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Abstract 

     In this paper, the modified Korteweg-de Vries (MKdV) equation is solved 
numerically using the finite difference method. An energy conservative finite 
difference scheme was proposed. Accuracy and stability of the difference solution 
were proved. 

     Keywords: MKdV, Finite difference, Solitary waves.      

 

1 Introduction 
 
In this paper, the finite difference method is employed to obtain the numerical 
solution to the modified Korteweg-de Vries (mKdV) equation. A scheme is 
developed for the numerical study of the mKdV equations with initial conditions. 
The exact and numerical solutions obtained by this scheme are compared. The 
comparison shows that this scheme provides highly numerical solutions for the 
MKdV equation. The modified KdV equation has a pulse travelling solution. 
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Wadati and Ohkuma [4] have used the inverse scattering method to investigate the 
multiple pole solution of the modified KdV equation. Wazwaz [5] constructed the 
solution of mkdv equation in the form of Taylor series by using Adomian 
decomposition method.  
 

2 The Problem and Analytical Solution 
 
The MKdV equation in the form [2] 
 

               ,02 =++ xxxxt uuuu µε                                                                (1) 

 
where subscripts x and t denote differentiation, is considered with the boundary 
conditions u→0 as x→ ±∞. In this paper, we use periodic boundary conditions for 
a region a ≤ x ≤ b. The analytic solution of the MKdV equation can be expressed 
as 

             ))((sec3),( 0
2 xvtxphctxu −−=                                                       (2) 

 
where x0 is an arbitrary constant.  
 

3 Conservation Laws for the MKdV Equation 
 
The MKdV equation possesses four polynomial invariants, corresponding to the 
conservation of mass, momentum and energy which for the periodic boundary 
condition can be expressed in the form 
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4 Finite Difference Method 
 
To apply the finite difference method for solving the MKdV equation, firstly we 
present the following notations for the derivatives 
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where 0 ≤ θ ≤ 1, h and k are the spatial and temporal step sizes respectively and xi 
= ih, tj = jk, i = 0,1,. . . and j = 0,1,. . ., where superscript j denotes a quantity 
associated with time level tj and subscript i denotes a quantity associated with 
space mesh point xi. The scheme requires two initial time levels, so we use the 
exact solution (2) at t = 0 and t = k.  
 
Substitute Eq.(4) in Eq.(1), then the resulting algebraic system of equations takes 
the form 
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(5) 
where j=0,1,2,…, i=1,2,…,N-1 
 

5 Linear Stability Analysis 
 
The Von Neumann stability theory [1] will be applied and the growth of a Fourier 
mode   

                      
ikjhnn

j eu ξ=
                                                                          (6) 

 
where k is the mode number and h is the element size, will be determined for a 

linearization of the numerical scheme. In this nonlinear term xuu2

 is locally 

constant. This is equivalent to assuming that the corresponding values 
2u  are also 

constant [3] and equal toU . 
 
Substituting (6) into Eq.(5) we obtain. 
 

                   
jj gξξ =+1
                                                                          (7) 

 
where g is the growth factor is thus  
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Stability can be concluded in different cases: 
 
1. θ = 0, gives an explicit scheme and the linearized scheme is unstable, 

since 1>g . 

2.  θ=1, gives the fully implicit scheme and the linearized scheme is 
unconditionally stable, since 1≤g . 

3.  θ=0.5, gives the Crank-Nicolson scheme and the linearized scheme is 
unconditionally stable, since 1=g .   

 

6 Numerical Applications  
 
It has been shown in Section 2 that the MKdV equation has an analytical solution 
of the form (2). In this work, we present some numerical experiments to assign the 
numerical solution of single solitary wave, in addition to determine the solution of 
two and three soliton interactions at different time levels.  
 
6.1 Single Solitary Waves 
 
In this test we choose the initial condition from the exact solution 
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To illustrate the validity of our scheme in case of a single soliton, we use the ∞L -
norm to compare the numerical solution with the exact solution, also quantities I1, 
I2, I3 and I4 are shown to measure conservation laws for the scheme. In case 1, we 
choose 01.0,1.0 =∆=∆ tx , 1,3 == µε and 0.845=c  as shown in "Table" 1. 
 

Table 1: Invariants and error norm for single solitary wave 

h=0.1=k=0.01, 1,3 == µε and 0.3=c , 800 ≤≤ x  
 

T L∞-error I1 I2 I3 I4 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 

9.4179E-5 
1.5926 E-4 
2.0619 E-4 
2.3711 E-4 
2.6244 E-4 
2.8110 E-4 

4.44279 
4.4427 
4.4426 
4.4425 
4.4424 
4.4423 

2.1908 
2.1907 
2.1906 
2.1905 
2.1904 
2.1903 

0.438274 
0.438217 
0.43816 
0.438104 
0.438047 
0.43799 

0.0788365 
0.0788886 
0.0788884 
0.0788761 
0.0788634 
0.0788464 
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0.7 
0.8 
0.9 
1.0 

