

Gen. Math. Notes, Vol. 27, No. 2, April 2015, pp.92-106 ISSN 2219-7184; Copyright ©ICSRS Publication, 2015 www.i-csrs.org Available free online at http://www.geman.in

A New Generalization of s-Weakly

Regular Rings

Abdullah M. Abdul-Jabbar

Department of Mathematics, College of Science Salahaddin University-Erbil , Kurdistan Region, Iraq E-mail: m1abdullah.math71@gmail.com; abdullah.abduljabbar@su.edu.krd

(Received: 5-3-15 / Accepted: 8-4-15)

Abstract

Right (resp. left) s-weakly regular rings was first introduced by V. Gupta in 1984. Now, in the present paper we introduce and study a new generalization of right (resp. left) s-weakly regular rings, which is called right (resp. left) gsweakly regular rings as for each $a \in R$, there exists a positive integer n = n(a), depending on a such that $a \in aRa^nR$ (resp. $a \in Ra^nRa$). Moreover, giving several characterizations, properties, main results of it and related it with other types of modules such as flat modules and GP-injective modules.

Keywords: Regular Rings, s-Weakly Regular Rings, gs-Weakly regular rings, GP-Injective modules.

1 Introduction

Throughout this paper rings are associative ring with identity and all modules are unitary. For a subset X of R, the right annihilator of X in a ring R is defined by $r(X) = \{y \in R : xy = 0, \text{ for all } x \in X\}$. Similarly, define the left annihilator of X in a ring R as $\ell(X) = \{y \in R : yx = 0, \text{ for all } x \in X\}$. If $X = \{a\}$ we usually abbreviation $r(a)(\text{resp. } \ell(a))$. An ideal I of a ring R is said to be *essential* if I has a non-zero intersection with every non-zero ideal of R.

An element a of a ring R is said to be regular[18] if there exists an element $b \in R$ such that a = aba. A ring R is said to be von Neumann regular (briefly,

regular) if every element of R is regular. A ring R is said to be strongly regular [11] if for every $a \in R$, there exists $b \in R$ such that $a = a^2 b$.

A ring R is called right(resp. left) weakly regular[16] if $I^2 = I$, for each right (resp. left) ideal I of R, equivalently if $x \in xRxR$ (resp. $x \in RxRx$), for every $x \in R$. R is called weakly regular if it is both right and left weakly regular. A ring R is said to be right(resp. left) s-weakly regular[8] if for every $a \in R$, then $a \in aRa^2R$ (resp. $a \in Ra^2Ra$). (a is called right(resp. left)s-weakly regular element).

A ring R is said to be s-weakly regular if it is both right and left sweakly regular. A ring R is called right(resp. left) weakly π -regular[7] if $a^n \in a^n Ra^n R$ (resp. $a^n \in Ra^n Ra^n$). R is called reduced if it has no nonzero nilpotent element.

According to Cohn[6], a ring R is called reversible if ab = 0 implies ba = 0, for $a, b \in R$. A ring R is called periodic [3] if for each $x \in R$, the set $\{x, x^2, x^3, ...\}$ is finite, or equivalently, for each $x \in R$, there are positive integers m(x), n(x) such that $x^{m(x)} = x^{m(x)+n(x)}$, or also equivalently for each $a \in R$, some power of a is idempotent. A right R-module M is called Generalized P-injective (briefly, GP-injective) [13] if for each $a \in R$, there exists a positive integer n such that $a^n \neq 0$ and any right R-homomorphism of $a^n R$ into M extends to one of R into M. The ring R is called right (resp. left) GP-injective if the right (resp. left) R-module $R_R(\text{resp. }_R R)$ is GP-injective module.

2 Generalized s-Weakly Regular Rings (gs-Weakly Regular Rings)

In this section, we define a new generalization of right (resp. left), s-weakly regular rings, which is called *right(resp. left) gs-weakly regular rings* and we find several characterizations, properties and compare it with other types of rings.

We start this section with the following definition.

Definition 2.1 A ring R is said to be right(resp. left) generalized s-weakly regular (briefly, gs-weakly regular) if for each $a \in R$, there exists a positive integer n = n(a), depending on a such that $a \in aRa^nR(resp. a \in Ra^nRa)$.

A ring R is said to be *gs-weakly regular* if it is both right and left gs-weakly regular. An element a of a ring R is said to be right(resp. left)gs-weakly regular if there exists a positive integer n and an element b in Ra^nR such that a = ab (resp. a = ba).

The proof of the following lemma is not hard, therefore it is omitted.

Lemma 2.2 Every right s-weakly regular ring is a right gs-weakly regular.

The converse of the above lemma is not true in general as it is shown in the following example (1)(ii).

Example 2.3 (i) Periodic ring is a gs-weakly regular ring.

(ii) If R is a ring with identity satisfies the property $a = a^{n+1}$, for each $a \in R$ and a positive integer n, then R is a gs-weakly regular rings, but it is not s-weakly regular.

