Gen. Math. Notes, Vol. 24, No. 1, September 2014, pp. 89-97
ISSN 2219-7184; Copyright © ICSRS Publication, 2014
www.i-csrs.org
Available free online at http://www.geman.in

On ($\boldsymbol{\theta}, \boldsymbol{\theta}$)-Derivations in Semiprime Rings

Najat M. Muthana
Department of Mathematics, Faculty of Science for Girls
King Abdulaziz University, Jeddah, K.S.A.
E-mail: nmuthana@kau.edu.sa

(Received: 23-5-14 / Accepted: 1-7-14)

Abstract

The main objective of the present paper is to prove the following result: let m and n be positive integers with $m+n \neq 0$, and let R be an $(m+n+2) 1-$ torsion free semiprime ring with identity element. Let θ be an automorphism of R. Suppose there exists an additive mapping $D: R \rightarrow R$ such that $D\left(x^{m+n+1}\right)=(m+n+1) \theta\left(x^{m}\right) D(x) \theta\left(x^{m}\right)$ for all $x \in R$, then D is a $(\theta, \theta)-$ derivation on R.

Keywords: Semiprime rings, (θ, θ)-derivation, nth power property, Jordan derivation, Commuting maps.

1 Introduction

This research has been motivated by the work of Herstein [5], and Bridges and Bergen [4]. Throughout, R designates an associative ring with center $Z(R)$. Let θ and ϕ be endomorphisms of R. An additive mapping $d: R \rightarrow R$ is called a (θ, ϕ)-derivation if $d(x y)=d(x) \theta(y)+\phi(x) d(y)$ for all $x, y \in R$. If 1 denotes the identity mapping on R, then a $(\theta, 1)$-derivation is called simply a θ-derivation, a 1-derivation is an ordinary derivation. An additive mapping $\phi: R \rightarrow R$ is called a Jordan (θ, ϕ)-derivation if $d\left(x^{2}\right)=d(x) \theta(x)+\phi(x) d(x)$ for all $x \in R$. Jordan θ - derivations and Jordan derivations are defined
analogously. There do exist equivalent conditions of a ring R to be called prime, the basic one is that if $a R b=(0), a, b \in R_{r}$ implies that $a=0$ or $b=0$. A ring R is called a semiprime ring if $a R a=0, a \in R$ implies that $a \in R$.

A classical result due to Herstein [5] states that every Jordan derivation of prime rings of characteristics not 2 is a derivation. In [1], Bresar and Vukman presented a brief proof of Herstein's result. This result was extended to 2 -torsion free semiprime ring in [6]. Further, the above mentioned result was generalized by Bresar and Vukman [2] for Jordan (θ, ϕ)-derivations in the setting of prime rings. It is straightforward to check that if d is a derivation of R and if $n>1$ is any integer, then

$$
d\left(x^{n}\right)=\sum_{j=1}^{n} x^{i-1} d(x) x^{n-j}
$$

for any $x \in R$ where $x^{0} r=r=r x^{0}$ for any $x \in R$. This is known as nth power property. Assuming only that $d: R \rightarrow R$ is additive and satisfies the nth power property, must d be a derivation? When $n=2$, the nth power property makes d a Jordan derivation. The result for arbitrary n was proven by Bridges and Bergen in [4] when R is a prime ring with identity and when char $R>n$ or is zero. The author together with Daif [8] extended Bridges' result to nth $-(\theta, \phi)$ power property

$$
d\left(x^{n}\right)=\sum_{j=1}^{n}(\theta(x))^{j-1} d(x)(\phi(x))^{n-j}
$$

for all $x \in R$ in a semiprime ring. In the year 2007, Lanski [7] generalized Bridges' result to (θ, ϕ) - generalized derivations in semiprime rings.

2 The Results

Another perspective on the derivation of x^{n} in some rings is to consider some identities on an additive map $\mathrm{D}: R \rightarrow R$. It is our aim in this paper to prove the following result.

Theorem 1: Let $m \geq 0, n \geq 0$, and $m+n \neq 0$ be some fixed integers, and let R be an $(m+n+2)$ - torsion free semiprime ring with identity e. Let θ be an automorphism of \boldsymbol{R}. Suppose there exists an additive mapping $D: R \rightarrow R$ such that

$$
D\left(x^{m+n+1}\right)=(m+n+1) \theta\left(x^{m}\right) D(x) \theta\left(x^{n}\right)
$$

is fulfilled for all $x \in R$. In this case, D is a $(\theta, \theta)-$ derivation on R.