2.9482E-4 
3.0133 E-4 
3.1064 E-4 
3.1027E-4 

4.4422 
4.4421 
4.4420 
4.44192 

2.1902 
2.1901 
2.1900 
2.18994 

0.43793 
0.43788 
0.43782 
0.437763 

0.0788586 
0.0788661 
0.0789231 
0.079070 

 
 

Table 2: Invariants and error norm for single solitary wave The 2nd Scheme 
h=0.1=k=0.01, 1,3 == µε and 0.3=c , 800 ≤≤ x  

 
T L∞-error I1 I2 I3 I4 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

9.6546E-5 
6.2638E-4 
2.1449E-4 
2.4938E-4 
2.7377E-4 
2.9141E-4 
3.0437E-4 
3.1388E-4 
3.2048E-4 
3.2521E-4 

4.4428 
4.4427 
4.4426 
4.4425 
4.4424 
4.4423 
4.4423 
4.4422 
4.4421 
4.44198 

2.19078 
2.19066 
2.19055 
2.19043 
2.19032 
2.1902 
2.19009 
2.18997 
2.18986 
2.18974 

0.438262 
0.438193 
0.438124 
0.438055 
0.437986 
0.437918 
0.437849 
0.43778 
0.437711 
0.437642 

0.0788272 
0.07887 

0.0788808 
0.0788675 
0.0788502 
0.078831 
0.0788104 
0.0787901 
0.0787629 
0.0787611 

 
 
The results shown in "Tables" 1 and 2 show that the change in the invariants I1, I2, 
I3 and I4 are very small as follows: 8.2 ×10 −4, 1×10 −3, 6×10-4 and 6.6×10-5, 
respectively. 

 

20 40 60 80

0.2

0.4

0.6

 

 
Fig. 1: Single solitary wave of the first scheme with c=0.3, h=0.1, k=0.01 at 

times: T=0, T=5 and T=10 
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Fig. 2: Single solitary wave of the second scheme with c=0.3, h=0.1, k=0.01 at 
times: T=0, T=5 and T=10 

 
6.2 Interaction of Two Soliton 
 
In this test we choose the initial condition as the sum of two solitary waves of the 
form 
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Where c1 = 0.2, c2 =0.1, x1 = 15, x2 = 25. The conserved quantities are given in 
"Table" 3 and "Table" 4. 

 
Table 3: The computed values of the conservations laws for two soliton of the 1st 

Scheme with 01.0,1.0 =∆=∆ tx , 1,3 == µε , 800 ≤≤ x  
 

T I1 I2 I3 
1.0 
2.0 
3.0 
4.0 
5.0 

7.52781 
7.48285 
7.45274 
7.39747 
7.43042 

2.94444 
2.9481 
2.95242 
2.96155 
2.97498 

0.66715 
0.66283 
0.665289 
0.664989 
0.658588 

 
 
The conserved quantities for two soliton of the 1st scheme are given in "Table" 3, 
we found during the interaction simulation. that the computed quantities I1, I2 and 
I3 change by less than 9×10-2, 3×10-2 and 8×10-3 . 
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Table 4: The computed values of the conservations laws for two soliton of the 2nd 

Scheme with 01.0,1.0 =∆=∆ tx , 1,3 == µε , 800 ≤≤ x  
 

T I1 I2 I3 
1.0 
2.0 
3.0 
4.0 
5.0 

8.88426 
8.88525 
8.88445 
8.88488 
8.88831 

3.59982 
3.59918 
3.59805 
3.59732 
3.59768 

0.859249 
0.847121 
0.83652 
0.827262 
0.819233 
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Fig. 3: Interaction of two solitary waves at times: (a) =T=0, (b) T=2, (c) T=5 

 
The conserved quantities for two soliton of the 2nd scheme are given in "Table" 3, 
we found during the interaction simulation. that the computed quantities I1, I2 and 
I3 change by less than 4.1×10-3, 3.1×10-3 and 4×10-2 
 
6.3 Interaction of Three Soliton 
 
In this test we choose the initial condition for three waves 
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where c1=2, c2=1, c3=0.5, x1=15, x2=25, x3=35 . The conserved quantities are 
given in "Table" 5, 6. 

 
Table 5: The computed values of the conservations laws for three soliton of the 

1st Scheme with 01.0,1.0 =∆=∆ tx , 1,3 == µε , 800 ≤≤ x  
 

T I1 I2 I3 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 

13.3286 
13.3271 
13.3260 
13.3248 
13.3280 
13.3203 

6.09900 
6.09748 
6.09608 
6.09481 
6.09369 
6.09266 

1.90112 
1.86964 
1.84270 
1.81528 
1.78710 
1.75979 

 
The conserved quantities for three soliton of the 1st scheme are given in "Table" 5 
, we found during the interaction simulation. that the computed quantities I1, I2 
and I3 change by less than 8.2×10-3, 6.3×10-3 and 0.14 respectively.  
  