The following example for non-commutative right gs-weakly regular rings.

Example 2.4 Let $W = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} : a, b \in R \right\}$, where R is the set of all real numbers. Then W is a right gs-weakly regular rings, since for any positive integer n > 1,

$$\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}^n \begin{pmatrix} \frac{1}{a^n} & 0 \\ 0 & \frac{1}{b^n} \end{pmatrix} .$$

Theorem 2.5 Let R be a right gs-weakly regular ring. Then, $R = Ra^n R$, for all right non-zero divisor element a in R and a positive integer n.

Proof: Let a be a right non-zero divisor element of R. Then, $aR = aRa^nR$. Hence,

 $a(R - Ra^n R) = 0$ and $R - Ra^n R \subseteq r(a)$.

Since a is a non-zero divisor. Therefore, $r(a) = \ell(a) = 0.Thus$, R=RaⁿR. The proof of the following results are obvious, therefore they are omitted.

Theorem 2.6 (1) A homomorphic image of a right gs-weakly regular ring is a right gs-weakly regular.

(2) If R is a right gs-weakly regular ring and I is a two-sided ideal of R, then R/I is a right gs-weakly regular.

Lemma 2.7 [6] If R is a reversible ring, then $r(a) = \ell(a)$, for each $a \in R$.

Theorem 2.8 Let R be a reversible ring. Then R is a right gs-weakly regular if and only if R is a left gs-weakly regular.

Proof: Let R be a right gs-weakly regular ring and $x \in R$. Then $xR = xRx^nR$ for some positive integer n. Hence $x = \sum_{i=1}^k xt_ix^ns_i$ for some $t_i \in R, s_i \in R$. This implies $x(1 - \sum_{i=1}^k t_ix^ns_i) = 0$. Then $(1 - \sum_{i=1}^k t_ix^ns_i) \in r(x)$. As R is reversible, then by Lemma 2.7, $(1 - \sum_{i=1}^k t_ix^ns_i) \in \ell(x)$, we get $(1 - \sum_{i=1}^k t_ix^ns_i)x = 0$. Hence $x = \sum_{i=1}^k t_ix^ns_i x$. Therefore, $Rx = Rx^nRx$ and hence R is left gsweakly regular. The converse part can be proved similarly.

Theorem 2.9 A ring R is a right(resp. left) gs-weakly regular if and only if $Ra^nR + r(a) = R$ (resp. $Ra^nR + \ell(a) = R$), for each $a \in R$ and a positive integer n.

Proof: Let R be a right gs-weakly regular ring. Then, for each $a \in R$, there exists $ba^n c \in Ra^n R$ such that $a = aba^n c$ for some $b, c \in R$ and a positive integer n. Then, $a(1 - ba^n c) = 0$. This implies that $(1 - ba^n c) \in r(a)$. Now $1 = ba^n c + (1 - ba^n c)$. Then, $R = Ra^n R + r(a)$.

Conversely, assume that $Ra^nR + r(a) = R$, for each $a \in R$ and a positive integer n. Then, 1 = b + d, for some $b \in Ra^nR, d \in r(a)$ and a positive integer n. Set $b = ta^ns$, for some $t, s \in R$ and a positive integer n. Therefore, a.1 = ab + ad = ab. Then, $a = ata^ns$. Thus, R is a right gs-weakly regular ring. Likewise for the left gs-weakly regular ring. \Box

Theorem 2.10 Let r(a) = r(b), for each $a \in R$ and $b \in Ra^n R$. Then, R is a right gs-weakly regular if and only if r(a) is a direct summand, for each $a \in R$ and a positive integer n.

Proof: Let R be a right gs-weakly regular, and let $a \in R$, then there exists $b = ta^n s \in Ra^n R$ such that $a = ata^n s$, for some $t, s \in R$ and a positive integer n. Then, $a(1-ta^n s) = 0$, so $(1-ta^n s) \in r(a)$. Therefore, $1 = ta^n s + (1-ta^n s)$. Whence, $R = Ra^n R + r(a)$. Now, let $x \in Ra^n R \cap r(a)$, then $x = s_1a^n s_2$, for some $s_1, s_2 \in R$ and ax = 0. Thus, $as_1a^n s_2$, so $s_1a^n s_2 \in r(a) = r(b)$. Therefore, $bs_1a^n s_2 = 0$, so bx = 0 and hence x = 0. Therefore, $Ra^n R \cap r(a) = (0)$. Hence $R = Ra^n R \oplus r(a)$.

Conversely, assume that r(a) is a direct summand, for every $a \in R$. Then, there exists a right ideal I of R such that R = r(a) + I and $r(a) \cap I = (0)$. In particular, there exist $i \in I$ and $d \in r(a)$ such that 1 = d + i, multiply by afrom the right we obtain a = ad + ai. So, a = ai. Since $Ra^n R$ is a two-sided ideal of R, then $i \in Ra^n R$. Thus, R is a right gs-weakly regular ring. \Box **Lemma 2.11** [1] If R is a reduced ring, then for each $a \in R$ and a positive integer n,

(i) $r(a) = \ell(a)$. (ii) $r(a) = r(a^2)$. (iii) $r(a) = r(a^n)$.

