Gen. Math. Notes, Vol. 27, No. 2, April 2015, pp.92-106
ISSN 2219-7184; Copyright © CCSRS Publication, 2015
www.i-csrs.org
Available free online at http://www.geman.in

A New Generalization of s-Weakly Regular Rings

Abdullah M. Abdul-Jabbar
Department of Mathematics, College of Science
Salahaddin University-Erbil, Kurdistan Region, Iraq
E-mail: m1abdullah.math71@gmail.com; abdullah.abduljabbar@su.edu.krd

(Received: 5-3-15 / Accepted: 8-4-15)

Abstract

Right (resp. left) s-weakly regular rings was first introduced by V. Gupta in 1984. Now, in the present paper we introduce and study a new generalization of right (resp. left) s-weakly regular rings, which is called right (resp. left) gsweakly regular rings as for each $a \in R$, there exists a positive integer $n=n(a)$, depending on a such that $a \in a R a^{n} R$ (resp. $a \in R a^{n} R a$). Moreover, giving several characterizations, properties, main results of it and related it with other types of modules such as flat modules and GP-injective modules.

Keywords: Regular Rings, s-Weakly Regular Rings, gs-Weakly regular rings, GP-Injective modules.

1 Introduction

Throughout this paper rings are associative ring with identity and all modules are unitary. For a subset X of R, the right annihilator of X in a ring R is defined by $r(X)=\{y \in R: x y=0$, for all $x \in X\}$. Similarly, define the left annihilator of X in a ring R as $\ell(X)=\{y \in R: y x=0$, for all $x \in X\}$. If $X=\{a\}$ we usually abbreviation $r(a)$ (resp. $\ell(a))$. An ideal I of a ring R is said to be essential if I has a non-zero intersection with every non-zero ideal of R.

An element a of a ring R is said to be regular[18] if there exists an element $b \in R$ such that $a=a b a$. A ring R is said to be von Neumann regular (briefly,
regular) if every element of R is regular. A ring R is said to be strongly regular [11] if for every $a \in R$, there exists $b \in R$ such that $a=a^{2} b$.

A ring R is called right(resp. left) weakly regular[16] if $I^{2}=I$, for each right (resp. left) ideal I of R, equivalently if $x \in x R x R$ (resp. $x \in R x R x$), for every $x \in R . R$ is called weakly regular if it is both right and left weakly regular. A ring R is said to be right(resp. left) s-weakly regular[8] if for every $a \in R$, then $a \in a R a^{2} R\left(\right.$ resp. $\left.\quad a \in R a^{2} R a\right) .(a$ is called right(resp. left)s-weakly regular element).

A ring R is said to be s-weakly regular if it is both right and left sweakly regular. A ring R is called right(resp. left) weakly π-regular[7] if $a^{n} \in a^{n} R a^{n} R$ (resp. $a^{n} \in R a^{n} R a^{n}$). R is called reduced if it has no nonzero nilpotent element.

According to Cohn[6], a ring R is called reversible if $a b=0$ implies $b a=0$, for $a, b \in R$. A ring R is called periodic [3] if for each $x \in R$, the set $\left\{x, x^{2}, x^{3}, \ldots\right\}$ is finite, or equivalently, for each $x \in R$, there are positive integers $m(x), n(x)$ such that $x^{m(x)}=x^{m(x)+n(x)}$, or also equivalently for each $a \in R$, some power of a is idempotent. A right R-module M is called Generalized P-injective (briefly, GP-injective) [13] if for each $a \in R$, there exists a positive integer n such that $a^{n} \neq 0$ and any right R-homomorphism of $a^{n} R$ into M extends to one of R into M. The ring R is called right (resp. left) GP-injective if the right (resp. left) R-module R_{R} (resp. ${ }_{R} \mathrm{R}$) is GP-injective module.

2 Generalized s-Weakly Regular Rings (gs-Weakly Regular Rings)

In this section, we define a new generalization of right (resp. left), s-weakly regular rings, which is called right(resp. left) gs-weakly regular rings and we find several characterizations, properties and compare it with other types of rings.

We start this section with the following definition.
Definition 2.1 A ring R is said to be right(resp. left) generalized s-weakly regular (briefly, gs-weakly regular) if for each $a \in R$, there exists a positive integer $n=n(a)$, depending on a such that $a \in a R a^{n} R\left(r e s p . a \in R a^{n} R a\right)$.

A ring R is said to be gs-weakly regular if it is both right and left gs-weakly regular. An element a of a ring R is said to be right(resp. left)gs-weakly regular if there exists a positive integer n and an element b in $R a^{n} R$ such that $a=a b$ (resp. $a=b a$).

The proof of the following lemma is not hard, therefore it is omitted.
Lemma 2.2 Every right s-weakly regular ring is a right gs-weakly regular.
The converse of the above lemma is not true in general as it is shown in the following example (1)(ii).

Example 2.3 (i) Periodic ring is a gs-weakly regular ring.
(ii) If R is a ring with identity satisfies the property $a=a^{n+1}$, for each $a \in$ R and a positive integer n, then R is a gs-weakly regular rings, but it is not s-weakly regular.