Table 6: The computed values of the conservations laws for three soliton of the 
2nd Scheme with 01.0,1.0 == kh , 1,3 == µε , 800 ≤≤ x  

 
T I1 I2 I3 

0.0 
1.0 
2.0 
3.0 
4.0 
5.0 

13.3286 
13.3257 
13.3227 
13.3193 
13.3148 
13.3110 

6.09900 
6.09593 
6.09282 
6.08958 
6.08621 
6.08286 

1.90112 
1.86863 
1.84073 
1.81250 
1.78366 
1.75590 

 
The conserved quantities for three soliton of the 2nd scheme are given in "Table" 
6, we found during the interaction simulation. that the computed quantities I1, I2 

and I3 change by less than 1.7×10-2, 1.6×10-2 and 0.14  
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Fig. 4: Interaction three solitary waves at times: (a) =T=0, (b) T=5 

 

7 The Invariant Imbedding Method 
 
The general implicit form is: 
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We solve the scheme (11) by the invariant imbedding method [6]. This system can 
be written in the form 
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Let its solution be 
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By substituting equation (13) into (12) and comparing the coefficients, one gets 
the relations 
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Taking i = 0 in (13) we get A0=0, B0=0 and C0 = u0 where u0 is known from the 
boundary condition. Taking i=-1 in (13) we get A-1 =1, B-1=0 and C-1=0 ,the 
scalar Ai and Bi are computed from (14) and are used to find the solution 

1+j
iu from equation (13). 

 
7.1 Numerical Applications 
 
It has been shown in this Section that the MKdV equation has an analytical 
solution of the form (2). In this work, we present some numerical experiments to 
assign the numerical solution of single solitary wave, in addition to determine the 
solution of two soliton interactions at different time levels.  
 
7.1.1 Single Solitary Waves 
 
To illustrate the validity of our scheme in case of a single soliton, we use the L2-
norm to compare the numerical solution with the exact solution, also quantities 

321 , II,I  and 4I are shown to measure conservation laws for the scheme. In this 

case, we choose 01.0,2.0 =∆=∆ tx , 1,3 == µε and 0.3=c  with range [0, 80].  
 

Table 7: 01.0,2.0 =∆=∆ tx , 1,3 == µε and 0.3=c , 800 ≤≤ x  
 

T L2-error I1 I2 I3 I4 
1.0 
2.0 
3.0 
4.0 
5.0 

1.9842E-3 
2.5119E-3 
2.9937E-3 
3.5185E-3 
4.2136E-3 

4.44199 
4.44107 
4.44010 
4.43974 
4.43812 

2.18995 
2.18901 
2.18807 
2.18713 
2.18619 

3.8175E-2 
3.7979E-2 
3.7394E-2 
3.6768E-2 
3.6296E-2 

7.8484E-2 
7.9924E-2 
8.5221E-2 
8.8609E-2 
9.7301E-2 

 
 
The invariants I1, I2, I3 and I4 are changed by 3.8 ×10 −3, 3.7×10 −3, 1.8×10-3, and 
6.8×10-2 percent, respectively, throughout "Table" 7. 
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Fig. 5: Single solitary wave, c=0.3, h=0.1, k=0.01 

 
7.1.2 Interaction of Two Solitary Waves 
 
In this test we choose the initial condition as the sum of two solitary waves of the 
form 
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Where c1 = 2, c2 = 1, x1 = 15, x2 = 25. The conserved quantities are given in 
"Table" 8. 

 
Table 8: Interaction of two solitary waves 

 
T I1 I2 I3 

1.0 
2.0 
3.0 
4.0 
5.0 

8.63906 
8.46653 
8.36797 
8.24351 
8.15655 

9.03663 
8.65149 
8.38153 
8.17557 
8.00870 

7.94016 
6.80785 
6.02332 
5.46112 
5.18743 

 
 
The conserved quantities are given in "Table" 8. We found that the computed 
quantities I1, I2, and I3 change by less than 0.48, 1.7and 2.7. 
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Fig. 6: Interaction two solitary waves at times: 

(a) =T=0, (b) T=1 
 
7.1.3 Interaction of Three Soliton 
 
In this test we choose the initial condition for three waves 
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where c1=2, c2=1, c3=0.5, x1=15, x2=25, x3=35. The conserved quantities are 
given in "Table" 9. 
 

Table 9: Interaction of three solitary waves 
 

T I1 I2 I3 
1.0 
2.0 
3.0 
4.0 
5.0 

13.07780 
12.90114 
12.80053 
12.67308 
12.57683 

11.85946 
11.46870 
11.19353 
10.98244 
10.80949 

8.88135 
7.74215 
6.95347 
6.38317 
6.10943 

 
 
The conserved quantities are given in "Table" 9. We found that the computed 
quantities I1, I2, and I3 change by less than 0.5, 1.04 and 2.7. 
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Fig. 7: Interaction three solitary waves at times: (a) =T=0, (b) T=2 
 

8 Conclusions 
 
In this paper, the finite difference method was applied to study the solitary waves 
of the MKdV equation. We test our schemes through single solitary wave in 
which the analytical solution is known, and then extended it to study the 
interaction of two and three solitons. We have noticed that the schemes keep the 
conserved quantities are almost constants during the calculations.  
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