Gen. Math. Notes, Vol. 26, No. 1, January 2015, pp.74-83
ISSN 2219-7184; Copyright ©ICSRS Publication, 2015
www.i-csrs.org
Available free online at http://www.geman.in

Ruled Surfaces With the Bishop Frame in Euclidean 3-Space

Yılmaz Tunçer
Usak University, Faculty of Sciences and Arts
Department of Mathematics, Usak-Turkey
E-mail: yilmaz.tuncer@usak.edu.tr

(Received: 9-7-14 / Accepted: 7-9-14)

Abstract

In this study, we examined the ruled surfaces in Euclidean 3-space with the Bishop frame of the base curve in two cases and obtained some characterizations on the ruled surfaces by using its directrix, Bishop curvatures, shape operator and Gauss curvature. Furthermore, we calculated Bishop Steiner rotation, Bishop tranlation vectors, the pitch and angle of pitch of the ruled surfaces and gave some sufficient and necessary conditions for developable ruled surface with respect to the Bishop frame of the base curve by using Bishop curvatures and curvatures of the ruled surface along the generating lines.

Keywords: Ruled surface, Bishop frame, Gauss curvature.

1 Preliminaries

The Bishop frame or parallel transport frame is an alternative approach to defining a moving frame that is well defined even when the curve has vanishing second derivative. we can parallel transport an orthonormal frame along a curve simply by parallel transporting each component of the frame. The parallel transport frame is based on the observation that, while $T(s)$ for a given curve model is unique, we may choose any convenient arbitrary basis ($N_{1}(s)$ and $\left.N_{2}(s)\right)$ for the remainder of the frame, so long as it is in the normal plane perpendicular to $T(s)$ at each point. If the derivatives of $\left(N_{1}(s)\right.$ and $\left.N_{2}(s)\right)$ depend only on $T(s)$ and not each other we can make and $N_{1}(s)$ vary $N_{2}(s)$ smoothly throughout the path regardless of the curvature. Therefore, we have
the alternative frame equations

$$
\left[\begin{array}{c}
T^{\prime}(s) \tag{1}\\
N_{1}^{\prime}(s) \\
N_{2}^{\prime}(s)
\end{array}\right]=\left[\begin{array}{ccc}
0 & k_{1}(s) & k_{2}(s) \\
-k_{1}(s) & 0 & 0 \\
-k_{2}(s) & 0 & 0
\end{array}\right]\left[\begin{array}{c}
T(s) \\
N_{1}(s) \\
N_{2}(s)
\end{array}\right]
$$

where

$$
\kappa(s)=\sqrt{k_{1}^{2}+k_{2}^{2}}, \quad \theta(s)=\arctan \left(\frac{k_{2}}{k_{1}}\right), \quad \tau(s)=-\frac{d \theta(s)}{d s}
$$

[1,2,3], so that $k_{1}(s)$ and $k_{2}(s)$ effectively correspond to a Cartesian coordinate system for the polar coordinates $(\kappa(s), \theta(s))$, with $\theta(s)=-\int \tau(s) d s$. The orientation of the parallel transport frame includes the arbitrary choice of integration constant θ_{0}, which disappears from τ (and hence from the Frenet frame) due to the differentiation.

2 Introduction

A straight line X in $I R^{3}$, such that it is strictly connected to Frenet frame the curve $\alpha(s)$, is represented uniquely with respect to this frame, in the form

$$
\begin{equation*}
X(s)=f_{1}(s) T(s)+f_{2}(s) N_{1}(s)+f_{3}(s) N_{2}(s) \tag{2}
\end{equation*}
$$