The following example for non-commutative right gs-weakly regular rings.
Example 2.4 Let $W=\left\{\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right): a, b \in R\right\}$, where R is the set of all real numbers. Then W is a right gs-weakly regular rings, since for any positive integer $n>1$,

$$
\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)=\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)^{n}\left(\begin{array}{cc}
\frac{1}{a^{n}} & 0 \\
0 & \frac{1}{b^{n}}
\end{array}\right) .
$$

Theorem 2.5 Let R be a right gs-weakly regular ring. Then, $R=R a^{n} R$, for all right non-zero divisor element a in R and a positive integer n.

Proof: Let a be a right non-zero divisor element of R. Then, $a R=$ $a R a^{n} R$. Hence,

$$
a\left(R-R a^{n} R\right)=0 \text { and } R-R a^{n} R \subseteq r(a)
$$

Since a is a non-zero divisor.Therefore, $r(a)=\ell(a)=0$. Thus, $\mathrm{R}=\mathrm{Ra}^{n} R$.
The proof of the following results are obvious, therefore they are omitted.
Theorem 2.6 (1) A homomorphic image of a right gs-weakly regular ring is a right gs-weakly regular.
(2) If R is a right gs-weakly regular ring and I is a two-sided ideal of R, then R / I is a right gs-weakly regular.

Lemma 2.7 [6] If R is a reversible ring, then $r(a)=\ell(a)$, for each $a \in R$.
Theorem 2.8 Let R be a reversible ring. Then R is a right gs-weakly regular if and only if R is a left gs-weakly regular.

Proof: Let R be a right gs-weakly regular ring and $x \in R$. Then $x R=$ $x R x^{n} R$ for some positive integer n. Hence $x=\sum_{i=1}^{k} x t_{i} x^{n} s_{i}$ for some $t_{i} \in R, s_{i} \in$ R. This implies $x\left(1-\sum_{i=1}^{k} t_{i} x^{n} s_{i}\right)=0$. Then $\left(1-\sum_{i=1}^{k} t_{i} x^{n} s_{i}\right) \in r(x)$. As R is reversible, then by Lemma 2.7, $\left(1-\sum_{i=1}^{k} t_{i} x^{n} s_{i}\right) \in \ell(x)$, we get $\left(1-\sum_{i=1}^{k} t_{i} x^{n} s_{i}\right) x=$ 0 . Hence $x=\sum_{i=1}^{k} t_{i} x^{n} s_{i} x$. Therefore, $R x=R x^{n} R x$ and hence R is left gsweakly regular. The converse part can be proved similarly.

Theorem 2.9 A ring R is a right(resp. left) gs-weakly regular if and only if $R a^{n} R+r(a)=R$ (resp. $R a^{n} R+\ell(a)=R$), for each $a \in R$ and a positive integer n.

Proof: Let R be a right gs-weakly regular ring. Then, for each $a \in R$, there exists $b a^{n} c \in R a^{n} R$ such that $a=a b a^{n} c$ for some $b, c \in R$ and a positive integer n. Then, $a\left(1-b a^{n} c\right)=0$. This implies that $\left(1-b a^{n} c\right) \in r(a)$. Now $1=b a^{n} c+\left(1-b a^{n} c\right)$. Then, $R=R a^{n} R+r(a)$.

Conversely, assume that $R a^{n} R+r(a)=R$, for each $a \in R$ and a positive integer n. Then, $1=b+d$, for some $b \in R a^{n} R, d \in r(a)$ and a positive integer n. Set $b=t a^{n} s$, for some $t, s \in R$ and a positive integer n. Therefore, $a .1=a b+a d=a b$. Then, $a=a t a^{n} s$. Thus, R is a right gs-weakly regular ring. Likewise for the left gs-weakly regular ring.

Theorem 2.10 Let $r(a)=r(b)$, for each $a \in R$ and $b \in R a^{n} R$. Then, R is a right gs-weakly regular if and only if $r(a)$ is a direct summand, for each $a \in R$ and a positive integer n.

Proof: Let R be a right gs-weakly regular, and let $a \in R$, then there exists $b=t a^{n} s \in R a^{n} R$ such that $a=a t a^{n} s$, for some $t, s \in R$ and a positive integer n. Then, $a\left(1-t a^{n} s\right)=0$, so $\left(1-t a^{n} s\right) \in r(a)$. Therefore, $1=t a^{n} s+\left(1-t a^{n} s\right)$. Whence, $R=R a^{n} R+r(a)$. Now, let $x \in R a^{n} R \cap r(a)$, then $x=s_{1} a^{n} s_{2}$, for some $s_{1}, s_{2} \in R$ and $a x=0$. Thus, $a s_{1} a^{n} s_{2}$, so $s_{1} a^{n} s_{2} \in r(a)=r(b)$. Therefore, $b s_{1} a^{n} s_{2}=0$, so $b x=0$ and hence $x=0$. Therefore, $R a^{n} R \cap r(a)=(0)$. Hence $R=R a^{n} R \oplus r(a)$.

Conversely, assume that $r(a)$ is a direct summand, for every $a \in R$.Then, there exists a right ideal I of R such that $R=r(a)+I$ and $r(a) \cap I=(0)$. In particular, there exist $i \in I$ and $d \in r(a)$ such that $1=d+i$, multiply by a from the right we obtain $a=a d+a i$. So, $a=a i$. Since $R a^{n} R$ is a two-sided ideal of R, then $i \in R a^{n} R$.Thus, R is a right gs-weakly regular ring.

