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Abstract

Some inequalities regarding matrix norms are established, which are related
to numerical computations and optimization, respectively.
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1 Introduction

If one has several vectors in Rn or several matrices in Mn, what might it
mean to say that some are ”small” or that others are ”large” ? Under what
circumstances might we say that two matrices are ”close together” or ”far
apart” ? One way to answer these questions is to study norms, or measures of
size, of matrices. It is essential in the analysis and assessment of algorithms
for numerical computations and optimization.
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2 notation and terminology

Throughout this paper, uppercase roman letters denote matrices, lowercase
roman letters denote vectors, and lowercase Greek letters denote scalars. We
let Rn denote the set of n-dimensional vectors having real components. Also,we
let Mn denote the set of n×n matrices with real entries. For a matrix Q ∈ Mn

with all real eigenvalues, we denote its eigenvalues by λi[Q], i = 1, . . . , n,
and its smallest eigenvalue and largest eigenvalue by λmin[Q] and λmax[Q],
respectively. The trace of a matrix Q ∈ Mn is denoted by trQ ≡ ∑n

i=1 Qii.
The set of all symmetric n× n is denoted by Sn. The Euclidean norm and its
associated operator norm are both denoted by ‖ · ‖.

Definition 2.1 A function ‖ · ‖ : Mn → R is called a matrix norm if for
all A,B ∈ Mn when it satisfies the following axioms:

(1) ‖A‖ ≥ 0, with equality holding if and only if A = 0;
(2) ‖αA‖ = α‖A‖, for all complex scalar α;
(3) ‖A + B‖ ≤ ‖A‖+ ‖B‖, for all A,B ∈ Mn;
(4) ‖AB‖ ≤ ‖A‖‖B‖, for all A, B ∈ Mn.

Definition 2.2 The Frobenius norm defined for A ∈ Mn by

‖A‖F ≡ (
n∑

i,j=1

|aij|2)1/2.

Definition 2.3 Let ‖ · ‖ be a vector norm on Rn. Define operator norm or
spectral norm ‖ · ‖ on Mn by

‖A‖ ≡ max‖x‖=1‖Ax‖ =
√

λmax(AT A).

3 The Main Results

In the next result, we collect some useful facts about symmetric matrices. For
its proof, we refer the reader to Golub and Van Loan [1] or Horn and Johnson
[2]. In the next result, we collect some useful facts about symmetric matrices.
For its proof, we refer the reader to Golub and Van Loan [1] or Horn and
Johnson [2].

Lemma 3.1 For all E ∈ Sn, we have:

λmax(E) = max‖u‖=1u
T Eu.. (1)

λmin(E) = min‖u‖=1u
T Eu.. (2)

‖E‖ = maxi=1,...,n|λi(E)|. (3)

‖E‖2
F =

n∑

i=n

[λiE]2. (4)
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Lemma 3.2 For all A ∈ Mn, the following relations hold:

maxi=1,...,nRe[λi(A)] ≤ 1

2
λmax(A + AT ). (5)

mini=1,...,nRe[λi(A)] ≥ 1

2
λmin(A + AT ). (6)

n∑

i=1

|λi(A)|2 ≤ ‖A‖2
F = ‖AT‖2

F ; (7)

λmax(A
T A)‖ = ‖AT A‖ = ‖A‖2 = ‖AT‖2. (8)

Proof. Inequality (5) is stated as an exercise in Horn and Johnson; see [1].
Inequality (6) follows from (5) applied to the matrix −W . To prove (7), we
prove that tr(A2) ≤ tr(AT A). we first consider the case n = 2,

A =

[
a11 a12

a21 a22

]
.

hence, tr(A2) = a2
11 + a2

22 + 2a11a22 ≤ a2
11 + a2

22 + a2
12 + a2

22 = tr(AT A). We
consider n = k and n = k + 1, respectively.

A =

[
B αk

βk ak+1,k+1

]
.

where B ∈ Mk and αk, βk ∈ Rk. Then, tr(A2) = tr(B2)+2(βk)T αk+a2
k+1,k+1 ≤

tr(B2) + a2
k+1,k+1 + ‖βk‖2 + ‖αk‖2 = tr(AT A). Hence, (7) holds. Considering

that AT A ∈ Sn, which clearly implies (8).

