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Abstract 

     In this study, we give dual characterizations for Mannheim offsets of timelike 
ruled surfaces with timelike rulings in terms of their integral invariants. Also, we 
give new characterization for the Mannheim offsets of developable timelike ruled 
surfaces. We show that if the offset surfaces are developable then the striction 
lines of surfaces are Mannheim curves. Moreover, we obtain relationships 
between areas of projections of spherical images for Mannheim offsets of timelike 
ruled surfaces and their integral invariants.  
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1      Introduction 
 
In the space, a continuously moving of a straight line generates a surface which is 
called ruled surface. These surfaces are one of the most important topics of 
differential geometry. Because of their simple generation, these surfaces arise in a 
variety of applications including Computer Aided Geometric Design (CAGD), 
mathematical physics, kinematics for modeling the problems and model-based 
manufacturing of mechanical products. Furthermore, in general, offset surface, the 
surface which is offset a specified distance from the original along the parent 
surface's normal, is used in CAGD widely. Some studies dealing with offsets of 
surfaces have been given in references [4, 18, 19, 20]. Ravani and Ku have 
defined and given a generalization of theory of Bertrand curves to ruled surfaces 
and called Bertrand trajectory ruled surfaces on the line geometry [20]. By using 
the invariants of ruled surfaces given in [5, 6], Küçük and Gürsoy have given the 
characterizations of Bertrand trajectory ruled surfaces in dual space and have 
obtained the relations between the invariants [10]. 
 
Furthermore, recently, a new definition of curve pairs has been given by Liu and 
Wang: Let C  and C∗  be two space curves. C  is said to be a Mannheim partner 
curve of C∗  if there exists a one to one correspondence between their points such 
that the binormal vector of C  is the principal normal vector of C∗  [11]. Orbay, 
Kasap and Aydemir have given a generalization of Mannheim curves to ruled 
surfaces and called Mannheim offsets [12]. Mannheim offsets of timelike ruled 
surfaces in the Minkowski 3-space 31IR  have been studied in [14]. 

     
In this paper, we examine the Mannheim offsets of trajectory timelike ruled 
surfaces with timelike rulings in view of their integral invariants. We give a result 
obtained in [14] in short form. Furthermore, using the dual representations of 
timelike ruled surfaces, we obtain some new results which are not obtained in 
[14]. Moreover, we obtain that the striction lines of Mannheim offsets of 
developable timelike trajectory ruled surfaces are Mannheim partner curves in the 
Minkowski 3-space 3

1IR . Furthermore, we give relations between the integral 

invariants (such as the angle of pitch and the pitch) of closed timelike trajectory 
ruled surfaces. Finally, we obtain the relationships between the areas of 
projections of spherical images of Mannheim offsets of timelike trajectory ruled 
surfaces and their integral invariants.  
 

2 Differential Geometry of the Ruled Surfaces in the 
Minkowski 3-Space  
 
Let 3

1IR  be a 3-dimensional Minkowski space over the field of real numbers IR  

with the Lorentzian inner product ,  given by 
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1 1 2 2 3 3,a b a b a b a b= − + +
��

 

 

where 1 2 3( , , )a a a a=�  and 3
1 2 3 1( , , )b b b b IR= ∈

�
. A vector 1 2 3( , , )a a a a=�  of 3

1IR  is 

said to be timelike if , 0a a <� �
, spacelike if , 0a a >� �

 or 0a =� , and lightlike 

(null) if , 0a a =� �
 and 0a ≠� . Similarly, an arbitrary curve ( )sα  in 3

1IR  can 

locally be spacelike, timelike or null (lightlike), if all of its velocity vectors ( )sα ′  
are spacelike, timelike or null (lightlike), respectively [13]. The norm of a vector 

a
�

 is defined by ,a a a=� � �
. A vector 3

1a IR∈�  is called a unit vector if 

, 1a a a= =� � �
 and the sets of the unit timelike and spacelike vectors are 

called hyperbolic unit sphere and Lorentzian unit sphere, respectively, and 
denoted by 

{ }2 3
0 1 2 3 1( , , ) : , 1H a a a a IR a a= = ∈ = −� � �

 

and 

{ }2 3
1 1 2 3 1( , , ) : , 1S a a a a IR a a= = ∈ =� � �

 

respectively [22].  
 
A surface in the Minkowski 3-space 31IR  is called a timelike surface if the induced 

metric on the surface is a Lorentz metric and is called a spacelike surface if the 
induced metric on the surface is a positive definite Riemannian metric, i.e., the 
normal vector on the spacelike (timelike) surface is a timelike (spacelike) vector 
[3]. 
 