Lemma 2.11 [1] If R is a reduced ring, then for each $a \in R$ and a positive integer n,
(i) $r(a)=\ell(a)$.
(ii) $r(a)=r\left(a^{2}\right)$.
(iii) $r(a)=r\left(a^{n}\right)$.

The following result is a relation between gs-weakly regular ring and right weakly π-regular under a condition that R is a reduced ring.

Theorem 2.12 If R is a reduced ring, then every right gs-weakly regular ring is a right weakly π-regular.

Proof: Let R be a right gs-weakly regular ring. Then, for each $a \in R$, there exists $t a^{n} s \in R a^{n} R$ such that $a=a t a^{n} s$, for some $t, s \in R$ and a positive integer n. Then, $a\left(1-t a^{n} s\right)=0$. Therefore, $\left(1-t a^{n} s\right) \in r(a)$. Since R is reduced, then by Lemma $2.11(\mathrm{iii}),\left(1-t a^{n} s\right) \in r\left(a^{n}\right)$. So, $a^{n}=a^{n} t a^{n} s$. Thus, R is a right weakly π-regular.

Recall that a ring R is called right(resp. left) duo[4] if every right (resp. left) ideal of R is two-sided.

Lemma 2.13 [1] If R is a duo ring, then every idempotent element of R is central.

Recall that a ring R is said to be π-biregular [15] if for any $a \in R, R a^{n} R$ is generated by a central idempotent, for some positive integer n.

The following result is a relation between π-biregular ring with gs-weakly regular ring under a condition that R is a duo ring.

Theorem 2.14 If R is a duo ring, then every π-biregular ring is a gs-weakly regular.

Proof: Let R be a π-biregular, and $a \in R$. Then, there exists a central idempotent $e \in R$ such that $R a^{n} R=e R$, for some positive integer n. This implies that $a^{n}=e t=t e$ and $e=b a^{n} c$, where $t, b, c \in R$. Since R is a duo ring. Therefore, by Lemma 2.13, $a=e t=t e$. Now, $a=e^{2} t=e t e=a e=a b a^{n} c$. Thus, R is a right gs-weakly regular. Likewise, we show that R is a left gsweakly regular. Whence R is a gs-weakly regular.

The following result is a relation between the ring R is right gs-weakly regular ring with the quotient ring $R / r(a)$ is a right gs-weakly regular ring under a condition that R is a reduced ring.

Theorem 2.15 Let R be a reduced ring. If $R / r(a)$ is a right gs-weakly regular ring, for all $a \in R$, then R is a right gs-weakly regular.

Proof: Let $R / r(a)$ be a right gs-weakly regular, for each $a \in R$. Then, there exist $b, c \in R$ and a positive integer n such that

$$
\begin{aligned}
a+r(a) & =(a+r(a)) \cdot(b+r(a)) \cdot(a+r(a))^{n} \cdot(c+r(a)) \\
& =a b a^{n} c+r(a) .
\end{aligned}
$$

This implies that $\left(a-a b a^{n} c\right) \in r(a)$. Then, $a\left(a-a b a^{n} c\right)=0$. Therefore, $a^{2}\left(1-b a^{n} c\right)=0$. This implies that, $\left(1-b a^{n} c\right) \in r\left(a^{2}\right)$. Since R is reduced, then by Lemma 2.11(ii), $\left(1-b a^{n} c\right) \in r(a)$ and hence $a\left(1-b a^{n} c\right)=0$. Therefore, $a=a b a^{n} c$. Thus, R is a right gs-weakly regular ring.

Theorem 2.16 Let R be a ring without identity. If for every $a \in R$ and a positive integer $n ; a^{n+3}=a$, then R is a gs-weakly regular ring.

Proof: It is obvious that, for every $a \in R$, set $a=a^{n+3}=a \cdot a \cdot a^{n} \cdot a \in$ $a R a^{n} R$. Whence R is a gs-weakly regular ring.

Now, a necessary and sufficient condition for right gs-weakly regular rings to be right s-weakly regular.

Theorem 2.17 Let R be a ring. If $a^{n} R=a^{2} R$, for every $a \in R$ and a positive integer n. Then, every gs-weakly regular rings is s-weakly regular.

Proof: Let R be a right gs-weakly regular ring. Then, for every $a \in R$, there exists a positive integer n such that $a=a b a^{n} c$, for some $b, c \in R$. But, $a^{n} c \in a^{n} R=a^{2} R$. Therefore, $a^{n} c=a^{2} t$, for some $t \in R$. Now, we obtain $a=a b a^{2} t$ and hence R is a right s-weakly regular ring.

Recall that an ideal P of a ring R is said to be completely prime [2] if for each $a, b \in R$ such that $a . b \in P$, then either $a \in P$ or $b \in P$.

Theorem 2.18 If R is a right gs-weakly regular ring, then every completely prime ideal of R is maximal.

Proof: Let P be a completely prime ideal of R. By contradiction, if P is not maximal, then there exists at least a maximal ideal M such that $P \subset M$. Now, we take $a \in M$, but $a \notin P$. Since R is a right gs-weakly regular ring, then there exist $t, s \in R$ and a positive integer n such that $a=a t a^{n} s$. This implies that $a\left(1-t a^{n} s\right)=0 \in P$. Then, $\left(1-t a^{n} s\right) \in P \subset M$. But $t a^{n} s \in M$, then $1 \in M$, this is contradiction. Thus, P is a maximal ideal.

