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Abstract 

     The paper presents z-transform as a method of functional transformation with 
respect to its theory and properties in dealing with discrete systems. We therefore 
obtain the absolute state probabilities as a solution of a differential equation 
corresponding to a given Birth-and–Death process via the z-transform, and 
deduce the equivalent stationary state probabilities of the system.  

     Keywords: Markov Processes, Birth-Death Process, Z-Transform, Generating 
Function, Characteristic Differential Equation.      

 
1 Introduction 
 
In mathematical sciences, engineering, physics and other fields of applied 
sciences, various forms of transforms such as integral transforms, Laplace 
transform, Fourier transform, etc are used, depending on the problem-whether 
discrete or continuous case. Discrete systems cannot be studied using the Laplace 
or the Fourier transform because they are continuous functions. Even when the 
continuous Fourier transform can be converted to its equivalent in discrete form 
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by first finding the Discrete Fourier Transform (DFT), the Fourier transform itself 
does not suit the discrete systems. Such systems can easily be modeled using the 
z-transform [1].  
 
The z-transform converts a sequence of real or complex numbers into a complex 
frequency domain representation. It can be considered as a discrete-time 
equivalent of the Laplace transform. Z-transforms are to difference equations 
what Laplace transforms are to differential equations. The idea of z-transform was 
first known to Laplace and was later introduced by W. Hurewicz as a controllable 
way of solving linear, constant-coefficient difference equations [2] & [3]. 
 
In mathematical literature, the idea contained in z-transform is also referred to as a 
method of generating functions as introduced by de Moivre with regards to 
probability theory [4]. 
 
Birth-and-death processes are examples of Markov processes that have been 
widely studied. They are used in the analysis of systems whose states involve 
changes in the size of some population- such as the study of population extinction 
times in biological systems, the evolution of genes in living things [5], and also 
have been used in the characterization of information storage and flow in 
computer systems [6].  
 
Kendall in [7] gives a complete solution of the equations governing the 
generalized birth-and-death process, in which the birth and death rates are any 
specified functions of the time t. Yechiali [8] considers a queuing-type birth-and-
death process defined on a continuous time Markov chain with emphasis on the 
steady state regime, and he recommends numerical methods for obtaining limiting 
probability since closed-form solutions are difficult to obtain; if they even exist.  
 
Kundaeli in [9] used the z-transform to analyze a finite state birth-death Markov 
process in deriving the performance metrics of the system and their variation with 
the system parameters. In [10], he extended the results in [9] to analyze a birth 
and death process in which the birth and death transition probabilities can vary 
from state to state. 
  
In this paper, the z-transform is studied and applied to a birth-and-death process 
with transition rates, and absolute state probabilities are therefore obtained as 
solutions of the corresponding differential equation. The paper is structured as 
follows: section 2 deals with the theory and concept of z-transform, section 3 is on 
basic processes, and section 4 handles the applications and conclusion. 
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2 Theory and Concept of Z-Transform  
 

Definition 2.1: Let ( ){ } { } or n nn
g g n g g

∞ ∞

=−∞=−∞
= =   be a sequence of terms with 

 n∈ℤ  and  z  a complex number such that: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }, 3 , 2 , 1 , 0 , 1 , 2 , 3 , 4 ,g g g g g g g g g= − − −⋯ ⋯ , then the z -

transform of g is defined as: 
 

( ) ( ){ } { } 3 2 1 0

1 2 3 4

( 3) z ( 2) z ( 1) z (0) z

                                                        (1) z (2) z (3) z (4) z

T T n nn
G z Z g n Z g g g g g

g g g g

∞ ∞

=−∞=−∞

− − − −

= = = − + − + − +

+ + + + +

⋯

⋯

  

 

∴ { }
1

0

( ) ( ) ( ) ( )n n n
T

n n n

Z g n g n z g n z g n z
∞ − ∞

− − −

=−∞ =−∞ =
= = +∑ ∑ ∑            (1) 

 
Equation (1) is referred to as a two-sided or a bilateral z-transform of g . 
Suppose g  is defined only for 0n ≥ , then (1) becomes: 

{ }
0

( ) ( ) ( ) n
T

n

G z Z g n g n z
∞

−

=
= =∑                                    (2) 

 
We refer to (2) as the unilateral z -transform of g .  
  