Let I  be an open interval in the real line IR , ( )k k s=
� �

 be a curve in 3
1IR  defined 

on I  and ( )q q s=� �
 be a unit direction vector of an oriented line in 31IR . Then we 

have the following parametrization for a ruled surface N  
 

                                                ( , ) ( ) ( )s v k s v q sϕ = +
� �

                                            (1)  
 
where ( )q s

�
 is called ruling and ( )k k s=

� �
 is called base curve or generating curve 

of the surface. In particular, if the direction of q
�

 is constant, the ruled surface is 
said to be cylindrical, and non-cylindrical otherwise. 
 
The striction point on a ruled surface N  is the foot of the common normal 
between two consecutive rulings. The set of the striction points constitute a curve 

( )c c s=� �
lying on the ruled surface and is called striction curve. The 

parametrization of the striction curve ( )c c s=� �
 on a ruled surface is given by 
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,

( ) ( )
,

dq dk
c s k s q

dq dq
= −

��
�� �

� �                                          (2) 

 
So that, the base curve of the ruled surface is its striction curve if and only if 

, 0dq dk =
��

. 

 
The distribution parameter (or drall) of the ruled surface in (1) is given as 
 

                                            
, ,

,

dk q dq

dq dqϕδ =

� � �

� �                                                (3)                                           

 
and a ruled surface is developable if and only if at all its points the distribution 
parameter  is 0ϕδ =  [1, 9]. 

 

For the unit normal vector m
�

 of the ruled surface N  we have s v

s v

m
ϕ ϕ
ϕ ϕ

×=
×

� �
�

� � . So, 

 

at the points of a nontorsal ruling 1s s=  we have 1

( / )
lim ( , )

/v

dq ds q
a m s v

dq ds→∞

×= =
� �

� �
� .  

 
The plane of ruled surface N  which passes through its ruling 1s  and is 

perpendicular to the vector a
�

 is called the asymptotic plane α . The tangent plane 
γ  passing through the ruling 1s  which is perpendicular to the asymptotic plane α  

is called the central plane. Its point of contact C  is central point of the ruling. 
The straight lines which pass through point C  and are perpendicular to the planes 
α  and γ  are called the central tangent and central normal, respectively.  
 
Since the vectors , /q dq ds

� �
 are perpendicular to the vector a

�
, representation of 

the unit vector h
�

 of central normal is given by 
/

/

dq ds
h

dq ds
=
��
� . The orthonormal 

system { }; , ,C q h a
�� �

 is called Frenet frame of the ruled surfaces N  such that h
�

 and 

a h q= ×
�� �

 are the central normal and the central tangent of N , respectively, and 
C  is the striction point.  
 
Let now consider the ruled surface N . According to the Lorentzian characters of 
ruling and central normal, we can give the following classifications for the ruled 
surface N : 
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i)   If the central normal vector h
�

 is spacelike and the ruling q
�

 is timelike, 

then the ruled surface N  is said to be of type 1N− . 

ii)   If both the central normal vector h
�

 and the ruling q
�

 are spacelike, then 

the ruled surface N  is said to be of type 1N+ . 

iii)   If the central normal vector h
�

 is timelike and the ruling q
�

 is spacelike, 

then the ruled surface N  is said to be of type 2N+  [16, 23]. 

 
The ruled surfaces of types 1N−  and 1N+  are clearly timelike and the ruled surface 

of type 2N+  is spacelike [8]. 

 
By using these classifications, the parametrization of N  can be given as follows, 
 

                                                ( , ) ( ) ( )s v k s v q sϕ = +
� �

                                            (4)                                                                                                    
where  

                                   1 2, ( 1), , ( 1)h h q qε ε= = ± = = ±
� � � �

                                (5) 

         
 
The set of all bound vectors ( )q s

�
 at the origin 0  constitutes the directing cone of 

the ruled surface N . If 2 1ε = −  (resp. 2 1ε = ), the end points of the vectors ( )q s
�

 

drive a spherical spacelike (resp. spacelike or timelike) curve 1k  on hyperbolic 

unit sphere 2
0H  (resp. on Lorentzian unit sphere 2

1S ), called the hyperbolic (resp. 

Lorentzian) spherical image of the ruled surface N  [16,23]. 
 