The following result is a relation between gs-weakly regular ring and right weakly π -regular under a condition that R is a reduced ring.

Theorem 2.12 If R is a reduced ring, then every right gs-weakly regular ring is a right weakly π -regular.

Proof: Let R be a right gs-weakly regular ring. Then, for each $a \in R$, there exists $ta^n s \in Ra^n R$ such that $a = ata^n s$, for some $t, s \in R$ and a positive integer n. Then, $a(1 - ta^n s) = 0$. Therefore, $(1 - ta^n s) \in r(a)$. Since R is reduced, then by Lemma 2.11(iii), $(1 - ta^n s) \in r(a^n)$. So, $a^n = a^n ta^n s$. Thus, R is a right weakly π -regular.

Recall that a ring R is called *right(resp. left)* duo[4] if every right (resp. left) ideal of R is two-sided.

Lemma 2.13 [1] If R is a duo ring, then every idempotent element of R is central.

Recall that a ring R is said to be π -biregular [15] if for any $a \in R$, $Ra^n R$ is generated by a central idempotent, for some positive integer n.

The following result is a relation between π -biregular ring with gs-weakly regular ring under a condition that R is a duo ring.

Theorem 2.14 If R is a duo ring, then every π -biregular ring is a gs-weakly regular.

Proof: Let R be a π -biregular, and $a \in R$. Then, there exists a central idempotent $e \in R$ such that $Ra^n R = eR$, for some positive integer n. This implies that $a^n = et = te$ and $e = ba^n c$, where $t, b, c \in R$. Since R is a duo ring. Therefore, by Lemma 2.13, a = et = te. Now, $a = e^2t = ete = ae = aba^n c$. Thus, R is a right gs-weakly regular. Likewise, we show that R is a left gs-weakly regular. Whence R is a gs-weakly regular.

The following result is a relation between the ring R is right gs-weakly regular ring with the quotient ring R/r(a) is a right gs-weakly regular ring under a condition that R is a reduced ring.

Theorem 2.15 Let R be a reduced ring. If R/r(a) is a right gs-weakly regular ring, for all $a \in R$, then R is a right gs-weakly regular.

96

Proof: Let R/r(a) be a right gs-weakly regular, for each $a \in R$. Then, there exist $b, c \in R$ and a positive integer n such that

$$a + r(a) = (a + r(a)).(b + r(a)).(a + r(a))^{n}.(c + r(a))$$

= $aba^{n}c + r(a).$

This implies that $(a - aba^n c) \in r(a)$. Then, $a(a - aba^n c) = 0$. Therefore, $a^2(1 - ba^n c) = 0$. This implies that, $(1 - ba^n c) \in r(a^2)$. Since R is reduced, then by Lemma 2.11(ii), $(1 - ba^n c) \in r(a)$ and hence $a(1 - ba^n c) = 0$. Therefore, $a = aba^n c$. Thus, R is a right gs-weakly regular ring.

Theorem 2.16 Let R be a ring without identity. If for every $a \in R$ and a positive integer n; $a^{n+3} = a$, then R is a gs-weakly regular ring.

Proof: It is obvious that, for every $a \in R$, set $a = a^{n+3} = a.a.a^n.a \in aRa^nR$. Whence R is a gs-weakly regular ring.

Now, a necessary and sufficient condition for right gs-weakly regular rings to be right s-weakly regular.

Theorem 2.17 Let R be a ring. If $a^n R = a^2 R$, for every $a \in R$ and a positive integer n. Then, every gs-weakly regular rings is s-weakly regular.

Proof: Let R be a right gs-weakly regular ring. Then, for every $a \in R$, there exists a positive integer n such that $a = aba^n c$, for some $b, c \in R$. But, $a^n c \in a^n R = a^2 R$. Therefore, $a^n c = a^2 t$, for some $t \in R$. Now, we obtain $a = aba^2 t$ and hence R is a right s-weakly regular ring.

Recall that an ideal P of a ring R is said to be *completely prime* [2] if for each $a, b \in R$ such that $a.b \in P$, then either $a \in P$ or $b \in P$.

Theorem 2.18 If R is a right gs-weakly regular ring, then every completely prime ideal of R is maximal.

Proof: Let P be a completely prime ideal of R. By contradiction, if P is not maximal, then there exists at least a maximal ideal M such that $P \subset M$. Now, we take $a \in M$, but $a \notin P$. Since R is a right gs-weakly regular ring, then there exist $t, s \in R$ and a positive integer n such that $a = ata^n s$. This implies that $a(1 - ta^n s) = 0 \in P$. Then, $(1 - ta^n s) \in P \subset M$. But $ta^n s \in M$, then $1 \in M$, this is contradiction. Thus, P is a maximal ideal.