Recall that, an ideal I of a ring R is said to be completely semi-prime [12] if for every positive integer n and $a \in R$ such that $a^{n} \in I$ implies $a \in I$.

Theorem 2.19 Let R be a commutative ring. If every ideal of R is completely semi-prime, then R is a gs-weakly regular ring if and only if for each ideal I of $R, I=\sqrt{I}$ holds.

Proof: Let R be a gs-weakly regular ring. It is obvious that $I \subseteq \sqrt{I}$. Now, let $b \in \sqrt{I}$, then $b^{n} \in I$, for some positive integer n. Now, $b=b t b^{n} s$, for some $t, s \in R$. But $b^{n} \in I$ and every ideal of R is completely semi-prime, then $b \in I$. Thus, $\sqrt{I} \subseteq I$. Whence, $I=\sqrt{I}$.
Conversely, assume that $I=\sqrt{I}$, for each ideal I of R. We take $I=a R a^{n} R$, for some positive integer n. Therefore, $a R a^{n} R=\sqrt{a R a^{n} R}$. Now, $a^{n+1} \in a R a^{n} R$, then $a \in \sqrt{a R a^{n} R}=a R a^{n} R$. Thus, $a \in a R a^{n} R$. Whence, R is a gs-weakly regular ring.

Theorem 2.20 If $a=a b$ and $r(a)=r(b)$, where $b \in R a^{n} R$, for some positive integer n, then b is idempotent.

Proof: Let $a=a b$, take $b=t a^{n} s$, for some $t, s \in R$ and a positive integer n. Then, $a=a t a^{n} s$. This implies that $a\left(1-t a^{n} s\right)=0$. Therefore, $\left(1-t a^{n} s\right) \in r(a)=r\left(t a^{n} s\right)$. This implies that, $t a^{n} s\left(1-t a^{n} s\right)=0$. Then, $t a^{n} s=\left(t a^{n} s\right)^{2}$. Therefore, $b=b^{2}$. Whence b is an idempotent.

Theorem 2.21 Let R be a duo ring. If a is a right gs-weakly regular element of R with $b \in R a^{n} R$, for some positive integer n such that $a=a b$. Then
(i) $a R \subseteq R a^{n+1} R$.
(ii) If there exists $c \in R a^{n} R$ such that $a=a c$ and $r(a)=r(c)$, then $c=b$.

Proof: (i) Let at $\in a R$, for some $t \in R$. Then, at $=a c a^{n} d$, for some $c, d \in R$ and a positive integer n. But $a c \in a R=R a$, since R is a duo ring, then $a c=s a$, for some $s \in R$. Thus, at $=s a a^{n} d=s a^{n+1} d \in R a^{n+1} R$. Whence, $a R \subseteq R a^{n+1} R$.
(ii) $a=a b=a c$, gives $a(b-c)=0$, which implies that $(b-c) \in r(a)=r(b)=$ $r(c)$, so $b(b-c)=0$ and $c(b-c)=0$. Then, $b^{2}=b c$ and $c^{2}=c b$. Therefore by Theorem $2.20, b=b c$ and $c=c b$. Since R is a duo ring, then by Lemma $2.13, b$ and c are central. Whence, $b=b c=c b=c$.

Theorem 2.22 If R is a right gs-weakly regular ring, then R is reduced.

Proof: Let $a \in R$ and $a^{n}=0$, for some positive integer n. Now, we can write a^{n-1} as follows, $a^{n-1}=a^{n-1} b\left(a^{n-1}\right)^{m} c$, for some $b, c \in R$ and a positive integer m. Therefore, $a^{n-1}=a^{n-1} b\left(a^{n}\right)^{m} a^{-m} c$. If $a^{n}=0$, then $a^{n-1}=0$. If we repeat this process n-times, we obtain $a=0$. Whence R is reduced.

Theorem 2.23 If R is a gs-weakly regular ring, then the center of $R, C(R)$ is regular ring.

Proof: Let $a \in C(R)$. Since R is a gs-weakly regular ring, then $a R=$ $a R a^{n} R$, for some positive integer n. Then, there exist $b, c \in R$ such that

$$
\begin{aligned}
a & =a b a^{n} c \\
& =a b a^{n-1} a c .
\end{aligned}
$$

Since $a \in C(R)$, then $a c=c a$. Therefore, $a=a b a^{n-1} c a$. If we set $d=b a^{n-1} c \in$ R, then $a=a d a$ and hence $C(R)$ is a regular ring.

Recall that, a ring R is called weakly right duo [19], if for each a in R, there exists a positive integer n such that $a^{n} R=R a^{n} R$.

Theorem 2.24 Let R be a right gs-weakly regular ring.
(i) If R is a weakly right duo ring, then $J(R)=N(R)$.
(ii) If R is a reduced ring, then $Y(R)=(0)$.