Let { }, ,q h a
�� �

 be a moving orthonormal trihedron making a spatial motion along a 

closed space curve ( )k s
�

 in 3
1IR  where s IR∈  and h

�
 is assumed spacelike. In this 

motion, the oriented line q
�

 generates a closed timelike ruled surface called closed 
timelike trajectory ruled surface (CTTRS). A parametric equation of a closed 
trajectory timelike ruled surface generated by q

�
-axis is 

 

( , ) ( ) ( ), ( 2 , ) ( , ), ,q s v k s v q s s v s v s v IRϕ ϕ π ϕ= + + = ∈
� �

             (6) 

 

Consider the moving orthonormal system { }, ,q h a
�� �

 which represents a timelike 

ruled surface of the type 1N+  or 1N−  generated by the vector q
�

. Then, the axes of 

trihedron intersect at striction point of q
�

-generator of qϕ -CTTRS. The structural 

equations of this motion are 
 

 1 2 1 2 2 2, ,dq k h dh k q k a da k hε ε= = − + =
� � �� � � �

                        (7) 
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And 
 

( ) ( )
db

q a
ds

µ σ ϑ σ= +
�

� �
                                        (8) 

 

where ( )b b s=
� �

 is the striction line of qϕ -CTTRS and ( ) coshµ σ σ= , 

( ) sinhϑ σ σ= , if both q
�

 and ( )b s
�

 are timelike; and ( ) sinhµ σ σ= , 

( ) coshϑ σ σ= , if both q
�

 and ( )b s
�

 are spacelike. The differential forms 1 2,k k  

and σ  are the natural curvature, the natural torsion and the striction of qϕ -

CTTRS, respectively. Here, s is the arclength of the striction line [16]. 
 
The pole vector and the Steiner vector of the motion are given by 
                            

                                                   ,p d
ψ ψ
ψ

= = ∫
� � ��
� �                                               (9) 

 
respectively, where 2 2 1k q k aψ ε= −� � �

 is the instantaneous Pfaffian vector of the 

motion. The real invariants of qϕ -CTTRS are defined by 

  

2 ,q d dk qµ ε= = −∫ ∫
� �

ℓ � �                                       (10) 

which is the pitch, and 
   

                  2 2, , 2q qd dh a q d aλ θ ε ε π= = = = −∫ ∫
� �� �

� �                         (11) 

 
which is the angle of pitch of qϕ -CTTRS, respectively, where qa  is the measure 

of the spherical surface area bounded by the spherical image of qϕ -CTTRS. The 

pitch and the angle of pitch are well-known real integral invariants of closed 
timelike trajectory ruled surfaces [2, 16].  
 
The area vector of a x -closed space curve in 3

1IR  is given by 

 
                                             xv x dx= ×∫

� � �
�                                                 (12) 

 
and the area of projection of a x -closed space curve in direction of the generator 
of a y -CTRS is 
 
                                            ,2 ,x y xf v y= � �                                                (13) 

 
(See [25]). 
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3 Dual Lorentzian Vectors and E. Study Mapping  
 
In this section, we give a brief summary of the theory of dual numbers and dual 
Lorentzian vectors.  
 
A dual number has the form *λ λ ελ= + , where λ  and *λ  are real numbers and ε  

stands for dual unit which is subject to the rules 20, 0,ε ε≠ =  
0 0 0,ε ε= = 1 1ε ε ε= = . We denote set of all dual numbers by D : 
 

{ }2: , , 0D IRλ λ ελ λ λ ε∗ ∗= = + ∈ =   

 
Equality, addition and multiplication are defined in D  by 
  

** εββελλ +=+  if and only if βλ =  and ,** βλ =  
 

)()()()( **** βλεβλεββλελ +++=+++  
and 

,)()()( **** βλβλελββεβελλ ++=++  
 
respectively. Then it is easy to show that ( , , )D + ⋅  is a commutative ring with 

unity. The numbers * ( )IRελ λ ∈  are divisors of zero [7].  
  
Now let f  be a differentiable function with dual variable x x xε ∗= + . Then the 
Maclaurin series generated by f  is 
  

* *( ) ( ) ( ) ( )f x f x x f x x f xε ε ′= + = + , 
 
where )( xf ′  is the derivative of f  with respect to x  [7].  Let 3D  be the set of 

all triples of dual numbers, i.e. { }3
1 2 3( , , ) , 1 3 .iD a a a a a D i= = ∈ ≤ ≤ɶ The 

elements of 3D  are called dual vectors. A dual vector aɶ  may be expressed in the 
form a a aε ∗= +� �

ɶ , where a
�

 and a∗�  are the vectors of 3IR . 
 

Now let a a aε ∗= +� �
ɶ , * 3b b b Dε= + ∈

� �
ɶ  and Dλ λ ε λ∗= + ∈ . Then we define  

 
*( ) ( ), ( ).a b a b a b a a a aε λ λ ε λ λ∗ ∗ ∗+ = + + + = + +

� �� � � � �ɶɶ ɶ  
 

Then, 3D  becomes a unitary module with these operations. It is called D -module 
or dual space [7]. 
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The Lorentzian inner product of two dual vectors a a aε ∗= +� �
ɶ , * 3b b b Dε= + ∈

� �
ɶ  is 

defined by 

( )*, , , , ,a b a b a b a bε ∗= + +
� � �� � �ɶɶ  

 

where ,a b
��

 is the Lorentzian inner product of the vectors a
�

 and b
�

 in the 

Minkowski 3-space 3
1 .IR  Then a dual vector  a a aε ∗= +� �

ɶ  is said to be timelike if 

a
�

 is timelike, spacelike if a
�

 is spacelike or 0a =�  and lightlike (null) if a
�

 is 
lightlike (null) and 0a ≠� [21, 24]. 
 
