_{p} \eta_p < \infty$. Then there exists M > 0 such that $\eta_p < M$ for all $p \ge 1$. Let $x \in N^0_{\theta}(X, \nabla_r)$ and $\epsilon > 0$. We can find R > 0 and K > 0 such that

$$\sup_{i\geq R} S_i = \sup_{i\geq R} \left(\frac{1}{h_i} \sum_{i=1}^{k_i} \|\nabla_r x_i, z_1, z_2, \dots, z_{n-1}\|_X - \frac{1}{h_i} \sum_{i=1}^{k_{i-1}} \|\nabla_r x_i, z_1, z_2, \dots, z_{n-1}\|_X \right) < \varepsilon$$

and $S_i < K$ for all $i = 1, 2, \ldots$. Then if t is any integer with $k_{p-1} < t \le k_p$, where p > R, we can write

$$\frac{1}{t} \sum_{i=1}^{t} \|\nabla_r x_i, z_1, z_2, \dots, z_{n-1}\|_X \le \frac{1}{k_{p-1}} \sum_{i=1}^{k_p} \|\nabla_r x_i, z_1, z_2, \dots, z_{n-1}\|_X$$
$$= \frac{1}{k_{p-1}} (\sum_{I_1} \|\nabla_r x_i, z_1, z_2, \dots, z_{n-1}\|_X + \sum_{I_2} \|\nabla_r x_i, z_1, z_2, \dots, z_{n-1}\|_X)$$
$$+ \dots + \sum_{I_p} \|\nabla_r x_i, z_1, z_2, \dots, z_{n-1}\|_X)$$

$$= \frac{k_1}{k_{p-1}} S_1 + \frac{k_2 - k_1}{k_{p-1}} S_2 + \ldots + \frac{k_R - k_{R-1}}{k_{p-1}} S_R + \frac{k_{R+1} - k_R}{k_{p-1}} S_{R+1} + \ldots + \frac{k_p - k_{p-1}}{k_{p-1}} S_p$$

$$\leq \left(\sup_{i \ge 1} S_i \right) \frac{k_R}{k_{p-1}} + \left(\sup_{i \ge R} S_i \right) \frac{k_p - k_R}{k_{p-1}}$$

$$< K \frac{k_R}{K_{p-1}} + \epsilon M$$

Since $k_{p-1} \to \infty$ as $t \to \infty$, it follows that $x \in |\sigma_1|^0(X, \nabla_r)$. The general inclusion $N_{\theta}(X, \nabla_r) \subseteq |\sigma_1|(X, \nabla_r)$ follows by linearity.

The following Proposition is the consequence of the above two Propositions.

Proposition 2.5 Let $\theta = (k_p)$ be a lacunary sequence with $1 < \liminf_p \eta_p \le \limsup_p \eta_p < \infty$, then $|\sigma_1|(X, \nabla_r) = N_{\theta}(X, \nabla_r)$.

(Note : Part of this paper was presented in ICM-2010, August 19-27, Hyderabad.)

References

[1] H. Dutta, On some n-normed linear space valued difference sequences (submitted).

- [2] H. Dutta, On some difference sequence spaces, Pacific Journal of Science and Technology, 10(2009), 243-247.
- [3] H. Dutta, An application of lacunary summability method to *n*-norm, *Int. J. Appl. Math. Stat.*, 15(2009), 89–97.
- [4] H. Dutta and B. Surender Reddy, On non-standard *n*-norm on some sequence spaces, *Int. J. Pure Appl. Math.*, (In Press).
- [5] A.R. Freedman, J.J. Sember and M. Raphael, Some Cesàro-type summability spaces, *Proc. Lond. Math. Soc.*, 37(1978), 508–520.
- [6] S. Gähler, 2-metrische Räume und ihre topologische Struktur, *Math. Nachr.*, 28(1963), 115–148.
- [7] H. Gunawan and M. Mashadi, On n-normed spaces, Int. J. Math. Math. Sci., 27(2001), 631–639.
- [8] H. Kizmaz, On certain sequence spaces, Canad. Math. Bull., 24(1981), 169–176.
- [9] A. Misiak, *n*-inner product spaces, *Math. Nachr.*, 140(1989), 299–319.