Let us discuss in some more detail about background of the result mentioned above. An additive mapping $D: R \rightarrow R$ is called a left derivation if $D(x y)=x D(y)+y D(x)$ holds for all pairs $x, y \in R_{s}$ and is called a left Jordan derivation in case

$$
D\left(x^{2}\right)=2 x D(x)
$$

is fulfilled for all $x \in R$. The concept of left derivations and left Jordan derivations have been introduced by Bresar and Vukman [3]. Bresar and Vukman [3] have proved that there are no nonzero left Jordan derivation on a noncommutative prime ring R of characteristic different from two and three. In [10], Vukman has established that any left Jordan derivation which maps a 2torsion free semiprime ring R into itself, is a derivation which maps R into $Z(R)$. In [9], Vukman has also proved the following result. Let R be a noncommutative prime ring with the identity element and of characteristic different from two and three, and let $D: R \rightarrow R$ be an additive mapping satisfying the relation

$$
D\left(x^{3}\right)=3 x D(x) x
$$

for all $x \in R$. In this case $D=0$. The relations mentioned above lead to the following result proved by Vukman and Ulbl [11]. Let $m \geq 0, n \geq 0$, and $m+n \neq 0$ be fixed integers. Let R be an $(m+n+2)!-$ torsion free semiprime ring with identity element. Suppose there exists an additive mapping $D: R \rightarrow R$ such that

$$
D\left(x^{m+n+1}\right)=(m+n+1) x^{m} D(x) x^{n}
$$

is fulfilled for all $x \in R$. In this case, D is a derivation which maps R into its center. In case R is a noncommutative prime ring we have $D=0$. Theorem 1 is in the spirit of the result we have just mentioned above. In order to prove Theorem 1, we need the following results.

Theorem 2 [11, Theorem 4]: Let R be a 2-torsion free semiprime ring. Suppose that an additive mapping $F: R \rightarrow R$ satisfies $[[F(x), x], x]=0$ for all $x \in R$. Then, $[F(x), x]=0$ holds for all $x \in R$.

Theorem 3: Let R be a 2-torsion free semiprime ring. Let θ be an automorphism of R. Suppose that an additive mapping $F: R \rightarrow R$ satisfies
$[[F(x), \theta(x)], \theta(x)]=0$ for all $x \in R$.
Then $[F(x), \theta(x)]=0$ holds for all $\in R$, i.e. F is $\theta-$ commuting.
Proof: Given that $[[F(x), \theta(x)], \theta(x)]=0$, for all $x \in R$. Since θ is an
automorphism $\quad \theta^{-1}$ is also an automorphism and hence
$\left.\theta^{-1}([F(x), \theta(x)], \theta(x)]\right)=0$. This yields that $\left[\left[\theta^{-1} F(x), x\right], x\right]=0$. But if F and θ are additive, then $\theta^{-1} F$ is also additive mapping and hence by Theorem 2, $\left[\theta^{-1} F(x), x\right]=0$ for all $x \in R$. This implies that $[F(x), \theta(x)]=0$ for all $x \in R$.

Proof of Theorem 1: By the hypothesis, we have

$$
\begin{equation*}
D\left(x^{m+n+1}\right)=(m+n+1) \theta\left(x^{m}\right) D(x) \theta\left(x^{n}\right), \text { for all } x \in R . \tag{1}
\end{equation*}
$$

Replacing x by e in (1), we get

$$
\begin{equation*}
D(e)=0 \tag{2}
\end{equation*}
$$

where e denotes the identity element. Putting $x+e$ for x in the relation (1) and using (2), we obtain
$\sum_{i=0}^{m+n+1}\left({ }_{i}^{m+n+\mathbf{1}}\right) D\left(x^{m+n+1-i}\right)=$
$(m+n+1)\left(\sum_{i=0}^{m}\binom{m}{i} \theta\left(x^{m-i}\right)\right) D(x)\left(\sum_{i=0}^{n}\binom{n}{i} \theta\left(x^{n-i}\right)\right), \forall x \in R$.