As X move along $\alpha(s)$, it generates a ruled surface given by the regular parametrization

$$
\begin{equation*}
\varphi(s, v)=\alpha(s)+v X(s) \tag{3}
\end{equation*}
$$

where the components $f_{i}(s), i=1,2,3$ are scalar functions of the arc-length parameter of the curve $\alpha(s)$. This surface will be denoted by M. the curve $\alpha(s)$ is called a base curve and the various positions of the generating line X are called the rulings of the surface M. If consecutive rulings of ruled surface in IR^{3} intersect, then the surface is to be developable. All the other ruled surfaces are called skew surfaces. If there exists a common perpendicular to two constructive rulings in the skew surface, then the foot of the common perpendicular on the main ruling is called a striction point. The set of striction points on the ruled surface defines the striction curve[6]. The striction curve of M can be written in terms of the base curve $\alpha(s)$ as

$$
\begin{equation*}
\bar{\alpha}(s)=\alpha(s)-\frac{\left\langle T, D_{T} X\right\rangle}{\left\|D_{T} X\right\|^{2}} X(s) \tag{4}
\end{equation*}
$$

If $\left\|D_{T} X\right\|=0$ then the ruled surface doesn't have any striction curve. This case characterizes the ruled surface is cyclindirical. Thus the base curve can take as a striction curve. Let P_{x} be distribution parameter of M, then

$$
\begin{equation*}
P_{X}=\frac{\operatorname{det}\left(T, X, D_{T} X\right)}{\left\|D_{T} X\right\|^{2}} \tag{5}
\end{equation*}
$$

where D is Levi-Civita connection on $E^{3}[4]$. If the base curve is periodic then M is closed ruled surface. Let M be a closed ruled surface and W be Darboux vector then the Steiner rotation vector and Steiner translation vector are

$$
\begin{equation*}
D=\underset{(\alpha)}{\oint} W d \alpha, \quad V=\underset{(\alpha)}{\oint} d \alpha \tag{6}
\end{equation*}
$$

respectively. Furthermore, the pitch and angle of pitch of M are

$$
\begin{equation*}
L_{X}=\langle V, X\rangle, \quad \lambda_{X}=\langle D, X\rangle \tag{7}
\end{equation*}
$$

respectively.
Theorem 2.1 A ruled surface is a developable surface if and only if the distribution parameter of the ruled surface is zero [4].

3 One-Parameter Spatial Bishop Motion in \mathbf{E}^{3}

Let $\alpha: I \rightarrow E^{3}$ be a regular curve and $\left\{T, N_{1}, N_{2}\right\}$ be Bishop Frame. The two coordinate systems $\left\{O, T, N_{1}, N_{2}\right\}$ and $\left\{0^{\prime} ; \vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}\right\}$ are orthogonal coordinate systems in E^{3} which represent the moving space H and the fixed space H^{\prime}, respectively. Let us express the displacements of H with respect to H^{\prime} as $\left(H / H^{\prime}\right)$. In generally, during the one parameter spatial motion $\left(H / H^{\prime}\right)$, each line X of the moving space H, generates a ruled surface in the fixed space H^{\prime}. We assume that X be fixed unit vector such that the coefficients f_{1}, f_{2} and f_{3} in (2.1) are constant. We can obtain the distribution parameter of the ruled surface generated by line X of the moving space H. From (2) we obtain,

$$
\begin{equation*}
D_{T} X=f_{1} D_{T} T+f_{2} D_{T} N_{1}+f_{3} D_{T} N_{2} \tag{8}
\end{equation*}
$$

and substituting (1) into (8), we obtain

$$
\begin{equation*}
D_{T} X=\left(-k_{1} f_{2}-k_{2} f_{3}\right) T+k_{1} f_{1} N_{1}+k_{2} f_{1} N_{2} \tag{9}
\end{equation*}
$$

Thus distribution parameter of the ruled surface generated by line X is

$$
\begin{equation*}
P_{X}=\frac{f_{1} f_{2} k_{2}-f_{1} f_{3} k_{1}}{\left\|D_{T} X\right\|^{2}} \tag{10}
\end{equation*}
$$

We can state $P_{X}=0$ if and only if following equation satisfies.