Definition 2.2: Let ( )g n be the probability that a discrete random variable takes 
the valuen , and the function ( )G z   re-written as (s)G  with 1sz= , then (2) 
becomes 

0

(s) ( )sn

n

G g n
∞

=
=∑                                                            (3) 

 
where (3) is referred to as the corresponding probability generating function. 
 
Definition 2.3: Region of Convergence (ROC). The Region of convergence (ROC) 
is the set of points in the complex plane for which the z-transform summation 
converges. Every z-transform is defined over a ROC. 
Thus; 

: ( ) z n

n

ROC z g n
∞

−

=−∞

 
= < ∞ 
 

∑                                               (4)  

 

Remark: The sequence notation { }n n
g g

∞

=−∞
=  is used in mathematics to study 

difference equations while  ( ){ }
n

g g n
∞

=−∞
=  is used by engineers for signal 

processing. 
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2.1 Properties of the z-Transform 
 
Let { } { } and n nh h b b= = be two sequences such that { }( ) nH z Z h=  and 

{ } ( ) nB z Z b= with 1 2 and k k   as constants, then: 

 
i. Linearity Property: 
 

{ } { } { }
{ } { }

1 2 1 2

1 2

1 2

                      

                      ( ) (z)

n n n n

n n

Z k h k b Z k h Z k b

k Z h k Z b

k H z k B

± = ±

= ±
= ±

 

 
ii. Scaling Property (Change of Scale): 
 

{ }( )n z
Z k h n H

k
 =  
 

  

Remark: Suppose the ROC of { }( )h n  is z R<  , then the ROC of  { }( )nZ k h n  is:  

z k R<   

 
iii. Shifting Theorem (Delay or Advance Shift): 
  

{ }( ) ( )kZ h n k z H z−− =   (delay shift) and 

{ }( ) ( )kZ h n k z H z+ =   (Advance shift) 

 
iv. Argument as Multiplier (Multiplication by n): 
 

{ }( ) ( )
d

Z h n z H z
dz

= −   

Hence, 

{ }( ) ( ),  0
k

k d
Z n h n z H z k

dz
 = − ≥  

  

We remark here that ( )
k k

k

k

d d
z z

dz dz
 − ≠ −  

  but a repetitive operation of 
d

z
dz

 −  
 

in k-times. 
 
The proofs of the stated properties, theorem and other concepts such as 
convolution and inverse transform are found in [1] & [4]. 
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3 Basics Processes 
 
This section deals with the introduction of some basic processes and concepts 
needed in the remaining part of the work. 
 
3.1 Markov Process 
 
Definition 3.1: A stochastic process { }( ),X n n∈ℕ  is called a Markov chain if, 

for all time  n∈ℕ  and for all states ( )0 1 2 3, , , , , ni i i i i⋯  with ( ){ }
r
P • a probability 

function; 

   { }1 1 1 1 2 2 3 3 0 0, , , , ,n n n n n n n n n n
r
P X i X i X i X i X i X i+ + − − − − − −= = = = = =⋯  

 { }1 1n n n n
r
P X i X i+ += = =              (5)                                              

 
That is, the future state of the system depends only on the present state (and not 
on the past states). Condition (5) is referred to as Markovian property. Any 
stochastic process with such property is called a Markov process [11] & [12]. 
 
Definition 3.2: Continuous-time Markov chain. A stochastic process { }( ), 0X t t ≥   

with a parameter set τ   and a discrete state space ℤ   is called a continuous time 
Markov chain or a Markov chain in continuous time if for any  1n ≥ , 
   

0 1 2 3 4 5 1n nt t t t t t t t +< < < < < < <⋯  and ( )0 1 2 3 1, , , , , ,n ni i i i i i +⋯  , ki ∈ℤ  we have that: 

{ }1 1 1 1 2 2 3 3 0 0( ) ( ) , ( ) , ( ) , ( ) , , ( )n n n n n n n n n n
r
P X t i X t i X t i X t i X t i X t i+ + − − − − − −= = = = = =⋯  

     { }1 1( ) ( )n n n n
r
P X t i X t i+ += = =             (6)                                     

 
Note 3.1: The conditional probabilities; 
  

{ }( , ) ( ) ( ) ,  ,    ,
r rij
P s t P X t j X s i s t i j= = = < ∈ℤ  are the transition probabilities of 

the Markov chain. 
 