The set of all dual Lorentzian vectors is called dual Lorentzian space and it is 

denoted by { }3 3
1 1: ,D a a a a a IRε ∗ ∗= = + ∈� � � �

ɶ . 

The Lorentzian cross product of dual vectors 3
1,a b D∈ɶɶ  is defined by  

 
*( ) ,a b a b a b a bε ∗× = × + × + ×

� � �� � �ɶɶ  
 

where a b×
��

 is the Lorentzian cross product in 31IR  . 
 
Let 3

1a a a Dε ∗= + ∈� �
ɶ . Then aɶ  is said to be dual unit timelike (resp. spacelike) 

vector if the vectors a
�

 and a∗�  satisfy the following equations:  
 

, 1 ( . , 1), , 0.a a resp a a a a∗< > = − < > = < > =� � � � � �
 

 
The set of all dual unit timelike vectors is called the dual hyperbolic unit sphere, 
and is denoted by 2

0Hɶ . Similarly, the set of all dual unit spacelike vectors is called 

the dual Lorentzian unit sphere, and is denoted by 2
1Sɶ  [21, 24]. 

 
Theorem 3.1 (E. Study Mapping) ([21]): The dual timelike (respectively 
spacelike) unit vectors of the dual hyperbolic (respectively Lorentzian) unit sphere 

2
0Hɶ  (respectively 2

1Sɶ ) are in on-to-one correspondence with the directed timelike 

(respectively spacelike) lines of the Minkowski 3-space 3
1IR .  

 
Definition 3.1 ([21, 24]):  
 
i) Dual Hyperbolic Angle: Let xɶ  and yɶ  be dual timelike vectors in 31D . Then the 

dual angle between xɶ  and yɶ  is defined by , coshx y x y θ< >= −ɶ ɶ ɶ ɶ . The dual 

number θ θ εθ ∗= +  is called the dual hyperbolic angle. 
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ii) Dual Lorentzian Timelike Angle:  Let xɶ  be a dual spacelike vector and yɶ  be 

a dual timelike vector in 3
1D . Then the angle between xɶ  and yɶ  is defined by 

, sinhx y x y θ< > =ɶ ɶ ɶ ɶ . The dual number θ θ εθ ∗= +  is called the dual 

Lorentzian timelike angle. 
 
Let now Kɶ  be a moving dual unit hyperbolic or Lorentzian sphere generated by a 
dual orthonormal system 
  

       , ( ), , , ,
dq

q h spacelike a q h q q q h h h a a a
dq

ε ε ε∗ ∗ ∗  = = × = + = + = + 
  

� �ɶ � � � �ɶ ɶ ɶɶ ɶ ɶ ɶ ɶ
ɶ

  (14) 

 
and K ′ɶ  be a fixed dual unit sphere with the same center. Then, the derivative 
equations of the dual spherical closed motion of Kɶ  with respect to K ′ɶ  are 
 

                       1 2 1 2 2 2, ,dq k h dh k q k a da k hε ε= = − + =ɶ ɶ ɶɶ ɶ ɶ ɶ                         (15) 

 
where * *

1 1 1 2 2 2( ) ( ) ( ), ( ) ( ) ( ), ( )k s k s k s k s k s k s s IRε ε= + = + ∈  are dual curvature 

and dual torsion, respectively. From the E. Study mapping, during the spherical 
motion of Kɶ  with respect to K ′ɶ , the dual unit timelike (resp. spacelike) vector qɶ  
draws a dual curve on dual unit hyperbolic (resp. Lorentzian) sphere K ′  and this 
curve represents a timelike ruled surface with timelike (resp. spacelike) ruling q

�
 

in line space 3
1IR  [15]. 

 
Dual vector 2 2 1k q k aψ ψ εψ ε∗= + = −� �

ɶ ɶ ɶ  is called the instantaneous Pfaffian vector 

of the motion and the vector Pɶ  given by Pψ ψ= ɶɶ ɶ  is called the dual pole vector 

of the motion. Then the vector   

                                                 d ψ= ∫ɶ ɶ�                                                     (16) 

 
is the dual Steiner vector of the closed motion. 
 