Lemma 3.3 Suppose that W ∈ Mn is a nonsingular matrix. then for any
E ∈ Sn, the following relations hold:

λmax(E) ≤ 1

2
λmax(WEW−1 + (WEW−1)T ). (9)

λmin(E) ≥ 1

2
λmin(WEW−1 + (WEW−1)T ). (10)

Proof. Using (5), we obtain

λmax(E) = λmax(WEW−1) ≤ 1

2
λmax(WEW−1 + (WEW−1)T )

for every E ∈ Mn, and hence (9) follows. Inequality (10) is proved in a similar
way by using (6). .
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4 Applications

The following inequalities are widely used in numerical computations and op-
timization [3].

Lemma 4.1 For every A ∈ Mn, and H ∈ Sn, then the equations

AU + UA = H (11)

has a unique solution U ∈ Sn. Moveover, this solution satisfies

‖AU‖F ≤ ‖H‖F /
√

2. (12)

Proof.The first part of the lemma follows from the fact that the linear map
ΦA : Sn → Sn defined by ΦA(U) : AU + UA is an isomorphism. Indeed,
since ΦA has the same domain and codomain, it suffices to show that ΦA is
one-to-one, or equivalently that AU + UA = 0 implies U = 0. In turn, this
last implication follows from the fact that any solution U of (11) satisfies (12)
(simply set H = 0 in (12) to conclude that U = 0). To show the last claim,
we square both sides of (11) to obtain

2‖AU‖2
F + 2tr(UAUA) = ‖H‖2

F .

Since tr(UAUA) = ‖A1/2UA1/2‖2
F ≥ 0, then we complete the proof.

Lemma 4.2 Suppose that W ∈ Mn is a nonsingular matrix. then for any
E ∈ Sn, the following relations hold:

‖E‖ ≤ 1

2
‖WEW−1 + (WEW−1)T‖. (13)

‖E‖F ≤ 1

2
‖WEW−1 + (WEW−1)T‖F . (14)

Proof.Using (5), we obtain

λmax(E) = λmax(WEW−1) ≤ 1

2
λmax(WEW−1 + (WEW−1)T )

and

λmin(E) = λmin(WEW−1) ≥ 1

2
λmin(WEW−1 + (WEW−1)T ).

Then we conclude that

1

2
λmin(WEW−1+(WEW−1)T ) ≤ λmin(E) ≤ λmax(E) ≤ 1

2
λmax(WEW−1+(WEW−1)T ).
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From ‖E‖ = ‖λi(E)‖, i = 1, 2, . . . , n, then we prove the first part. To prove
(14) , we use (4) and (7) to get

‖E‖2
F =

n∑

i=1

[λi(E)]2 =
n∑

i=1

[λi(WEW−1)] ≤ (WEW−1)|2F .

Hence, we obtain

4‖E‖2
F ≤ 2‖E‖2

F + 2‖WEW−1‖2
F

= 2‖WEW−1‖2
F + 2tr(E2)

= 2‖WEW−1‖2
F + 2tr(WE2W−1)

= 2‖WEW−1‖2
F + 2tr(WEW−1)2

= ‖WEW−1 + (WEW−1)T‖2
F .

Which clearly implies (14).

Theorem 4.3 For all A ∈ Mn, the following relations hold:

1

2
‖A + AT‖F ≤ ‖A‖F ; . (15)

1

2
‖A + AT‖ ≤ ‖A‖.. (16)

Proof. The two inequalities can be proved by using the triangle inequality for
norm.

References

[1] R A Horn and C R Johnson, Topics in matrix analysis, New York: Cam-
bridge University Press, (1991).

[2] Horn G. H. Golub and C. E. Vanloan, Matrix computations: Second Edi-
tion, The John Hopkins University Press, Baltimore, MD, (1989).

[3] A.A. Soliman, Primal-dual following interior point algorithms for semidef-
inite programming. SIAM J Optimization 7(3) (1997) 663–678.