Recall that, an ideal I of a ring R is said to be *completely semi-prime* [12] if for every positive integer n and $a \in R$ such that $a^n \in I$ implies $a \in I$.

Theorem 2.19 Let R be a commutative ring. If every ideal of R is completely semi-prime, then R is a gs-weakly regular ring if and only if for each ideal I of R, $I = \sqrt{I}$ holds. **Proof:** Let R be a gs-weakly regular ring. It is obvious that $I \subseteq \sqrt{I}$. Now, let $b \in \sqrt{I}$, then $b^n \in I$, for some positive integer n. Now, $b = btb^n s$, for some $t, s \in R$. But $b^n \in I$ and every ideal of R is completely semi-prime, then $b \in I$. Thus, $\sqrt{I} \subseteq I$. Whence, $I = \sqrt{I}$. Conversely, assume that $I = \sqrt{I}$, for each ideal I of R. We take $I = aRa^n R$, for some positive integer n. Therefore, $aRa^n R = \sqrt{aRa^n R}$.Now, $a^{n+1} \in aRa^n R$, then $a \in \sqrt{aRa^n R} = aRa^n R$. Thus, $a \in aRa^n R$. Whence, R is a gs-weakly regular ring.

Theorem 2.20 If a = ab and r(a) = r(b), where $b \in Ra^n R$, for some positive integer n, then b is idempotent.

Proof: Let a = ab, take $b = ta^n s$, for some $t, s \in R$ and a positive integer n. Then, $a = ata^n s$. This implies that $a(1 - ta^n s) = 0$. Therefore, $(1 - ta^n s) \in r(a) = r(ta^n s)$. This implies that, $ta^n s(1 - ta^n s) = 0$. Then, $ta^n s = (ta^n s)^2$. Therefore, $b = b^2$. Whence b is an idempotent.

Theorem 2.21 Let R be a duo ring. If a is a right gs-weakly regular element of R with $b \in Ra^nR$, for some positive integer n such that a = ab. Then

(i) $aR \subseteq Ra^{n+1}R$.

(ii) If there exists $c \in Ra^n R$ such that a = ac and r(a) = r(c), then c = b.

Proof: (i) Let $at \in aR$, for some $t \in R$. Then, $at = aca^n d$, for some $c, d \in R$ and a positive integer n. But $ac \in aR = Ra$, since R is a duo ring, then ac = sa, for some $s \in R$. Thus, $at = saa^n d = sa^{n+1}d \in Ra^{n+1}R$. Whence, $aR \subseteq Ra^{n+1}R$.

(ii) a = ab = ac, gives a(b - c) = 0, which implies that $(b - c) \in r(a) = r(b) = r(c)$, so b(b - c) = 0 and c(b - c) = 0. Then, $b^2 = bc$ and $c^2 = cb$. Therefore by Theorem 2.20, b = bc and c = cb. Since R is a duo ring, then by Lemma 2.13, b and c are central. Whence, b = bc = cb = c.

Theorem 2.22 If R is a right gs-weakly regular ring, then R is reduced.

Proof: Let $a \in R$ and $a^n = 0$, for some positive integer n. Now, we can write a^{n-1} as follows, $a^{n-1} = a^{n-1}b(a^{n-1})^m c$, for some $b, c \in R$ and a positive integer m. Therefore, $a^{n-1} = a^{n-1}b(a^n)^m a^{-m}c$. If $a^n = 0$, then $a^{n-1} = 0$. If we repeat this process n-times, we obtain a = 0. Whence R is reduced.

Theorem 2.23 If R is a gs-weakly regular ring, then the center of R, C(R) is regular ring.

Proof: Let $a \in C(R)$. Since R is a gs-weakly regular ring, then $aR = aRa^nR$, for some positive integer n. Then, there exist $b, c \in R$ such that

$$a = aba^n c$$
$$= aba^{n-1}ac.$$

Since $a \in C(R)$, then ac = ca. Therefore, $a = aba^{n-1}ca$. If we set $d = ba^{n-1}c \in R$, then a = ada and hence C(R) is a regular ring.

Recall that, a ring R is called *weakly right duo* [19], if for each a in R, there exists a positive integer n such that $a^n R = Ra^n R$.

Theorem 2.24 Let R be a right gs-weakly regular ring. (i) If R is a weakly right duo ring, then J(R) = N(R).

(ii) If R is a reduced ring, then Y(R) = (0).

Proof: (i) Let $0 \neq x \in J(R)$. Then, there exist $b, c \in R$ and a positive integer n such that $x = xbx^n c$. Since R is a weakly right duo ring, then $x^n c = dx^n$, for some $d \in R$. Therefore, $x = xbdx^n$. If we set h = bd, then $x = xhx^n$. So $x(1 - hx^n) = 0$. Since $x \in J(R)$, then $1 - hx^n$ is left invertible. Therefore, there exists an element u such that $(1 - hx^n)u = 0$. Multiply from the left by x^n , we obtain $(x^n - x^n hx^n)u = x^n$. Whence it follows that $x^n = 0$, so $x \in N(R)$ and hence $J(R) \subseteq N(R)$. But $N(R) \subseteq J(R)$. Whence J(R) = N(R).