By considering the E. Study mapping, the dual equations (15) correspond to real 
equations (7) and (8) of a closed spatial motion in 3

1IR . So, the differentiable dual 

closed curve ( )q q s=ɶ ɶ  corresponds to a closed trajectory timelike ruled surface in 

the line space 3
1IR  and denoted by qϕ -CTTRS.  

 
A dual integral invariant of a qϕ -CTTRS can be given in terms of real integral 

invariants as follows and is called the dual angle of pitch of a qϕ -CTTRS 

 

                 2 2, , 2q q q qdh a q d aε π λ ε ε∧ = − = − = − = +∫ ɶ ɶɶ ɶ ℓ�                  (17) 
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where d d dε ∗= +
� �

ɶ  and q q qa a aε ∗= +  are the dual Steiner vector of the motion and 

the measure of dual spherical surface area of qϕ -CTTRS, respectively. Here, 

2 ,q qε = � �  and ε  is dual unit [17]. 

 
Analogue to the real area vector given in (12), the dual area vector of a qɶ -closed 
dual curve is given by 
                                            qw q dq= ×∫ɶ

ɶ ɶ ɶ�                                                 (18) 

 
and from ref. [10], the dual area of projection of a qɶ -closed dual curve in 
direction of the generator of a 1qɶ -CTRS is 

 

                                           
1, 12 ,q q qf w q=ɶ ɶ ɶ
ɶ ɶ                                              (19) 

 
4  Mannheim Offsets of Timelike Trajectory Ruled 
Surfaces with Timelike Rulings 
 
Let qϕ  be a timelike trajectory ruled surface of the type 1N+  or 1N−  generated by 

dual unit vector qɶ  and let dual orthonormal frame of qϕ  be { }( ), ( ), ( )q s h s a sɶɶ ɶ . 

The trajectory ruled surface 
1qϕ , generated by dual unit vector 1qɶ  with dual 

orthonormal frame { }1 1 1 1 1 1( ), ( ), ( )q s h s a sɶɶ ɶ  is said to be Mannheim offset of the 

timelike trajectory ruled surface qϕ  , if 

  

                                              1 1( ) ( )a s h s= ɶɶ                                                 (20) 

 
holds, where s  and 1s  are arc-lengths of striction lines of qϕ  and 

1qϕ , 

respectively. By this definition and considering the classifications of the timelike 
ruled surfaces we have the following cases: 
 
Case 1: If the trajectory ruled surfaces qϕ  is of the type 1N− , then by considering 

(20), the Mannheim offset 
1qϕ  of qϕ  is a timelike trajectory ruled surface of the 

type 1N−  or 1N+ . If qϕ  is of the type 1N−  and 
1qϕ  is of the type 1N+ , then we have 

 

                            

1

1

1

sinh cosh 0

0 0 1

cosh sinh 0

q q

h h

a a

θ θ

θ θ

    
    =    
    

    

ɶ ɶ

ɶ ɶ

ɶ ɶ

                              (21) 
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Case 2: Similarly, if both qϕ  and 
1qϕ are of the type 1N− , we have 

 

                             

1

1

1

cosh sinh 0

0 0 1

sinh cosh 0

q q

h h

a a

θ θ

θ θ

    
    =    
    

    

ɶ ɶ

ɶ ɶ

ɶ ɶ

                   (22) 

 
In (21) and (22), θ θ εθ ∗= + ,  ( , )IRθ θ ∗ ∈  is dual angle between the generators qɶ  

and 1qɶ  of Mannheim trajectory ruled surfaces qϕ  and 
1qϕ . The angle θ  is called 

offset angle and real number θ ∗  is called offset distance. Then, θ θ εθ ∗= +  is 
called dual offset angle of the Mannheim trajectory ruled surfaces qϕ  and 

1qϕ . 

Thus, we can give the followings. 
 

5 1N+ -Type Mannheim Offsets of Timelike Ruled 
Surfaces with Timelike Rulings 
 
Let the timelike trajectory ruled surface 

1qϕ  of the type 1N+  be a Mannheim offset 

of timelike trajectory ruled surface qϕ  with timelike rulings. Then we can give the 

followings. 
 
Theorem 5.1: Let trajectory ruled surface 

1qϕ  of the type 1N+  be a Mannheim 

offset of timelike trajectory ruled surface qϕ  with timelike rulings. Then offset 

angle and offset distance are given by 
 

                                   *
1 1,k ds k dsθ θ ∗= − = −∫ ∫                    (23) 

 
respectively, where *

1 1 1k k kε= +  is the dual curvature of qϕ  . 