Using (1) and collecting together terms of (3) involving the same number of factors of e, we obtain
$\sum_{i=0}^{m+n} f_{i}(\theta(x), e)=0$ for all $x \in R$.
where $f_{i}(\theta(x), e)$ stands for the expression of terms involving i factors of e.
Replacing x by $x+2 e_{,} x+3 e_{,} \ldots \ldots, x+(m+n) e$ in turn in (1) and expressing the resulting system of $m+n$ homogeneous equations, we say that the coefficient matrix of the system is a Vander Monde matrix
$\left(\begin{array}{cccc}1 & 1 & \cdots & 1 \\ 2 & 2^{2} & \cdots & 2^{m+n} \\ \vdots & \vdots & & \vdots \\ m+n & (m+n)^{2} & \cdots & (m+n)^{m+n}\end{array}\right)$.
Since the determinant of the matrix is different from zero, it follows that the system has only a trivial solution. In particular, we have

$$
\begin{align*}
& f_{m+n-1}(\theta(x), \theta)= \\
& \binom{m+n+1}{m+n-1} D\left(x^{2}\right)- \\
& (m+n+1)\left(\binom{m}{m-1}\binom{n}{n} \theta(x) D(x)+\right. \\
& \left.\qquad\binom{m}{m}\binom{n}{n-1} D(x) \theta(x)\right)=0 \text { for all } x \in R . \tag{6}
\end{align*}
$$

And

$$
\begin{align*}
& f_{m+n-2}(x, e)=\binom{m+n+1}{m+n-2} D\left(x^{3}\right)-(m+n+1)\left(\binom{m}{m-2}\binom{n}{n} \theta\left(x^{2}\right) D(x)+\right. \\
& \left.\binom{m}{m-1}\binom{n}{n-1} \theta(x) D(x) \theta(x)+\binom{m}{m}\binom{n}{n-2} D(x) \theta\left(x^{2}\right)\right)=0, \forall x \in R \tag{7}
\end{align*}
$$

Since R is an $(m+n+2)$! - torsion free ring, the above equations reduce to:

$$
\begin{equation*}
(m+n) D\left(x^{2}\right)=2 m \theta(x) D(x)+2 n D(x) \theta(x), \quad \forall x \in R . \tag{8}
\end{equation*}
$$

And

$$
\begin{align*}
& (m+n)(m+n-1) D\left(x^{3}\right)=3 m(m-1) \theta\left(x^{2}\right) D(x)+6 m n \theta(x) D(x) \theta(x)+ \\
& 3 n(n-1) D(x) \theta\left(x^{2}\right), \quad \forall x \in R . \tag{9}
\end{align*}
$$

Now, substituting $x+y$ for x in (8), we get

$$
\begin{align*}
(m+n) D(x y+y x)= & 2 m \theta(x) D(y)+2 m \theta(y) D(x)+2 n D(x) \theta(y)+ \\
& 2 n D(y) \theta(x), \quad \forall x, y \in R \tag{10}
\end{align*}
$$

Putting $y=(m+n) x^{2}$ in the relation above, we obtain

$$
\begin{align*}
(m+n)^{2} D\left(x^{3}\right) & \\
& =m(m+n) \theta(x) D\left(x^{2}\right)+m(m+n) \theta\left(x^{2}\right) D(x) \\
& +n(m+n) D(x) \theta\left(x^{2}\right)+n(m+n) D\left(x^{2}\right) \theta(x), x \in R . \tag{11}
\end{align*}
$$

According to (8), the above relation reduces to
$(m+n)^{2} D\left(x^{3}\right)=\left(3 m^{2}+m n\right) \theta(x)^{2} D(x)+4 m n \theta(x) D(x) \theta(x)+$ $\left(3 n^{2}+m n\right) D(x) \theta(x)^{2}$, for all $x \in R$.