(ii) Let a be a non-zero element in Y(R). Then r(a) is an essential right ideal of R. Since R is a right gs-weakly regular ring, there exist $b, c \in R$ and a positive integer n such that $a = aba^n c$. Consider $r(a) \cap ba^n R$, let $x \in (r(a) \cap ba^n R)$. Then, ax = 0 and $x = ba^n t$, for some $t \in R$. So $aba^n t = 0$, then $aba^n cy = 0$ (let t = cy). Thus, ay = 0. Therefore, $a^n yc = 0$, so $ba^n cy = 0$ and hence $ba^n t = 0$, yields x = 0. Therefore, $r(a) \cap ba^n R = (0)$. Since r(a)is a non-zero essential right ideal of R, then ba = 0 and hence a = 0. So, Y(R) = (0).

Theorem 2.25 If I is a proper ideal of a right gs-weakly regular ring, then each element of I is a left zero divisor.

Proof: Suppose $x \in I$ such that x is not a left zero divisor. Since R is right gs-weakly regular, then $xR = xRx^nR$, for some positive integer n. Therefore, if $y \in R$, then $xy = \sum_{i=1}^k xt_ix^ns_i$, for some $t_i \in R$, $s_i \in R$. This gives $xy - \sum_{i=1}^k xt_ix^ns_i = 0 = x(y - \sum_{i=1}^k t_ix^ns_i) = 0$. As x is not a left zero divisor, then $y - \sum_{i=1}^k t_ix^ns_i = 0$. This implies $y = \sum_{i=1}^k t_ix^ns_i \in I$. Hence I = R, which contradicts that I is a proper ideal of R. Thus, each element of I is a left zero divisor.

Recall that a ring R is called *semi primitive* if J(R) = (0).

Theorem 2.26 A right(resp. left) gs-weakly regular ring is semi primitive.

Proof: Let $x \in J(R)$. Now, R is right gs-weakly regular implies $xR = xRx^nR$, for some positive integer n. Hence, $x = \sum_{i=1}^k xt_ix^ns_i$, for some $t_i \in R$, $s_i \in R$. Hence $x(1 - \sum_{i=1}^k t_ix^ns_i) = 0$. Since $x \in J(R)$, then $1 - \sum_{i=1}^k t_ix^ns^n$ is a unit. Therefore, x = 0. As x is arbitrary, J(R) = (0). Whence, R is semi primitive ring.

Corollary 2.27 A right (resp. left) s-weakly regular ring is semi primitive ring.

Recall that a ring R is called *right(resp. left) non-singular* if Y(R) = (0)(Z(R) = (0)).

Finally, we give the following result.

Theorem 2.28 A left(resp. right) gs-weakly regular ring is right(resp. left) non-singular.

Proof: Let R be a left gs-weakly regular ring and $x \in Y(R_R)$. Then r(x) is an essential right ideal of R. Since R is left gs-weakly regular, then $Rx = RxRx^n$, for some positive integer n.So, $x = \sum_{i=1}^k t_i x^n s_i x$, for some $t_i \in R, s_i \in R$. Let $y = \sum_{i=1}^k t_i x^n s_i$, so that x = yx and therefore yx - x = 0. This implies that (y-1)x = 0. That is, $x \in r(y-1)$. Hence $xR \subseteq r(y-1)$. Now, r(y) is essential right ideal of R and $r(y) \cap r(y-1) = (0)$ implies r(y-1) = (0). Hence, xR = 0. Thus, x = 0. Hence $Y(R_R) = (0)$ and thus R is right non-singular. If R is right gs-weakly regular ring we can similarly prove that R is left non-singular.

3 Main Results

In this section, we give some main results of gs-weakly regular rings and its relations with GP-injectivity, flatness, simple ring and strongly regular rings.

We start this section with the following theorem.

Theorem 3.1 Let R be a reduced ring. If every simple right R-module is GP-injective, then R is a right gs-weakly regular rings.

Proof: Let $a \in R$. If $Ra^nR + r(a) \neq R$, for all positive integer n, then there exists a maximal ideal M of R such that $Ra^nR + r(a) \subseteq M$. Now, define $f: a^nR \to R/M$ as $f(a^nt) = t + M$, for each $t \in R$ and a positive integer n. First we show that f is a well-defined. Let $a^nt = a^ns$, for some $t, s \in R$, then $a^n(t-s) = 0$. Therefore, $(t-s) \in r(a^n)$. Since R is reduced, then by Lemma 2.11(iii) , $(t-s) \in r(a) \subseteq M$. Therefore, t + M = s + M. It means that $f(a^nt) = f(a^ns)$. Whence f is a well-defined. Since R/M is GP-injective, then there exists $h \in R$ such that $f(a^nt) = (h+M)a^nt$, for each $t \in R$. Indeed, $1 + M = f(a^n) = (h + M)a^n = ha^n + M$. Therefore, $(1 - ha^n) \in M$. But $ha^n \in Ra^nR \subseteq M$, then $1 \in M$. This is contradiction . Whence, R is a right gs-weakly regular ring.