 
Proof: Let qϕ  and 

1qϕ  form a Mannheim offset where qϕ  and 
1qϕ are of the type 

1N−  and 1N+ , respectively. From (21) we have 

 

                                      1 sinh coshq q hθ θ= + ɶɶ ɶ                    (24) 

 
Differentiating (24) and by using (15) and (20), it follows 
 

                              1
1 1 2 1cosh

dq d
k a k h

ds ds

θ θ 
= + + 
 

ɶ ɶɶ                    (25) 
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Since 1dq

ds

ɶ
 is orthogonal to 1aɶ , from (25) we get 

                                               1k dsθ = −∫                                (26) 

 
Separating the last equation into real and dual parts we have 
 

                                   *
1 1,k ds k dsθ θ ∗= − = −∫ ∫                               (27) 

      
Theorem 5.2: The closed timelike trajectory ruled surface qϕ  with timelike 

rulings and the closed timelike trajectory ruled surface 
1qϕ of the type 1N+  form a 

Mannheim offset with a constant dual offset angle if and only if the following 
relationship holds 
 
                                   

1
sinh coshq q hθ θ∧ = ∧ + ∧                     (28) 

 
Proof: Let the closed timelike trajectory ruled surfaces qϕ  and 

1qϕ (of the type 
1N+ ) form a Mannheim offset with a constant dual offset angle θ . Then, from 

(17) and (21), the dual angle of pitch of 
1qϕ -CTTRS is given by 

 

1 1 1,

, (cosh ) (sinh )

, cosh , sinh

, cosh , sinh

sinh cosh

q

q h

dh a

da q h

da q da h

da q dh a

θ θ

θ θ

θ θ

θ θ

∧ =

= +

= +

= −

= ∧ + ∧

∫

∫

∫ ∫

∫ ∫

ɶ ɶ

ɶɶ ɶ

ɶɶ ɶ ɶ

ɶɶ ɶ ɶ

�

�

� �

� �

 

 
Conversely, if (28) holds, it is easily seen that qϕ  and 

1qϕ -CTTRS form a 

Mannheim offsets with a constant dual offset angle. 
 
Equality (28) is a dual characterization of Mannheim offsets of CTTRS with a 
constant dual offset angle in terms of their dual integral invariants. Separating 
(28) into real and dual parts, we obtain 
 

                          
1

1

sinh cosh

( )sinh ( )cosh

q q h

q q h h q

λ λ θ λ θ

θ λ θ θ λ θ∗ ∗

= +


= − + + +ℓ ℓ ℓ
                  (29) 

 
Then, we may give following result: 
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Result 5.1: If 0θ ∗ = , i.e., the generators q
�

 and 1q
�

 of the Mannheim offset 

surfaces intersect, then we have 
  

                                 1

1

sinh cosh ,

sinh cosh .

q q h

q q h

λ λ θ λ θ
θ θ

= +
 = − +ℓ ℓ ℓ

                   (30) 

 
In this case, qϕ  and 

1qϕ -CTRS are intersect along their striction lines. It means 

that their striction lines are the same.  
 
Let now consider that what the condition for the developable Mannheim offset of 
a CTTRS is. Let qϕ  and 

1qϕ -CTTRS be the Mannheim offset surfaces and let 

( )sα�  and 1( )sβ
�

 be striction lines of qϕ  and 
1qϕ -CTRS, respectively, where qϕ  is 

of the type 1N−  and 
1qϕ  is of the type 1N+ . Then, we can write 

 

                                       ( ) ( ) ( )s s a sβ α θ ∗= +
� � �

                               (31) 
 
where s is the arc-length of ( )sα� . Assume that qϕ -CTTRS is developable. Then 

from (3) and (8) we have 
 

                 
1

11 1

cosh sinh , sinh
0

,
q

q a q k h

kk h k h

σ σ σδ
+ ×

= = − =

�� � �

� �                    (32) 

 
which gives that 0σ = . Thus, from (8) we get 
 

                                                  
d

q
ds

α =
�
�

                                          (33) 

 

Hence, along the striction line ( )sα� , orthogonal frame { }, ,q h a
�� �

 coincides with the 

Frenet frame { }, ,T N B
� � �

 and differential forms 1k  and 2k  turn into curvature ακ  

and torsion ατ  of the striction line ( )sα� , respectively. Then, by the aid of (8), (31) 

and (33) we have  

                                           
d

q h
ds α
β θ τ∗= −
�

��
                                              (34) 

 
On the other hand from (20) and (21) we obtain 
 

        1 cosh sinh cosh
dq d d

q h a
ds ds dsα α α

θ θκ θ κ θ τ θ   = + + + +   
   

� �� �
             (35) 
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By using (24) and the fact that 1k ακ= , from (35) we have 

  

                                          1 cosh
dq

a
ds ατ θ=
�

�
                                          (36) 