Subtracting (9) from (12), we obtain

$$
\begin{align*}
& (m+n) D\left(x^{3}\right)=m(n+3) \theta\left(x^{2}\right) D(x)-2 m n \theta(x) D(x) \theta(x) \\
& \quad+n(m+3) D(x) \theta\left(x^{2}\right), \forall x \in R . \tag{13}
\end{align*}
$$

From the above relation, we conclude that

$$
\begin{align*}
& (m+n)^{2} D\left(x^{3}\right)= \\
& (m+n) m(n+3) \theta\left(x^{2}\right) D(x)-2(m+n) m n \theta(x) D(x) \theta(x)+(m+ \\
& n) n(m+3) D(x) \theta\left(x^{2}\right) \text { for all } x \in R . \tag{14}
\end{align*}
$$

Subtracting (14) from (12), we obtain

$$
\begin{align*}
& m n(m+n+2) \theta\left(x^{2}\right) D(x)-2 m n(m+n+2) \theta(x) D(x) \theta(x)+ \\
& m n(m+n+2) D(x) \theta\left(x^{2}\right)=0 \text { for all } x \in R . \tag{15}
\end{align*}
$$

Since R is an $(m+n+2)$ - torsion free ring, the above relation reduces to
$D(x) \theta\left(x^{2}\right)+\theta\left(x^{2}\right) D(x)-2 \theta(x) D(x) \theta(x)=0$ for all $x \in R$
This can be written in the form

$$
\begin{equation*}
[[D(x), \theta(x)], \theta(x)]=0 \text { for all } x \in R . \tag{17}
\end{equation*}
$$

In view of Theorem 3, we are forced to conclude that

$$
\begin{equation*}
[D(x), \theta(x)]=0 \text { for all } x \in R \tag{18}
\end{equation*}
$$

This means D is θ-commuting on R which makes it possible to replace $D(x) \theta(x)$ in (8) by $\theta(x) D(x)$. The relation (8) reduces to $D\left(x^{2}\right)=2 \theta(x) D(x)$ for all $x \in R$.

Also, $D\left(x^{2}\right)=D(x) \theta(x)+\theta(x) D(x)$ for all $x \in R$. In other words, D is (θ, θ) - Jordan derivation. Hence by [7, Theorem 2], D is (θ, θ) - derivation. This completes the proof.

Theorem 4: Let R be a $2, m_{r} n_{r} m+n_{,}$and $|m-n|-$ torsion free semiprime ring. Let θ be an automorphism of R. Suppose $D: R \rightarrow R$ is an additive mapping satisfying the relation

$$
\begin{equation*}
(m+n) D(x y)=2 m D(x) \theta(y)+2 n \theta(x) D(y) \tag{19}
\end{equation*}
$$

for all $x_{s} y \in R$ and some integers $m \geq 0, n \geq 0, m+n \neq 0$. In case $m \neq n$, then $D=0$.

Proof: In the relation (19), we compute the expression $(m+n)^{2} D(x y x)$ in two ways. First we obtain

$$
\begin{gather*}
(m+n)^{2} D(x(y x))=2 m(m+n) D(x) \theta(y) \theta(x)+2 n(m+n) \theta(x) D(y x) \\
\quad=2 m(m+n) D(x) \theta(y) \theta(x) \\
+2 n \theta(x)(2 m D(y) \theta(x)+2 n \theta(y) D(x)), \\
\text { for all } x, y \in R . \tag{20}
\end{gather*}
$$

This implies that

$$
\begin{align*}
&(m+n)^{2} D(x y x) \\
&=2 m(m+n) D(x) \theta(y) \theta(x)+4 m n \theta(x) D(y) \theta(x) \\
&+4 n^{2} \theta(x) \theta(y) D(x) \text { for all } x, y \in R . \tag{21}
\end{align*}
$$

On the other hand, we have

$$
\begin{gather*}
(m+n)^{2} D((x y) x)=2 m(m+n) D(x y) \theta(x)+2 n(m+n) \theta(x) \theta(y) D(x) \\
\quad=2 m(2 m D(x) \theta(y)+2 n \theta(x) D(y)) \theta(x) \\
\quad+2 n(m+n) \theta(x) \theta(y) D(x), \quad x_{y} y \in R . \tag{222}
\end{gather*}
$$

Thus, we have

$$
\begin{align*}
(m+n)^{2} D(x y x) & \\
& =4 m^{2} D(x) \theta(y) \theta(x)+4 m n \theta(x) D(y) \theta(x) \\
& +2 n(m+n) \theta(x) \theta(y) D(x) \text { for all } x, y \in R . \tag{23}
\end{align*}
$$