Proof: (i) Let $0 \neq x \in J(R)$. Then, there exist $b, c \in R$ and a positive integer n such that $x=x b x^{n} c$. Since R is a weakly right duo ring, then $x^{n} c=d x^{n}$, for some $d \in R$. Therefore, $x=x b d x^{n}$. If we set $h=b d$, then $x=x h x^{n}$. So $x\left(1-h x^{n}\right)=0$. Since $x \in J(R)$, then $1-h x^{n}$ is left invertible .Therefore, there exists an element u such that $\left(1-h x^{n}\right) u=0$. Multiply from the left by x^{n}, we obtain $\left(x^{n}-x^{n} h x^{n}\right) u=x^{n}$. Whence it follows that $x^{n}=0$, so $x \in N(R)$ and hence $J(R) \subseteq N(R)$. But $N(R) \subseteq J(R)$. Whence $J(R)=N(R)$.
(ii) Let a be a non-zero element in $Y(R)$. Then $r(a)$ is an essential right ideal of R. Since R is a right gs-weakly regular ring, there exist $b, c \in R$ and a positive integer n such that $a=a b a^{n} c$. Consider $r(a) \cap b a^{n} R$, let $x \in\left(r(a) \cap b a^{n} R\right)$. Then, $a x=0$ and $x=b a^{n} t$, for some $t \in R$. So $a b a^{n} t=0$, then $a b a^{n} c y=0$ (let $t=c y$). Thus, $a y=0$. Therefore, $a^{n} y c=0$, so $b a^{n} c y=0$ and hence $b a^{n} t=0$, yields $x=0$. Therefore, $r(a) \cap b a^{n} R=(0)$. Since $r(a)$ is a non-zero essential right ideal of R, then $b a=0$ and hence $a=0$. So, $Y(R)=(0)$.

Theorem 2.25 If I is a proper ideal of a right gs-weakly regular ring, then each element of I is a left zero divisor.

Proof: Suppose $x \in I$ such that x is not a left zero divisor. Since R is right gs-weakly regular, then $x R=x R x^{n} R$, for some positive integer n. Therefore, if $y \in R$, then $x y=\sum_{i=1}^{k} x t_{i} x^{n} s_{i}$, for some $t_{i} \in R, s_{i} \in R$. This gives $x y-\sum_{i=1}^{k} x t_{i} x^{n} s_{i}=0=x\left(y-\sum_{i=1}^{k} t_{i} x^{n} s_{i}\right)=0$. As x is not a left zero divisor, then $y-\sum_{i=1}^{k} t_{i} x^{n} s_{i}=0$. This implies $y=\sum_{i=1}^{k} t_{i} x^{n} s_{i} \in I$. Hence $I=R$, which
contradicts that I is a proper ideal of R. Thus, each element of I is a left zero divisor.

Recall that a ring R is called semi primitive if $J(R)=(0)$.
Theorem 2.26 A right(resp. left) gs-weakly regular ring is semi primitive.
Proof: Let $x \in J(R)$. Now, R is right gs-weakly regular implies $x R=$ $x R x^{n} R$, for some positive integer n. Hence, $x=\sum_{i=1}^{k} x t_{i} x^{n} s_{i}$, for some $t_{i} \in R$, $s_{i} \in R$. Hence $x\left(1-\sum_{i=1}^{k} t_{i} x^{n} s_{i}\right)=0$. Since $x \in J(R)$, then $1-\sum_{i=1}^{k} t_{i} x^{n} s^{n}$ is a unit. Therefore, $x=0$. As x is arbitrary, $J(R)=(0)$. Whence, R is semi primitive ring.

Corollary 2.27 A right (resp. left) s-weakly regular ring is semi primitive ring.

Recall that a ring R is called right(resp. left) non-singular if $Y(R)=$ $(0)(Z(R)=(0))$.

Finally, we give the following result.
Theorem 2.28 A left(resp. right) gs-weakly regular ring is right(resp. left) non-singular.

Proof: Let R be a left gs-weakly regular ring and $x \in Y\left(R_{R}\right)$. Then $r(x)$ is an essential right ideal of R. Since R is left gs-weakly regular, then $R x=$ $R x R x^{n}$, for some positive integer n.So, $x=\sum_{i=1}^{k} t_{i} x^{n} s_{i} x$, for some $t_{i} \in R, s_{i} \in R$. Let $y=\sum_{i=1}^{k} t_{i} x^{n} s_{i}$, so that $x=y x$ and therefore $y x-x=0$.This implies that $(y-1) x=0$. That is, $x \in r(y-1)$.Hence $x R \subseteq r(y-1)$. Now, $r(y)$ is essential right ideal of R and $r(y) \cap r(y-1)=(0)$ implies $r(y-1)=(0)$. Hence, $x R=0$. Thus, $x=0$. Hence $Y\left(R_{R}\right)=(0)$ and thus R is right non-singular. If R is right gs-weakly regular ring we can similarly prove that R is left non-singular.

3 Main Results

In this section, we give some main results of gs-weakly regular rings and its relations with GP-injectivity, flatness, simple ring and strongly regular rings.

We start this section with the following theorem.

Theorem 3.1 Let R be a reduced ring. If every simple right R-module is $G P$-injective, then R is a right gs-weakly regular rings.