$$
\frac{k_{1}}{k_{2}}=\frac{f_{2}}{f_{3}}
$$

On the other side, (6) and (7) brings us to definition of the Bishop Steiner rotation and Bishop tranlation vectors for constant f_{1}, f_{2} and f_{3} are

$$
\begin{equation*}
D=-N_{1} \oint_{(\alpha)} k_{2} d s+N_{2} \oint_{(\alpha)} k_{1} d s, \quad V=\oint_{(\alpha)} T d s \tag{11}
\end{equation*}
$$

respectively. After rutin calculations we obtain the pitch and angle of pitch of M are

$$
\begin{equation*}
L_{X}=f_{1} L_{T}, \quad \lambda_{X}=f_{3} \oint_{(\alpha)} k_{1} d s-f_{2} \oint_{(\alpha)} k_{2} d s \tag{12}
\end{equation*}
$$

respectively. In the special cases that $X=T, X=N_{1}$ and $X=N_{2}$ we can obtained following equations by using (7), (11) and (12).

$$
L_{T}=\oint_{(\alpha)} d s, \quad L_{N_{1}}=L_{N_{2}}=0, \quad L_{X}=f_{1} L_{T}
$$

and

$$
\lambda_{T}=0, \quad \lambda_{N_{1}}=-\underset{(\alpha)}{\oint} k_{2} d s, \quad \lambda_{N_{2}}=\underset{(\alpha)}{\oint} k_{1} d s, \quad \lambda_{X}=f_{3} \oint_{(\alpha)} k_{1} d s-f_{2} \oint_{(\alpha)} k_{2} d s
$$

For the rest of our study, we assume that X be unit vector such that the coefficients $f_{1}=0, f_{2}$ and f_{3} in (2) are nonconstant differentiable functions and ξ be unit normal vector field of M. Thus we can set up the orthonormal system $\{T, X, \xi\}$. Since ξ normal to T then ξ lies in the plane $S p\left\{N_{1}, N_{2}\right\}$ and ξ can be choose as $\xi=T \Lambda X$ along the line X depending orientation of M. Therefore, in this case we shall use the special functions f_{2} and f_{3}.Thus ξ and X can be written as

$$
\begin{equation*}
\xi=\cos \psi N_{1}+\sin \psi N_{2} \quad, \quad X=\sin \psi N_{1}-\cos \psi N_{2} \tag{13}
\end{equation*}
$$

where $\psi=\psi(s)$ is the angle between ξ and N_{1} along α and $f_{2}(s)=\sin \psi(s)$, $f_{3}(s)=-\cos \psi(s)$. We obtained the distribution parameter of the ruled surface M by using (1) and (5). From (13)

$$
\begin{equation*}
D_{T} X=-\lambda T+\psi^{\prime} \xi \tag{14}
\end{equation*}
$$

and putting this equation in (5), we obtained by direct computation that the distribution parameter is

$$
\begin{equation*}
P_{X}=\frac{\psi^{\prime}}{\lambda^{2}+\psi^{\prime 2}} \tag{15}
\end{equation*}
$$

which we need to determine the conditions of the ruled surface is developable. We know that the ruled surface developable if and only if P_{X} is zero so we can state the following theorem.

Theorem 3.1 A ruled surface M is a developable if and only if its generating lines has to be constant with respect to the Bishop frame along the base curve.

Corollary 3.2 A ruled surface is a developable if and only if the angle between the vector fields ξ and N_{1} is constant along the base curve.

We can give the following remark for the special cases that $X=T, X=N_{1}$ and $X=N_{2}$.

Corollary 3.3 Ruled surfaces which has the generating line is T, N_{1} or N_{2}, are developable. This implies that $P_{T}=P_{N_{1}}=P_{N_{2}}=0$.

Proof: It is easly see that from (2) and (10), we obtain $P_{T}=P_{N_{1}}=P_{N_{2}}=0$ then the ruled surface which has the generating line is one of T, N_{1} or N_{2}, are developable.

On the other hand, from (4) the striction curve of M is

$$
\bar{\alpha}(s)=\alpha(s)+\frac{\lambda}{\lambda^{2}+\left(\psi^{\prime}\right)^{2}} X(s)
$$

where $\lambda=k_{1} \sin \psi-k_{2} \cos \psi$. In the case of M is a cylindirical ruled surface, we can give the following theorem.