From (34) and (36) we obtain 
  

                      
1

1 1

1 1

, cosh sinh

, coshq

d q dq

dq dq
α

α

β θ θ τ θδ
τ θ

∗× += = −

� � �

� �                   (37) 

 
Thus, from (33) and (37), it can be stated that if the Mannheim offsets qϕ  and 

1qϕ  

are developable then the following relationship holds 
 
                                      cosh sinh 0αθ θ τ θ∗+ =                                        (38) 

 
In [14], equality (38) is also obtained with a different way. If (38) holds, along the 

striction line 1( )sβ , orthogonal frame { }1 1 1, ,q h a
�� �

 coincides with the Frenet frame 

{ }1 1 1, ,T N B
� � �

 of 1( )sβ . Thus, the following theorem may be given: 

 
Theorem 5.3: Let the trajectory timelike ruled surfaces qϕ  and 

1qϕ be of the type 
1N−  and  1N+ , respectively. If qϕ  and 

1qϕ  are developable Mannheim offsets, then 

their striction lines are Mannheim partner curves in the Minkowski 3-space.  
 
In this case from (38) we have the following corollary: 
 
Corollary 5.1: If qϕ  and 

1qϕ  form a developable Mannheim offset, then the 

relationship between the torsion of ( )sα  and offset distance and offset angle is 

given by cothατ θ θ∗ = − . 

 
If qϕ -CTTRS is developable then from the equations (10), (21) and (34) the pitch 

1qℓ  of 
1qϕ -CTTRS is  

1 1,

, (sinh ) (cosh )

(sinh cosh )

q d q

q h q h ds

ds

α

α

β

θ τ θ θ

θ θ τ θ

∗

∗

= −

= − − +

= +

∫

∫

∫

� �
ℓ

� �� �
�

�

�

 

 
Then we can give the following corollary. 
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Corollary 5.2: If qϕ -CTTRS is developable then the relation between the pitch 

1qℓ of 
1qϕ -CTTRS and the torsion of sitriction line ( )sα  of  qϕ -CTTRS is given by 

 

                               
1

(sinh cosh )q dsαθ θ τ θ∗= +∫ℓ �                               (39) 

 
Let now consider the area of projections of Mannheim offsets. From (18), the dual 
area vectors of the spherical images of qϕ  and 

1qϕ  Mannheim offsets are 

 

                                         
1 1 1

,

,

q q

q q

w d q

w d q

 = + ∧


= − − ∧

ɶɶ ɶ

ɶɶ ɶ
                    (40) 

 
respectively. Then, from (19), dual area of projection of spherical image of 

1qϕ -

CTTRS in the direction q
�

 is 
  

1 1 1

1

1

, 12 , ,

, (sinh ) (cosh ) ,

, sinh

q q q q

q

q

f w q d q q

d q q h q

d q

θ θ

θ

= = − + ∧

= − − ∧ +

= − − ∧

ɶ ɶ
ɶɶ ɶ ɶ ɶ

ɶ ɶɶ ɶ ɶ

ɶ ɶ

 

                           
1 1,2 sinhq q q qf θ= ∧ − ∧ɶ ɶ                                            (41) 

 
Separating (41) into real and dual parts we have the following theorem. 
 
Theorem 5.4: Let the trajectory timelike ruled surfaces qϕ  and 

1qϕ be of the type 
1N−  and 1N+ , respectively and let they form a Mannheim offset. The relationships 

between the area of projections of spherical images of the timelike Mannheim 
offsets qϕ  and 

1qϕ  and their integral invariants are given as follows 

 
   

1 1 1 1 1, ,2 sinh , 2 ( sinh cosh )q q q q q q q q qf fλ λ θ θ λ θ θ∗ ∗= − = − + +ℓ ℓ          (42) 

 
Similarly, the dual area of projection of spherical image of 

1qϕ -CTTRS in the 

direction hɶ  is 

1 11

1

1

1,
2 , ,

, (sinh ) (cosh ) ,

, cosh

q qq h

q

q

f w h d q h

d h q h h

d h

θ θ

θ

= = − + ∧

= − − ∧ +

= − − ∧

ɶɶ
ɶ ɶ ɶɶ ɶ

ɶ ɶ ɶ ɶɶ

ɶ ɶ

 

                 
1 11,

2 , coshq h qq h
f w h θ= = ∧ − ∧ɶɶ

ɶɶ                                (43) 
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Separating (43) into real and dual parts we have the following: 
 
Theorem 5.5: Let the trajectory timelike ruled surfaces qϕ  and 

1qϕ be of the type 
1N−  and 1N+ , respectively and let they form a Mannheim offset. Then the 

relationships between the area of projections of spherical images of the surfaces 

hϕ  and 
1qϕ  and their integral invariants are given as follows: 

 
       