One example of the continuous time Markov chain is the Birth-Death process. 
Hence, the following concepts. 
 
3.2 Birth-and- Death Processes 
 
Let ( )X t n=  be the population size in an infinitesimal time interval ( , )t t t+ ∆ with 
a population net change ( , ) ( ) ( )X t t t X t t X t∆ + ∆ = + ∆ −  in ( , )t t t+ ∆ . We suppose 

tλ∆  as the probability that an individual gives birth in ( , )t t t+ ∆  and tµ∆  as the 
probability of a death in ( , )t t t+ ∆ . 
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A birth-death process has the property that the net change across an infinitesimal 
time interval t∆  is either  1 (for birth),  1−  (for death) or  0  (for neither birth nor 
death). We therefore make the following assumptions: 
 

1A  :  { }( ) 1 0 0n
r
P X t n t t n t tλ λ= → = ∆ + ∆ = ∆ + ∆  

 

2A  : { }( ) 1 0 0n
r
P X t n t t n t tµ µ= → − = ∆ + ∆ = ∆ + ∆  

 
Therefore, for a case of neither birth nor death, we have: 
 

3A  : { }( ) 0 1 ( ) 0 1 ( )n n
r
P X t n t t t n t tλ µ λ µ= → = − ∆ + ∆ + ∆ = − ∆ + ∆ . 

 
Denote ( )nP t as the probability of n  individuals in a time interval of length t . 

Hence, by applying the law of total probability, we have: 
 

{ }
{ }
{ }

( )  individuals in  and neither birth nor death in 

                      1 individuals in  and a birth in 

                      1 individuals in  and a death in 

n
r

r

r

P t t P n t t

P n t t

P n t t

+ ∆ = ∆

+ − ∆

+ + ∆

 

Thus, 
 

( ) ( ) ( ) ( ) ( )1 1 1 1( ) 1 0n n n n n n n nP t t P t t t P t t P t t tλ µ λ µ− − + ++ ∆ = − ∆ + ∆ + ∆ + ∆ + ∆          (7) 

 
For i iµ µ=  and i iλ λ=  , 0i ≥  , such that { }1(0) (0) 1 1

r
P P X= = =  , (7) becomes: 

( ) ( ) ( ) ( ) ( )1 1( ) 1 ( 1) ( 1) 0n n n n nP t t P t n t t n P t t n P t t tλ µ λ µ− ++ ∆ = − ∆ + ∆ + − ∆ + + ∆ + ∆  
 
Showing that; 
 

( ) ( ) ( ) ( )1 1( ) ( 1) ( 1) ( ) ( ) 0n n n n nP t t P t n P t t n P t t n P t tλ µ λ µ− ++ ∆ − = − ∆ + + ∆ − + + ∆   (8) 

 
Dividing both sides of (8) by t∆  and taking limit as 0t∆ →  yields: 
 

( ) ( ) ( )1 1( 1) ( 1) ( ) ( )n n n nP t n P t n P t n P tλ µ λ µ− +
′ = − + + − + ,  1n ≥           (9) 

 

0 (0) 0P =  makes no sense since 0 is absorbing, hence 

  

0 1( ) ( )P t P tµ′ =                   (10) 

 
Therefore, a linear birth-and-death process satisfies the system of differential 
equations (9)-(10). 
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Remark 3.1:  
 
From (9), if 0µ = , then we have: 

( ) ( )1( 1) ( ),  1n n nP t n P t nP t nλ λ−
′ = − − ≥                                   (11) 

 
Similarly,  0λ =  in (9) gives: 

( ) ( )1( 1) ( ),  1n n nP t n P t n P t nµ µ+
′ = + − ≥                                  (12) 

 
Equations (11) and (12) are referred to as linear-birth-process and linear-death-
process respectively. 
 