Proof: Let $a \in R$. If $R a^{n} R+r(a) \neq R$, for all positive integer n, then there exists a maximal ideal M of R such that $R a^{n} R+r(a) \subseteq M$. Now, define $f: a^{n} R \rightarrow R / M$ as $f\left(a^{n} t\right)=t+M$, for each $t \in R$ and a positive integer n. First we show that f is a well-defined. Let $a^{n} t=a^{n} s$, for some $t, s \in R$, then $a^{n}(t-s)=0$. Therefore, $(t-s) \in r\left(a^{n}\right)$. Since R is reduced, then by Lemma 2.11(iii) , $(t-s) \in r(a) \subseteq M$. Therefore, $t+M=s+M$. It means that $f\left(a^{n} t\right)=f\left(a^{n} s\right)$. Whence f is a well-defined. Since R / M is GP-injective, then there exists $h \in R$ such that $f\left(a^{n} t\right)=(h+M) a^{n} t$, for each $t \in R$. Indeed, $1+M=f\left(a^{n}\right)=(h+M) a^{n}=h a^{n}+M$. Therefore, $\left(1-h a^{n}\right) \in M$. But $h a^{n} \in R a^{n} R \subseteq M$, then $1 \in M$. This is contradiction. Whence, R is a right gs-weakly regular ring.

Theorem 3.2 [5] Let R be a ring, then R is reduced and right weakly regular if and only if for each $a \in R, R a R \oplus r(a)=R$.

Theorem 3.3 The ring R is a right gs-weakly regular if and only if R is reduced and right weakly regular.

Proof: Let R be a reduced and right weakly regular, then by Theorem 3.2 , for each $a \in R, R a R+r(a)=R$. Therefore, it is true for a^{n} since every weakly regular ring is weakly π-regular, it means that $R a^{n} R+r\left(a^{n}\right)=R$, for all $a \in R$ and a positive integer n. Since R is reduced, then by Lemma 2.11(iii), $r\left(a^{n}\right)=r(a)$. Therefore, $R a^{n} R+r(a)=R$. Thus, there exist $t, s \in R$ and $b \in r(a)$ such that $t a^{n} s+b=1$. Multiply the previous equation from the left by a, we obtain $a=a t a^{n} s$. Whence, R is a right gs-weakly regular ring.

Conversely, let R be a right gs-weakly regular ring, then for each $a \in$ R, there exist $t_{1}, t_{2} \in R$ and a positive integer n such that $a=a t_{1} a^{n} t_{2}$. This implies that $a=a t_{1} a a^{n-1} t_{2}$. if we set $t=a^{n-1} t_{2} \in R$, then $a=a t_{1} a t$. Therefore, R is weakly regular ring. Also, by Theorem $2.22, R$ is reduced.

Theorem 3.4 [14] Let R be a ring. If $\ell(a) \subseteq r(a)$, for each $a \in R$. Then, $R a R+r(a)$ is an essential right ideal of R.

Theorem 3.5 [9] Let R be a ring. If $\ell(a) \subseteq r(a)$,for each $a \in R$ and every simple singular right R-module is GP-injective, then R is reduced.

Theorem 3.6 Let R be a ring, if $\ell(a) \subseteq r(a)$ for each $a \in R$ and every simple singular right R-module is GP-injective, then R is a right gs-weakly regular ring.

Proof: By Theorem 3.5, R is reduced. Also, by using Theorem 3.3, it means to prove that R is a right gs-weakly regular ring, we need prove that R is a right weakly regular ring. To prove R is a weakly regular ring, we prove that $R a R+r(a)=R$, for each $a \in R$. Let $b \in R$, where $R b R+r(b) \neq R$. Then, there exists a maximal essential right ideal M of R, which contains $R b R+r(b)$. Since R / M is GP-injective, then every homomorphism from $b R$ to R / M can be extended to one of R into R / M. Define $f: b R \rightarrow R / M$ as $f(b t)=t+M$, for each $t \in R$. Since R is reduced, then f is a well-defined. Now, since R / M is GP-injective, then there exists $c \in R$ such that $1+M=f(b)=c b+M$. Therefore, $(1-c b) \in M$. But $c b \in M$, then $1 \in M$. This is a contradiction. Therefore, $R a R+r(a)=R$, for each $a \in R$. Then, R is a right weakly regular ring. Since R is reduced, then by Theorem 3.3, R is a right gs-weakly regular ring.

Lemma 3.7 [17] Let I be a right(resp. left) ideal of R. Then R / I is a flat right(resp. left) R-module if and only if for each $a \in I$, there exists $b \in I$ such that $a=b a($ resp $. a=a b)$.

Theorem 3.8 Let R be a reduced ring such that every essential ideal I of $R, R / I$ is a flat, then R is a gs-weakly regular ring.

Proof: Let $a \in R$ and $I=R a^{n} R+r(a)$, for some positive integer n. Now, we show that I is an essential ideal of R, if it is not, then there exists a nonzero ideal K of R such that $I \cap K=(0)$. This implies that $R a^{n} R \cap K=(0)$. Since $a^{n} R \subseteq R a^{n} R$, then $a^{n} R \cap K=(0)$. But $a^{n} R K \subseteq a^{n} R \cap K=(0)$ and R is reduced, then $K \subseteq r\left(a^{n} R\right)=r\left(a^{n}\right)=r(a)$ by Lemma 2.11(iii). Therefore, $K \subseteq r(a)$, but $r(a) \subseteq I$. Therefore, $K \subseteq I$. This implies that $K=K \cap I=(0)$. This is a contradiction to that $K \neq(0)$. Therefore, I is an essential ideal of R. Since R / I is a flat, then by Lemma 3.7, for each $a \in I$, there exists $b \in I$ such that $a=a b=b a$. Since $b \in I$, then $I=r(a)+R a^{n} R$. Also , $b=c a^{n} d+h$, for some $c, d \in R$ and $h \in r(a)$.Then, $a=a b=a\left(c a^{n} d+h\right)=a c a^{n} d$. Also, $a=b a=\left(c a^{n} d+h\right) a=c a^{n} d a$. Whence, R is a gs-weakly regular ring.