Corollary 3.4 If M is a cylindirical ruled surface then $\lambda=0$. In this case, the base and striction curves are coincide.

In the case $\psi \neq(2 k+1) \frac{\pi}{2}, k \in Z$ then we can write following equation by using corollary 3

$$
\frac{k_{2}}{k_{1}}=\tan \psi
$$

Thus we proved the following corollary.
Corollary 3.5 A cylindirical ruled surface is developable if and only if $\frac{k_{2}}{k_{1}}$ is constant. In this case the base curve is the planar.

Corollary 3.6 Let $\bar{\alpha}(s)$ be striction curve of M then following equation satisfies

$$
\frac{\lambda}{\lambda^{2}+\left(\psi^{\prime}\right)^{2}}=\text { constant }
$$

Proof: Since the tangent vector field of the striction curve is normal to X then $\left\langle X, \frac{d \bar{\alpha}}{d s}\right\rangle=0$.

$$
\begin{aligned}
\left\langle X, \frac{d \bar{\alpha}}{d s}\right\rangle & =\left\langle X, T+\frac{\lambda}{\lambda^{2}+\left(\psi^{\prime}\right)^{2}} D_{T} X+\frac{d}{d s}\left(\frac{\lambda}{\lambda^{2}+\left(\psi^{\prime}\right)^{2}}\right) X\right\rangle \\
& =\langle X, T\rangle+\frac{\lambda}{\lambda^{2}+\left(\psi^{\prime}\right)^{2}}\left\langle X, D_{T} X\right\rangle+\frac{d}{d s}\left(\frac{\lambda}{\lambda^{2}+\left(\psi^{\prime}\right)^{2}}\right)\langle X, X\rangle
\end{aligned}
$$

then

$$
\left\langle X, \frac{d \bar{\alpha}}{d s}\right\rangle=\frac{d}{d s}\left(\frac{\lambda}{\lambda^{2}+\left(\psi^{\prime}\right)^{2}}\right)
$$

thus we get

$$
\frac{d}{d s}\left(\frac{\lambda}{\lambda^{2}+\left(\psi^{\prime}\right)^{2}}\right)=0
$$

and we obtain

$$
\frac{\lambda}{\lambda^{2}+\left(\psi^{\prime}\right)^{2}}=\text { constant } \text {. }
$$

Corollary 3.7 Let M be a ruled surface given in the form (3) then $\varphi\left(t, v_{o}\right)$ is a striction point if and only if $D_{T} X$ is normal to tangent plane at that point on M, where v_{o} is

$$
v_{o}=\frac{\lambda}{\lambda^{2}+\left(\psi^{\prime}\right)^{2}}
$$

Proof: Let suppose that $\varphi\left(t, v_{o}\right)$ be a striction point on the base curve $\alpha(t)$ of M then we must show that $\left\langle D_{T} X, X\right\rangle=0$ and $\left\langle D_{T} X, A\right\rangle=0$. Since the vector field X is unit vector then $T[\langle X, X\rangle]=0$ and we get $\left\langle D_{T} X, X\right\rangle=0$. On the other side, from (13) and (14) we obtain,

$$
\left\langle D_{T} X, A\right\rangle=\left\{\lambda^{2}+\left(\psi^{\prime}\right)^{2}\right\} v_{o}-\lambda
$$

Now, by making the substitution

$$
v_{o}=\frac{\lambda}{\lambda^{2}+\psi^{\prime 2}}
$$

we have that the last equation reduces to $\left\langle D_{T} X, A\right\rangle=0$. This means that $D_{T} X$ is normal to tangent plane at the striction point $\varphi\left(t, v_{o}\right)$ on M.