Theorem 3.2 [5] Let R be a ring, then R is reduced and right weakly regular if and only if for each $a \in R$, $RaR \oplus r(a) = R$.

Theorem 3.3 The ring R is a right gs-weakly regular if and only if R is reduced and right weakly regular.

Proof: Let R be a reduced and right weakly regular, then by Theorem 3.2, for each $a \in R$, RaR + r(a) = R. Therefore, it is true for a^n since every weakly regular ring is weakly π -regular, it means that $Ra^nR + r(a^n) = R$, for all $a \in R$ and a positive integer n. Since R is reduced, then by Lemma 2.11(iii), $r(a^n) = r(a)$. Therefore, $Ra^nR + r(a) = R$. Thus, there exist $t, s \in R$ and $b \in r(a)$ such that $ta^ns + b = 1$. Multiply the previous equation from the left by a, we obtain $a = ata^ns$. Whence, R is a right gs-weakly regular ring.

Conversely, let R be a right gs-weakly regular ring, then for each $a \in R$, there exist $t_1, t_2 \in R$ and a positive integer n such that $a = at_1a^nt_2$. This implies that $a = at_1aa^{n-1}t_2$. if we set $t = a^{n-1}t_2 \in R$, then $a = at_1at$. Therefore, R is weakly regular ring. Also, by Theorem 2.22, R is reduced. \Box

Theorem 3.4 [14] Let R be a ring. If $\ell(a) \subseteq r(a)$, for each $a \in R$. Then, RaR + r(a) is an essential right ideal of R.

Theorem 3.5 [9] Let R be a ring. If $\ell(a) \subseteq r(a)$, for each $a \in R$ and every simple singular right R-module is GP-injective, then R is reduced.

Theorem 3.6 Let R be a ring, if $\ell(a) \subseteq r(a)$ for each $a \in R$ and every simple singular right R-module is GP-injective, then R is a right gs-weakly regular ring.

Proof: By Theorem 3.5, R is reduced. Also, by using Theorem 3.3, it means to prove that R is a right gs-weakly regular ring, we need prove that R is a right weakly regular ring. To prove R is a weakly regular ring, we prove that RaR + r(a) = R, for each $a \in R$. Let $b \in R$, where $RbR + r(b) \neq R$. Then, there exists a maximal essential right ideal M of R, which contains RbR + r(b). Since R/M is GP-injective, then every homomorphism from bR to R/M can be extended to one of R into R/M. Define $f : bR \to R/M$ as f(bt) = t + M, for each $t \in R$.Since R is reduced, then f is a well-defined. Now, since R/M is GP-injective, then there exists $c \in R$ such that 1 + M = f(b) = cb + M. Therefore, $(1 - cb) \in M$. But $cb \in M$, then $1 \in M$. This is a contradiction. Therefore, RaR + r(a) = R, for each $a \in R$. Then, R is a right weakly regular ring. \Box

Lemma 3.7 [17] Let I be a right(resp. left) ideal of R. Then R/I is a flat right(resp. left) R-module if and only if for each $a \in I$, there exists $b \in I$ such that a = ba(resp. a = ab).

Theorem 3.8 Let R be a reduced ring such that every essential ideal I of R, R/I is a flat, then R is a gs-weakly regular ring.

Proof: Let $a \in R$ and $I = Ra^n R + r(a)$, for some positive integer n. Now, we show that I is an essential ideal of R, if it is not, then there exists a nonzero ideal K of R such that $I \cap K = (0)$. This implies that $Ra^n R \cap K = (0)$. Since $a^n R \subseteq Ra^n R$, then $a^n R \cap K = (0)$. But $a^n R K \subseteq a^n R \cap K = (0)$ and Ris reduced, then $K \subseteq r(a^n R) = r(a^n) = r(a)$ by Lemma 2.11(iii). Therefore, $K \subseteq r(a)$, but $r(a) \subseteq I$. Therefore, $K \subseteq I$. This implies that $K = K \cap I = (0)$. This is a contradiction to that $K \neq (0)$. Therefore, I is an essential ideal of R. Since R/I is a flat, then by Lemma 3.7, for each $a \in I$, there exists $b \in I$ such that a = ab = ba. Since $b \in I$, then $I = r(a) + Ra^n R$. Also, $b = ca^n d + h$, for some $c, d \in R$ and $h \in r(a)$. Then, $a = ab = a(ca^n d + h) = aca^n d$. Also, $a = ba = (ca^n d + h)a = ca^n da$. Whence, R is a gs-weakly regular ring.