Recall that a ring R is prime [10] in case a product of non-zero ideals is non-zero.

Theorem 3.9 Let R be a prime ring. If R is a right gs-weakly regular ring, then R is a simple ring.

Proof: Since R is a right gs-weakly regular ring, then by Theorem 3.3, R is reduced and by Theorem 3.2, for each $a \in R, R=R a R+r(a)$. Therefore, $r(a) R a R \subseteq r(a) \cap R a R=(0)$. Since R is a prime ring and by assumption $a \neq 0$, then $r(a)=0$. Therefore, $R=R a R$.

Theorem 3.10 let R be a right gs-weakly regular ring. If every principal right ideal of R is essential, then R is a simple ring.

Proof: Since R is a right gs-weakly regular ring, then by Theorem 3.3, R is reduced and by Theorem 3.2, for each $a \in R, R=r(a) \oplus R a R$. Let $r(a) \neq 0$ and every principal right ideal of R is essential. Then, $a R \cap r(a) \neq(0)$. Then, there exists a non-zero element x such that $x \in a R \cap r(a)$. It means that $x=a t$ and $a x=0$. Therefore, $a x=a^{2} t=0$. It means that $t \in r\left(a^{2}\right) \subseteq r(a)$. This implies that $x=a t=0$. Therefore, $a R \cap r(a)=(0)$. Since $a R$ is an essential, then $r(a)=0$, for each $a \in R$. Therefore, $R=R a R$, for each $0 \neq a \in R$ and hence R is a simple ring.

Theorem 3.11 If R is a right gs-weakly regular ring and every principal left ideal of R is a left annihilator of an element of R, then R is a strongly regular ring.

Proof: Let $0 \neq a \in R$. Since R is a right gs-weakly regular ring, then by Theorem 2.22, R is reduced. Therefore by Lemma 2.11(i), $r(a)=\ell(a)$, for each $a \in R$. If a is not divisible by zero in R, there exists $s \in R$ such that $R a=\ell(a)$ by assumption. This implies that $a s=0$. Then, $s=0$. It means that $R a=\ell(s)=R$. Then, there exists $t \in R$ such that $t a=1$. Multiply by a from the right we obtain $a=t a^{2}$. Therefore, R is a strongly regular ring.

If a is divisible by zero in R, then there exists $0 \neq b \in R$ such that $a . b=0$. If $a+b$ is divisible by zero, then there exists $0 \neq c \in R$ such that $(a+b) . c=0$. This implies that $a c=-b c$. Since $b \in r(a)$ and $-b \in r(a)$ and $a \in \ell(b)=r(b)$, also $a c \in r(b)$, then $a c=-b c \in r(b) \cap r(a)$. Also, we have $R a=\ell(b)=r(b)$.

Let $w \in r(b) \cap r(a)$, then there exists $t \in R$ such that $w=t a$ and $a w=$ $a t a=0$. This implies that $(t a)^{2}=t a t a=0$. Then, $w=t a=0$. Therefore, $r(b) \cap r(a)=0$. Since $a c=-b c \in r(b) \cap r(a)$, then $a c=-b c=0$. It means that $c \in r(b) \cap r(a)$, then $c=0$. This is a contradiction. Therefore, $(a+b)$ is not divisible by zero, then there exists $d \in R$ such that $d(a+b)=1$. Then, $a=d a^{2}$. Whence, R is a strongly regular ring.

Theorem 3.12 If R is a right gs-weakly regular ring and $R a^{n}=a^{n} R$, for each $a \in R$ and a positive integer n, then $a=$ ae and $\ell(a)=\ell(e)$, where e is an idempotent element.

Proof: Since R is a right gs-weakly regular ring, then for each $a \in R$, then exist $b, c \in R$ and a positive integer n such that $a=a b a^{n} c$. Since $b a^{n} \in R a^{n}=$ $a^{n} R$, then there exists $h \in R$ such that $b a^{n}=a^{n} h$. It means that $a=a a^{n} h c$. If we set $t=h c$, then $a=a^{n+1} t$. This implies that $a\left(1-a^{n} t\right)=0$. Since R is a
right gs-weakly regular ring, then by Theorem $2.22, R$ is reduced. Therefore, $\left(1-a^{n} t\right) \in r(a)=\ell(a)$ by Lemma 2.11(i). Then, $\left(1-a^{n} t\right) a=0$. Therefore, $a=a^{n} t a$. Put $e=a^{n} t$, then

$$
e^{2}=a^{n} t a^{n} t=a^{n} t a a^{n-1} t=a a^{n-1} t=a^{n} t=e .
$$

Therefore, e is an idempotent.Then, $a\left(1-a^{n} t\right)=0$. Therefore $a=a^{n+1} t=$ $a a^{n} t=a e$.