Conversely, since $D_{T} X$ is normal to tangent plane at the point $\varphi\left(t, v_{o}\right)$ on M then $\left\langle D_{T} X, A\right\rangle=0$ and so we obtain

$$
\left\langle D_{T} X, A\right\rangle=\left\{\lambda^{2}+\left(\psi^{\prime}\right)^{2}\right\} v_{o}-\lambda=0
$$

thus we get

$$
v_{o}=\frac{\lambda}{\lambda^{2}+\left(\psi^{\prime}\right)^{2}}
$$

so we proved that $\varphi\left(t, v_{o}\right)$ is a striction point on M.

Theorem 3.8 Absolute value of the Gauss curvature of M is maximum at the striction points on the generating line X and

$$
|K|_{\max }=\frac{\left\{\lambda^{2}+\left(\psi^{\prime}\right)^{2}\right\}^{2}}{\left(\psi^{\prime}\right)^{2}}
$$

Proof: Let M be a ruled surface that given in the form (3) and let Φ be base of the tangent space which is spanning by the unit vectors A_{o} and X where A_{o} is the tanget vector of the curve $\varphi(s, v=$ const.) with the arc-lengh parameter s^{*}. Hence we write

$$
A_{o}=\frac{d \varphi}{d s^{*}}=\frac{d \varphi}{d s} \frac{d s}{d s^{*}}
$$

where $\frac{d \varphi}{d s}=A, A_{o}=\frac{1}{\|A\|} A$ and $\frac{d s}{d s^{*}}=\frac{1}{\|A\|}$. Thus we obtain the following equations after the routine calculations.

$$
\begin{gather*}
D_{A_{o}} T=\frac{1}{\|A\|}\{\lambda X+\mu \xi\} \tag{16}\\
D_{A_{o}} \xi=\frac{1}{\|A\|}\left\{-\mu T-\psi^{\prime} X\right\} \tag{17}\\
D_{A_{o}} A=\frac{1}{\|A\|}\left\{\begin{array}{c}
\left\{(1-v \lambda)^{\prime}-v \psi^{\prime} \mu\right\} T+\left\{(1-v \lambda) \lambda-v\left(\psi^{\prime}\right)^{2}\right\} X \\
+\left\{(1-v \lambda) \mu+\left(v \psi^{\prime}\right)^{\prime}\right\} \xi
\end{array}\right\} \tag{18}
\end{gather*}
$$

where $\lambda=k_{1} \sin \psi-k_{2} \cos \psi$ and $\mu=k_{1} \cos \psi+k_{2} \sin \psi$. On the other hand, we denote $\xi_{\varphi(s, v)}$ as the unit normal vector at the points $\varphi(s, v)$ then from (2) and (13) we get

$$
\begin{equation*}
\xi_{\varphi(s, v)}=\frac{1}{\|A\|}\left\{\left(-v \psi^{\prime}\right) T+(1-v \lambda) \xi\right\} \tag{19}
\end{equation*}
$$

By differentiating both side of (19) with respect to the parameter s we get

$$
\begin{aligned}
\frac{d \xi_{\varphi(s, v)}}{d s}= & -\left\{\left(\left(v \psi^{\prime}\right)^{\prime}+\mu(1-v \lambda)\right) \frac{1}{\|A\|}+v \psi^{\prime}\left(\frac{1}{\|A\|}\right)^{\prime}\right\} T \\
& +\left\{(1-v \lambda)\left(\frac{1}{\|A\|}\right)^{\prime}+\left((1-v \lambda)^{\prime}-v \mu \psi^{\prime}\right) \frac{1}{\|A\|}\right\} \xi \\
& -\psi^{\prime} \frac{1}{\|A\|} X
\end{aligned}
$$

Let S be shape operator of M at the points $\varphi(s, v)$ then we can easly obtained that the matrix S_{Φ} is following with respect to base Φ.

$$
S_{\Phi}=\left[\begin{array}{cc}
\left\langle S\left(A_{o}\right), A_{o}\right\rangle & \left\langle S\left(A_{o}\right), X\right\rangle \\
\left\langle S(X), A_{o}\right\rangle & \langle S(X), X\rangle
\end{array}\right]
$$