4 Applications: The Z-Transform on a Birth-Death 
Process 
 
In this section, we consider a birth-and-death process with transition rates [7], [12] 
& [13]: 
 

iλ λ=  and i iµ µ=  , 0,1, 2,3,4,i = ⋯  

 
and initial distribution: 
  

{ }0 (0) (0) 1 1
r

P P X= = =  

 
We therefore subject the system to a z-transform in order to obtain the absolute 
state probabilities, ( )nP t  and the stationary state probabilities, nΠ   where 

 
    ( )limn n

t
P t

+→∞
Π =                  (13) 

 
This is done as follows; using the transition rates iλ λ=  and i iµ µ=  , 0i ≥  in (9) 

yields a corresponding system of differential equation for  1n ≥ : 
 

  ( ) ( ) ( )1 1( ) ( ) ( 1)n n n nP t P t n P t n P tλ λ µ µ− +
′ = − + + +          (14) 

and 

  ( ) ( ) ( )0 0 1P t P t P tλ µ′ = − +                   (15) 

 
We invoke the z-transform (probability generating function) in (3) re-defined as: 
 

  
0

( , ) ( ) sn
n

n

t s P t
∞

=
Φ =∑                                        (16) 
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with  (0, ) 1sΦ =   such that: 
 

0

( , )
( )sn

n
n

t s
P t

t

∞

=

∂Φ ′=
∂ ∑  and 1

0

( , )
( )sn

n
n

t s
nP t

s

∞
−

=

∂Φ =
∂ ∑                            (17) 

 
To subject (14) to (16) and (17), we multiply both sides of (14) by ns  and take the 
summation from 0 to ∞  , hence: 
 

( ) ( ) ( )1 1
0 0 0 0

( 1) ( ) ( )n n n n
n n n n

n n n n

P t s P t s n P t s n P t sλ µ λ µ
∞ ∞ ∞ ∞

− +
= = = =

′ = + + − +∑ ∑ ∑ ∑          (18) 

 
Adjusting the limit (index) of the first two series (with 1n m= +   and 1n k= −   
respectively) in the RHS of (18) gives: 
 

( ) ( )1 1

1 0 1 0 0 1

( , )
( ) ( )m k n n

m k n n
m k n n

t s
P t s kP t s P t s n P t s

t
λ µ λ µ

∞ ∞ ∞ ∞
+ −

+ = − = = =

∂Φ = + − −
∂ ∑ ∑ ∑ ∑   

 
Since ( ) 0vP t− =  for 1v ≥  and 1n ns s s−=  , we therefore write: 

 

( ) ( ) 1 1

0 1 0 1

( , )
( ) ( )m k n n

m k n n
m k n n

t s
s P t s kP t s P t s nP t s s

t
λ µ λ µ

∞ ∞ ∞ ∞
− −

= = = =

∂Φ = + − −
∂ ∑ ∑ ∑ ∑  

 

  ( ) ( ) 1

0 1

( 1) ( 1)m k
m k

m k

s P t s s kP t sλ µ
∞ ∞

−

= =

= − − −∑ ∑  

 

  
( , )

( 1) ( , ) ( 1)   (for )
t s

s t s s m n k
s

λ µ ∂Φ= − Φ − − = =
∂

 

 

  
( , ) ( , )

( 1) ( 1) ( , )
t s t s

s s t s
t s

µ λ∂Φ ∂Φ+ − = − Φ
∂ ∂

                 (19) 

 
Equation (19) has a corresponding system of characteristics differential equations 
given below: 
 

( 1)
ds

s
dt

µ= −                                     (20) 

and 
( , )

( 1) ( , )
d t s

s t s
dt

λΦ = − Φ                                   (21) 

In order to obtain ( , )t sΦ , (20) and (21) will be solved simultaneously, thus, from 
(20),  
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1

ds
dt

s
µ=

−
 and 

1
( 1)

ds
s

dtµ
− =  , such that 1ln( 1)s t cµ− − =           (22) 

 
As such (21) becomes: 
 

( , )
( 1)

( , )

d t s
s dt ds

t s

λλ
µ

Φ = − =
Φ

  

 

   2ln ( , )t s s c
λ
µ

Φ − = , but for 
λζ
µ

=  , 

 
   2 ln ( , )c t s sζ= Φ −              (23) 