Let $x \in \ell(a)$, then $x a=0$. Therefore, $x a^{n}=0$, then $x a^{n} t=0$, whence $x e=0$. Thus, $x \in \ell(e)$. Therefore, $\ell(a) \subseteq \ell(e)$. Let $y \in \ell(e)$, then $y e=0$. Therefore, $y a^{n} t=0$ and hence $y a^{n} t a=0$, whence $y a=0$. Therefore, $y \in \ell(a)$.

Then, $\ell(e) \subseteq \ell(a)$. Whence, $\ell(a)=\ell(e)$.
Finally the following main result will be given.
Theorem 3.13 If R is a right gs-weakly regular ring, which has no zero divisor and $a^{n} R=R a^{n}$, for each $a \in R$ and a positive integer n, then there exists a unit element u of R and an idempotent e of R such that $a=e u=u e$ and $a=(1-e)+u$.

Proof: Since R is a right gs-weakly regular ring and $0 \neq a \in R$. Then,

$$
a=a^{n+1} t=a^{n} t a=t a^{n} a=t a^{n+1} .
$$

Since R has no zero divisor, then $a t a^{n-1}=a^{n} t=t a^{n}$. If we set $e=a t a^{n-1}=$ $a^{n} t=t a^{n}$ and since R is a right gs-weakly regular ring, then by Theorem 2.22, R is reduced, then $a=a e=e a$. Let $u=a+e-1$, then

$$
\begin{aligned}
e u & =e(a+e-1)=e a+e^{2}-e=e a+e-e=e a=a . \\
u e & =(a+e-1) e=a e+e^{2}-e=a e+e-e=a e=a
\end{aligned}
$$

If we take $v=a^{n-1} t+e-1$, then

$$
\begin{aligned}
u v & =(a+e-1)\left(a^{n-1} t+e-1\right) \\
& =a^{n} t+a(e-1)+(e-1) a^{n-1} t+(e-1)^{2} \\
& =e+a e-a+e a^{n-1} t-a^{n-1} t+e^{2}-2 e+1 \\
& =e+a-a+e a^{n-1} t-a^{n-1} t+1-e \\
u v & =1 \\
v u & =\left(a^{n-1} t+e-1\right)(a+e-1) \\
& =a^{n-1} t a+a^{n-1} t(e-1)+(e-1) a+(e-1)^{2} \\
& =e+a^{n-1} t e-a^{n-1} t+e a-a+e^{2}-2 e+1 \\
& =e+a^{n-1} t-a^{n-1} t+a-a+e-2 e+1 \\
v u & =1 .
\end{aligned}
$$

Therefore, $a=e u=u e$ and $(1-e)+u=1-e+a+e-1=a$. It means that $a=(1-e)+u$.

References

[1] M.R.M. Al-Kouri, On strongly π-regular rings, Ph.D. Thesis, (2000), Mosul University.
[2] V.A. Andrunakievich, On completely prime ideals of a ring, Mat. sb. (N.S.), 12(3)(163) (1984), 291-296.
[3] H.E. Bell, Some commutativity results for periodic rings, Acta. Math. Acad. Sci. Hungar., 28(1976), 279-283.
[4] S.H. Brown, Rings over which every simple module is rationally complete, Canad. J. Math. Bull., 25(1973), 693-701.
[5] V. Camillo. and Y. Xiao, Weakly regular rings, Comm. Algebra., 22(10) (1994), 4095-4112.
[6] P.M. Cohn, Reversible rings, Bull. London Math. Soc., 31(1999), 641-648.
[7] V. Gupta, Weakly π-regular rings and group rings, Math. J. Okayama Univ., 19(1977), 123-127.
[8] V. Gupta, A generlization of strongly regular rings, Acta. Math. Hung., 43(1-2) (1984), 57-61.
[9] N.K. Kim, S.B. Nam and J.Y. Kim, On simple singular GP-injective modules, Comm. Algebra, 27(5) (1999), 2087-2096.
[10] L. Tsit-Yuen, A First Course in Non Commutative Rings (2nd ed.), Berlin, New York: Springer-Verlag, (2001).
[11] J. Luh, A note on strongly regular rings, Proc. Japan Acad, 40(1964), 74-75.
[12] R.D. Mahmood, On pure ideals and pure submodules, Ph.D. Thesis, Mosul University, (2000).
[13] R.Y.C. Ming, On regular rings and Artinian rings II, Riv. Math. Univ. Parma, 4(11) (1985), 101-109.
[14] S.B. Nam, A note on simple singular GP-injective modules, KangweenKyungki Math. Jour., 7(2) (1999), 215-218.
[15] F.S. Naoum, On π-regular rings, Ph.D. Thesis, Mosul University, (2004).
[16] V.S. Ramamurthi, Weakly regular rings, Canad. Math. Bull, 16(3) (1973), 317-322.
[17] M.B. Rege, On von Neumann regular rings and SF-rings, Math. Japonica, 31(6) (1986), 927-936.
[18] J. von Neumann, On regular rings, Proc. Nat. Scad. Sci. U. S. A., 22(1936), 707-713.
[19] Y. Xue, Weakly right duo rings, Pure Appl. Math. Sci., XXI(1-2) (1985), 19-24.
[20] A.M. Younis, On s-weakly regular rings, M. Sc. Thesis, Mosul University, (2003).