Since $\langle S(X), X\rangle=0$ and $\left\langle S\left(A_{o}\right), X\right\rangle=\left\langle S(X), A_{o}\right\rangle$ then the Gauss curvature is

$$
\begin{equation*}
K(s, v)=\operatorname{det} S_{\Phi}=-\left(\left\langle S\left(A_{o}\right), X\right\rangle\right)^{2} \tag{20}
\end{equation*}
$$

Suppose that s^{*} is arc-length parameter of A_{o} then we can get

$$
S\left(A_{o}\right)=D_{A_{o}} \xi_{\varphi(s, v)}=\frac{d \xi_{\varphi(s, v)}}{d s^{*}}=\frac{d \xi_{\varphi(s, v)}}{d s} \frac{d s}{d s^{*}}=\frac{1}{\|A\|} \frac{d \xi_{\varphi(s, v)}}{d s}
$$

From (17) and (19) we obtained

$$
\begin{aligned}
S\left(A_{o}\right)= & -\frac{1}{\|A\|}\left\{\left(\left(v \psi^{\prime}\right)^{\prime}+\mu(1-v \lambda)\right) \frac{1}{\|A\|}+v \psi^{\prime}\left(\frac{1}{\|A\|}\right)^{\prime}\right\} T \\
& +\left\{(1-v \lambda)\left(\frac{1}{\|A\|}\right)^{\prime}+\left((1-v \lambda)^{\prime}-v \mu \psi^{\prime}\right) \frac{1}{\|A\|}\right\} \xi \\
& -\psi^{\prime} \frac{1}{\|A\|} X
\end{aligned}
$$

Hence the Gauss curvature is

$$
\begin{equation*}
K(s, v)=-\frac{\left(\psi^{\prime}\right)^{2}}{\|A\|^{4}} \tag{21}
\end{equation*}
$$

We differentiated both side of (21) with respect to v for find the maximum value of the Gauss curvature along the X on M. Thus we obtain

$$
\frac{\partial K(s, v)}{\partial v}=\frac{2\left(\psi^{\prime}\right)^{2}\left\{v\left(\lambda^{2}+\left(\psi^{\prime}\right)^{2}\right)-\lambda\right\}}{\left\{v^{2}\left(\lambda^{2}+\left(\psi^{\prime}\right)^{2}\right)-2 v \lambda+1\right\}^{3}}=0
$$

and we get the value of v is

$$
\begin{equation*}
v=\frac{\lambda}{\lambda^{2}+\left(\psi^{\prime}\right)^{2}} \tag{22}
\end{equation*}
$$

It is easly to see that, $\varphi(s, v)$ is the striction point and we can say that the Gauss curvature of M is minimum at the striction points on the directrix X. Finally, by substuting (21) in (22) then we get

$$
\begin{equation*}
|K|_{\max }=\frac{\left\{\lambda^{2}+\left(\psi^{\prime}\right)^{2}\right\}^{2}}{\left(\psi^{\prime}\right)^{2}} \tag{23}
\end{equation*}
$$

We can write the relation between the Gauss curvature and the distribution parameter by using (15) and (23) is following

$$
|K|_{\max }=\frac{1}{\left(P_{X}\right)^{2}}
$$

Thus we give the following remark.

Corollary 3.9 Distribution parameter of the ruled surface is depent only generating lines.

Morover, the Darboux frame of the surface along base curve is

$$
\left[\begin{array}{c}
D_{T} T \\
D_{T} X \\
D_{T} \xi
\end{array}\right]=\left[\begin{array}{ccc}
0 & \lambda & \mu \\
-\lambda & 0 & \psi^{\prime} \\
-\mu & -\psi^{\prime} & 0
\end{array}\right]\left[\begin{array}{c}
T \\
X \\
\xi
\end{array}\right]
$$

and the Bishop Darboux vector is

$$
W=\left(\psi^{\prime}\right) T-\mu X+\lambda \xi
$$

where $\lambda=k_{1} \sin \psi-k_{2} \cos \psi$ and $\mu=k_{1} \cos \psi+k_{2} \sin \psi$. If $\psi=0$ then we obtain the same Bishop Darboux vector as in [3]. Thus we obtain geodesic curvature, geodesic torsion and normal curvature of the ruled surface along its generating lines as follows

$$
\begin{equation*}
\kappa_{g}=\lambda, \quad \tau_{g}=\psi^{\prime}, \quad \kappa_{\xi}=\mu \tag{24}
\end{equation*}
$$

respectively. Note also that if the ruled surface is constant curvature surface with nonzero geodesic curvature then P_{X} is constant and from (15) and (24) we obtain $\frac{\tau_{g}}{\kappa_{g}}$ is constant. Hence we can give the following theorem.