 
Since 1 2 and c c  are arbitrary constants, we assume ( )h i  an arbitrary continuous 

function satisfied by ( , )t sΦ  such that: 
 

( )1 2h c c=                          (24) 

Hence,  
(ln( 1) ) ln ( , )h s t t s sµ ζ− − = Φ −   

 
Showing that: 
 

ln ( , ) (ln 1 )t s h s t sµ ζΦ = − − +    

    

∴   ( , ) exp (ln 1 )t s h s t sµ ζΦ =  − − +    

 
(ln 1 )h s t se e

µ ζ− −  =             (25) 
 
Applying the initial condition (0,s) 1Φ =  on (25), yields: 
 

(ln 1 )h s se e ζ−  −  =  
such that: 

(ln 1)h s sζ− = −                                    (26) 

 
Letting  ln 1sη = −   in (26) implies that ( 1)s eη− =  or 1s eη= +   

 
   ( ) (1 )h eηη η= − +            (27) 

So,         
ln 1(ln 1 ) (1 )s th s t e eµµ ζ − −− − = − +  

 



94                                                                                               T.A. Anake et al. 
 

 
 
       (1 ( 1) )ts e µζ −= − + −  
 
       (1 )t tse eµ µζ − −= − + −       
 
Showing that: 

  
(1 )

( , )
t tse e s

t s e
µ µζ ζ− − − + − + Φ =  

 

  ( )t t sse e ee
µ µ ζζ ζ ζ− −− − +=  

 

  
t tse e se e e e

µ µζ ζ ζ ζ− −− −=   
      

       (1 ) (1 )t te s ee e
µ µζ ζ− −− − −=                                           (28)

         
Setting  (1 )tv e µζ −= −  in (28) gives: 
  
  ( , ) v svt s e e−Φ =  
 

2 3 4 5( ) ( ) ( ) ( ) ( )
1

1! 2! 3! 4! 5!
v sv sv sv sv sv

e−  
= + + + + + + 

 
⋯  

 

  
0

( )

!

n
v

n

sv
e

n

∞
−

=

= ∑   

Showing that     

0

( )
( , )

!

n v
n

n

v e
t s s

n

−∞

=

Φ =∑                                      (29) 

 
Comparing (29) with (16) gives: 
 

       
(1 )( ) ( (1 ))

( ) ,  0
! !

tn v t n e

n

v e e e
P t n

n n

µµ ζζ
−− − − −−= = ≥          (30) 

In addition, 

( )lim
!

n

n n
t

e
P t

n

ζζ
+

−

→∞
Π = =                                    (31) 

 
Equations (30) and (31) are the absolute state probabilities and the stationary state 
probabilities of the system respectively. Equations (30) is a Poisson distribution 
with intensity (trend) function ( ) ( (1 ))t nt e µλ ζ −= − .  
 
Note: In some cases, ( ,s)tΦ cannot be easily expanded as a power series in s ; 
hence, the absolute state probabilities can be computed by differentiating ( ,s)tΦ . 
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4.1 Discussion of Result 
 
For the purpose of discussion of result, we studied the governing parameters 

,  ,  and tζ µ  for some numerical calculations with 9.5,  0.2,  and 0tζ µ= = > . 
The results are shown in Table 1 and Fig.1 below: 
 

Table 1: The probabilities at time t 
 

t Absolute state 
probabilities 

Stationary state 
probabilities 

0.1 0.828521 7.49E-05 
0.2 0.256656 0.000711 
0.3 0.088008 0.003378 
0.4 0.031283 0.010696 
0.5 0.011270 0.025403 
0.6 0.004072 0.048266 
0.7 0.001467 0.076421 
0.8 0.000525 0.103714 
0.9 0.000187 0.123160 
1.0 6.56E-05 0.130003 

 

 

 
  

Figure 1: Graphical representation of the probabilities 
    Key: Series 1- Absolute state probabilities and Series 2-     

Stationary state probabilities 
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4.2 Concluding Remarks 
 
We have explicitly analyzed the effectiveness of the z-transform and its properties 
in handling discrete systems. It is shown that the absolute state probability 
decreases as time increases. The considered birth-and-death process is of great 
importance in queuing theory, biological sciences, and in the analysis of systems 
whose states involve changes in population sizes. 
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