Subtracting the relation (21) from (23), we obtain
$m(m-n) D(x) \theta(y) \theta(x)+n(m-n) \theta(x) \theta(y) D(x)=0$
Which reduces to
$m D(x) \theta(y) \theta(x)+n \theta(x) \theta(y) D(x)=0$ for all $x, y \in R$.
Putting $y x$ for y in (25), we obtain

$$
\begin{equation*}
m D(x) \theta(y) \theta\left(x^{2}\right)+n \theta(x) \theta(y) \theta(x) D(x)=0, \forall x, y \in R \tag{26}
\end{equation*}
$$

Right multiplication of the relation (25) by $\theta(x)$ gives

$$
\begin{equation*}
m D(x) \theta(y) \theta\left(x^{2}\right)+n \theta(x) \theta(y) D(x) \theta(x)=0, \forall x, y \in R . \tag{27}
\end{equation*}
$$

Subtracting the relation (26) from (27), we obtain
$n(\theta(x) \theta(y)(D(x) \theta(x)-\theta(x) D(x)))=0$ for all $x, y \in R$.
The last relation yields that
$\theta(x) \theta(y)[D(x), \theta(x)]=0$ for all $x, y \in R$.
Substituting $D(x) y$ for y in (29) and using the fact that θ is an automorphism of R , then multiplying the relation (29) by $D(x)$ from the left and comparing the relations so obtained, we get

$$
\begin{equation*}
[D(x), \theta(x)] y[D(x), \theta(x)]=0 \text { for all } x, y \in R \tag{30}
\end{equation*}
$$

This implies that
$[D(x), \theta(x)]=0$ for all $x \in R$.
Putting $y=x$ in the relation (19) and using (31), we obtain
$D\left(x^{2}\right)=2 D(x) \theta(x)$ for all $x \in R$.
This can be written in the form

$$
\begin{equation*}
D\left(x^{2}\right)=D(x) \theta(x)+\theta(x) D(x) \text { for all } x \in R . \tag{32}
\end{equation*}
$$

In other words, D is a (θ, θ) - Jordan derivation. By [7, Theorem 2], we conclude that D is a (θ, θ) - derivation. Now, we replace $D(x y)$ with $D(x) \theta(y)+\theta(x) D(y)$ in the left hand side of (19), we obtain
$D(x) \theta(y)=\theta(x) D(y)$ for all $x, y \in R$.
Substituting $z \boldsymbol{x}$ for x in (33) gives
$D(z) \theta(x) \theta(y)=0$ for all $x, y, z \in R$.
Since θ is an automorphism of R , so it follows $D(z) x D(z)=0$ for all $x, z \in R$. Thus by the semiprimenss of R , we are forced to conclude that $D=0$. This completes the proof.

Acknowledgements:

I am very thankful to the referee for his valuable suggestions.

References

[1] M. Bresar and J. Vukman, Jordan derivations on prime rings, Bull. Austral. Math. Soc., 37(3) (1988), 321-322.
[2] M. Bresar and J. Vukman, On left derivations and related mappings, Proc. Amer. Math. Soc., 110(1) (1990), 7-16.
[3] M. Bresar and J. Vukman, Jordan (θ, ϕ) -derivations, Glas. Math. Ser. III, 26(1-2) (46) (1991), 13-17.
[4] D. Bridges and J. Bergen, On the derivation of x^{n} in a ring, Proc. Amer. Math. Soc., 90(1) (1984), 25-29.
[5] I.N. Herstein, Jordan derivation of prime rings, Proc. Amer. Math. Soc., 8(1957), 1104-1110.
[6] J.M. Cusak, Jordan derivations on rings, Proc. Amer. Math. Soc., 53(2) (1975), 321-324.
[7] C. Lanski, Generalized derivations and nth power maps in rings, Comm. Algebra, 35(11) (2007), 3660-3672.
[8] N.M. Muthana and M.N. Daif, When is an additive mapping of a ring a (θ, θ) - or (θ, ϕ)-derivation? Global Journal of Pure and Applied Mathematics, 4(2) (2008), 61-72.
[9] J. Vukman, Commuting and centralizing mappings in prime rings, Proc. Amer. Math. Soc., 109(1) (1990), 47-52.
[10] J. Vukman, Jordan left derivations on semiprime rings, Math. J. Okayama Univ., 39(1997), 1-6.
[11] J. Vukman and I. Kosi-Ulbl, On some equations related to derivations in rings, Int. J. Math. and Math. Sci., 17(2005), 2703-2710.