Theorem 3.10 A ruled surface is constant curvature surface with nonzero geodesic curvature if and only if $\frac{\tau_{g}}{\kappa_{g}}$ is constant.

In the case that the base curve is the geodesic of the ruled surface then $\tau_{g}=0$ and $\psi=$ constant. In this case, the ruled surface is developable. On the other side, the Bishop Steiner rotation and Bishop tranlation vectors are

$$
\begin{equation*}
D=\psi T-(\underset{(\alpha)}{\oint} \lambda d s) X+(\underset{(\alpha)}{\oint} \mu d s) \xi, \quad V=\underset{(\alpha)}{\oint} T d s \tag{25}
\end{equation*}
$$

respectively, furthermore, from (7) the pitch and angle of pitch of M are

$$
\begin{equation*}
L_{X}=0, \quad \lambda_{X}=-\oint_{(\alpha)} \lambda d s \tag{26}
\end{equation*}
$$

respectively. From (13) and (26), we can obtained following equations in the special cases that $X=T, X=N_{1}$ and $X=N_{2}$

$$
L_{T}=L_{N_{1}}=L_{N_{2}}=0
$$

and

$$
\lambda_{T}=\psi
$$

$$
\begin{aligned}
& \lambda_{N_{1}}=\left(\oint_{(\alpha)} \mu d s\right) \cos \psi-\left(\oint_{(\alpha)} \lambda d s\right) \sin \psi \\
& \lambda_{N_{2}}=\left(\oint_{(\alpha)} \mu d s\right) \sin \psi+\left(\oint_{(\alpha)} \lambda d s\right) \cos \psi .
\end{aligned}
$$

Thus we conclude that if the ruled surface is developable then following equation

$$
\left(\lambda_{N_{1}}\right)^{2}+\left(\lambda_{N_{2}}\right)^{2}=\left(\oint_{(\alpha)} k_{1} d s\right)^{2}+\left(\oint_{(\alpha)} k_{2} d s\right)^{2}
$$

is satisfies.

References

[1] A.J. Hanson and H. Ma, Parallel transport approach to curve framing, Indiana University, Techreports-TR425, January 11 (1995).
[2] L.R. Bishop, There is more than one way to frame a curve, Amer. Math. Monthly, 82(3) (1975), 246-251.
[3] B. Bükçü and M.K. Karacan, Special Bishop motion and Bishop darboux rotation axis of the space curve, Journal of Dynamical Systems and Geometric Theories, 6(1) (2008), 27-34.
[4] H.H. Hacısalihoğlu, Diferensiyel Geometri, Ankara Üniversitesi Fen Fakültesi, Cilt. 2, Ankara, (1993).
[5] S. Izumiya and N. Takeuchi, Special curves and ruled surfaces, Beitrage zur Algebra und Geometrie, 44(1) (2003), 203-212.
[6] E. Kasap, A method of the determination of a Geodesic curve on ruled surface with time-like rulings, Novi Sad J. Math., 35(2) (2005), 103-110.
[7] K. Nomizu, Kinematics and differential geometry of submanifolds, Tohoku Math. Journ., 30(1978), 623-637.
[8] B. O'Neill, Semi-Riemannian Geometry With Applications to Relativity, Academic Press, New York, (1983).
[9] Y. Tunçer, Y. Yayli and M.K. Sağel, On differential geometry and kinematics of Euclidean submanifolds, Balkan Journal of Geometry and Its Applications, 13(2) (2008), 102-111.