Recall that a ring R is prime [10] in case a product of non-zero ideals is non-zero.

Theorem 3.9 Let R be a prime ring. If R is a right gs-weakly regular ring, then R is a simple ring.

Proof: Since R is a right gs-weakly regular ring, then by Theorem 3.3, R is reduced and by Theorem 3.2, for each $a \in R$, R = RaR + r(a). Therefore, $r(a)RaR \subseteq r(a) \cap RaR = (0)$. Since R is a prime ring and by assumption $a \neq 0$, then r(a) = 0. Therefore, R = RaR.

Theorem 3.10 let R be a right gs-weakly regular ring. If every principal right ideal of R is essential, then R is a simple ring.

Proof: Since R is a right gs-weakly regular ring, then by Theorem 3.3, R is reduced and by Theorem 3.2, for each $a \in R$, $R = r(a) \oplus RaR$. Let $r(a) \neq 0$ and every principal right ideal of R is essential. Then, $aR \cap r(a) \neq (0)$. Then, there exists a non-zero element x such that $x \in aR \cap r(a)$. It means that x = at and ax = 0. Therefore, $ax = a^2t = 0$. It means that $t \in r(a^2) \subseteq r(a)$. This implies that x = at = 0. Therefore, $aR \cap r(a) = (0)$. Since aR is an essential, then r(a) = 0, for each $a \in R$. Therefore, R = RaR, for each $0 \neq a \in R$ and hence R is a simple ring.

Theorem 3.11 If R is a right gs-weakly regular ring and every principal left ideal of R is a left annihilator of an element of R, then R is a strongly regular ring.

Proof: Let $0 \neq a \in R$. Since R is a right gs-weakly regular ring, then by Theorem 2.22, R is reduced. Therefore by Lemma 2.11(i), $r(a) = \ell(a)$, for each $a \in R$. If a is not divisible by zero in R, there exists $s \in R$ such that $Ra = \ell(a)$ by assumption. This implies that as = 0. Then, s = 0. It means that $Ra = \ell(s) = R$. Then, there exists $t \in R$ such that ta = 1. Multiply by a from the right we obtain $a = ta^2$. Therefore, R is a strongly regular ring.

If a is divisible by zero in R, then there exists $0 \neq b \in R$ such that a.b = 0. If a + b is divisible by zero, then there exists $0 \neq c \in R$ such that (a + b).c = 0. This implies that ac = -bc. Since $b \in r(a)$ and $-b \in r(a)$ and $a \in \ell(b) = r(b)$, also $ac \in r(b)$, then $ac = -bc \in r(b) \cap r(a)$. Also, we have $Ra = \ell(b) = r(b)$.

Let $w \in r(b) \cap r(a)$, then there exists $t \in R$ such that w = ta and aw = ata = 0. This implies that $(ta)^2 = tata = 0$. Then, w = ta = 0. Therefore, $r(b) \cap r(a) = 0$. Since $ac = -bc \in r(b) \cap r(a)$, then ac = -bc = 0. It means that $c \in r(b) \cap r(a)$, then c = 0. This is a contradiction. Therefore, (a + b) is not divisible by zero, then there exists $d \in R$ such that d(a + b) = 1. Then, $a = da^2$. Whence, R is a strongly regular ring.

Theorem 3.12 If R is a right gs-weakly regular ring and $Ra^n = a^n R$, for each $a \in R$ and a positive integer n, then a = ae and $\ell(a) = \ell(e)$, where e is an idempotent element.

Proof: Since R is a right gs-weakly regular ring, then for each $a \in R$, then exist $b, c \in R$ and a positive integer n such that $a = aba^n c$. Since $ba^n \in Ra^n = a^n R$, then there exists $h \in R$ such that $ba^n = a^n h$. It means that $a = aa^n hc$. If we set t = hc, then $a = a^{n+1}t$. This implies that $a(1 - a^n t) = 0$. Since R is a

right gs-weakly regular ring, then by Theorem 2.22, R is reduced. Therefore, $(1 - a^n t) \in r(a) = \ell(a)$ by Lemma 2.11(i). Then, $(1 - a^n t)a = 0$. Therefore, $a = a^n ta$. Put $e = a^n t$, then

$$e^{2} = a^{n}ta^{n}t = a^{n}taa^{n-1}t = aa^{n-1}t = a^{n}t = e.$$

Therefore, e is an idempotent. Then, $a(1 - a^n t) = 0$. Therefore $a = a^{n+1}t = aa^n t = ae$.

Let $x \in \ell(a)$, then xa = 0. Therefore, $xa^n = 0$, then $xa^n t = 0$, whence xe = 0. Thus, $x \in \ell(e)$. Therefore, $\ell(a) \subseteq \ell(e)$. Let $y \in \ell(e)$, then ye = 0. Therefore, $ya^n t = 0$ and hence $ya^n ta = 0$, whence ya = 0. Therefore, $y \in \ell(a)$. Then, $\ell(e) \subseteq \ell(a)$. Whence, $\ell(a) = \ell(e)$.

Finally the following main result will be given.

Theorem 3.13 If R is a right gs-weakly regular ring, which has no zero divisor and $a^n R = Ra^n$, for each $a \in R$ and a positive integer n, then there exists a unit element u of R and an idempotent e of R such that a = eu = ue and a = (1 - e) + u.

Proof: Since R is a right gs-weakly regular ring and $0 \neq a \in R$. Then,

$$a = a^{n+1}t = a^n ta = ta^n a = ta^{n+1}.$$

Since R has no zero divisor, then $ata^{n-1} = a^n t = ta^n$. If we set $e = ata^{n-1} = a^n t = ta^n$ and since R is a right gs-weakly regular ring, then by Theorem 2.22, R is reduced, then a = ae = ea. Let u = a + e - 1, then

$$eu = e(a + e - 1) = ea + e^2 - e = ea + e - e = ea = a.$$

 $ue = (a + e - 1)e = ae + e^2 - e = ae + e - e = ae = a$

If we take $v = a^{n-1}t + e - 1$, then

$$\begin{aligned} uv &= (a+e-1)(a^{n-1}t+e-1) \\ &= a^n t + a(e-1) + (e-1)a^{n-1}t + (e-1)^2 \\ &= e+ae-a+ea^{n-1}t-a^{n-1}t+e^2-2e+1 \\ &= e+a-a+ea^{n-1}t-a^{n-1}t+1-e \\ uv &= 1 \\ vu &= (a^{n-1}t+e-1)(a+e-1) \\ &= a^{n-1}ta+a^{n-1}t(e-1) + (e-1)a + (e-1)^2 \\ &= e+a^{n-1}te-a^{n-1}t+ea-a+e^2-2e+1 \\ &= e+a^{n-1}t-a^{n-1}t+a-a+e-2e+1 \\ vu &= 1. \end{aligned}$$

Therefore, a = eu = ue and (1 - e) + u = 1 - e + a + e - 1 = a. It means that a = (1 - e) + u.

References

- [1] M.R.M. Al-Kouri, On strongly π -regular rings, *Ph.D. Thesis*, (2000), Mosul University.
- [2] V.A. Andrunakievich, On completely prime ideals of a ring, *Mat. sb.* (N.S.), 12(3)(163) (1984), 291-296.
- [3] H.E. Bell, Some commutativity results for periodic rings, Acta. Math. Acad. Sci. Hungar., 28(1976), 279-283.
- [4] S.H. Brown, Rings over which every simple module is rationally complete, *Canad. J. Math. Bull.*, 25(1973), 693-701.
- [5] V. Camillo. and Y. Xiao, Weakly regular rings, Comm. Algebra., 22(10) (1994), 4095-4112.
- [6] P.M. Cohn, Reversible rings, Bull. London Math. Soc., 31(1999), 641-648.
- [7] V. Gupta, Weakly π-regular rings and group rings, Math. J. Okayama Univ., 19(1977), 123-127.
- [8] V. Gupta, A generlization of strongly regular rings, Acta. Math. Hung., 43(1-2) (1984), 57-61.
- [9] N.K. Kim, S.B. Nam and J.Y. Kim, On simple singular GP-injective modules, Comm. Algebra, 27(5) (1999), 2087-2096.
- [10] L. Tsit-Yuen, A First Course in Non Commutative Rings (2nd ed.), Berlin, New York: Springer-Verlag, (2001).
- [11] J. Luh, A note on strongly regular rings, Proc. Japan Acad, 40(1964), 74-75.
- [12] R.D. Mahmood, On pure ideals and pure submodules, *Ph.D. Thesis*, Mosul University, (2000).
- [13] R.Y.C. Ming, On regular rings and Artinian rings II, Riv. Math. Univ. Parma, 4(11) (1985), 101-109.
- [14] S.B. Nam, A note on simple singular GP-injective modules, Kangween-Kyungki Math. Jour., 7(2) (1999), 215-218.
- [15] F.S. Naoum, On π -regular rings, *Ph.D. Thesis*, Mosul University, (2004).
- [16] V.S. Ramamurthi, Weakly regular rings, Canad. Math. Bull, 16(3) (1973), 317-322.

- [17] M.B. Rege, On von Neumann regular rings and SF-rings, Math. Japonica, 31(6) (1986), 927-936.
- [18] J. von Neumann, On regular rings, Proc. Nat. Scad. Sci. U. S. A., 22(1936), 707-713.
- [19] Y. Xue, Weakly right duo rings, Pure Appl. Math. Sci., XXI(1-2) (1985), 19-24.
- [20] A.M. Younis, On s-weakly regular rings, M. Sc. Thesis, Mosul University, (2003).