1 1 1 1 1, ,2 cosh , 2 cosh sinh ,q h h q q h h q qf fλ λ θ θ λ θ θ∗ ∗= − = − −ℓ ℓ           (44) 

 
Similarly, dual area of projection of spherical image of 

1qϕ -CTRS in the direction 

aɶ  is 

1 1 1

1

, 1

1 1

0

2 , ,

, ,

,

q a q q

q

a

f w a d q a

d a q h

d a

= = − + ∧

= − − ∧

= −

= ∧

ɶ ɶ
ɶɶ ɶ ɶ ɶ

ɶ ɶɶ ɶ
���

ɶ ɶ

 

Since 1a h= ɶɶ , we have  

                                           
1 1,2 q a a hf = ∧ = ∧ɶ ɶ                                              (45) 

 
Separating (45) into real and dual parts we have the followings: 
 
Theorem 5.6: Let the trajectory timelike ruled surfaces qϕ  and 

1qϕ be of the type 
1N−  and 1N+ , respectively and let they form a Mannheim offset. Then the 

relationships between the area of projections of spherical images of the surfaces 

aϕ  and 
1qϕ  and their integral invariants are given as follows: 

 

1 1 1 1, ,,q a h a q a h af fλ λ ∗= = = =ℓ ℓ  

 

6 1N− -Type Mannheim Offsets of Timelike Ruled Surfaces 
with Timelike Rulings 
 
Let the timelike trajectory ruled surface 

1qϕ  of the type 1N−  be a Mannheim offset 

of the timelike trajectory ruled surface qϕ  with timelike rulings. Then we can give 

the followings. The proofs of this section can be given by the similar ways in 
Section 5. 
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Theorem 6.1: Let the timelike trajectory ruled surfaces qϕ  and 
1qϕ with timelike 

rulings form a Mannheim offset. Then the offset angle and offset distance are 
given by 

*
1 1,k ds k dsθ θ ∗= − = −∫ ∫ , 

respectively. 
      
Theorem 6.2: The closed timelike trajectory ruled surfaces qϕ  and 

1qϕ  with 

timelike rulings form a Mannheim offsets with a constant dual offset angle if and 
only if following relationship holds, 
 

1
sinh coshq q hθ θ∧ = ∧ + ∧ . 

 
Separating this equation into real and dual parts, we obtain, 
 

1 1
sinh cosh , ( )sinh ( )coshq q h q q h h qλ λ θ λ θ θ λ θ θ λ θ∗ ∗= + = − + + +ℓ ℓ ℓ . 

 
Then we have the following results. 
     
Result 6.1: If 0θ = , then the relationships between real integral invariants of hϕ  

and 
1qϕ -CTTRS are given by 

1 1
,q h q h qλ λ θ λ∗= = +ℓ ℓ . Furthermore, the measure 

of spherical surface areas bounded by spherical images of hϕ  and 
1qϕ -CTTRS 

Mannheim offsets are the same, i.e., 
1q ha a=  and 

1
(2 )q h qa a aθ π∗ ∗ ∗= + + . 

 
Result 6.2: If 0θ ∗ = , i.e., the generators q

�
 and 1q

�
 of the Mannheim offset 

surfaces intersect, then we have 
  

1 1
cosh sinh , cosh sinhq q h q q hλ λ θ λ θ θ θ= + = − +ℓ ℓ ℓ . 

 
In this case, qϕ  and 

1qϕ -CTRS are intersect along their striction lines. It means 

that their striction lines are the same.  
      
Theorem 6.3: Let the trajectory timelike ruled surface 

1qϕ  of the type 1N−  be the 

Mannheim offset of developable timelike ruled surface qϕ  with timelike ruling. 

Then 
1qϕ  is developable if and only if cosh sinh 0αθ θ τ θ∗+ =  holds. 

 
Theorem 6.4: Let the developable trajectory timelike ruled surfaces qϕ  and 

1qϕ  

be of the type 1N− . If qϕ  and 
1qϕ  form a Mannheim offset then their striction lines 

are Mannheim partner curves in Minkowski 3-space 3
1IR .  
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Corollary 6.1: If qϕ -CTTRS is developable then the relation between the pitch 

1qℓ of 
1qϕ -CTTRS and the torsion of sitriction line ( )sα  of qϕ -CTTRS is given by 

 

1
(cosh sinh )q dsαθ θ τ θ∗= − +∫ℓ � . 

      
Theorem 6.5: Let the trajectory timelike ruled surfaces qϕ  and 

1qϕ  of the type 
1N−  form a Mannheim offset. The relationships between area of projections of 

spherical images of the surfaces qϕ  and 
1qϕ  and their integral invariants are 

given as follows, 

1 1 1,2 , coshq q q q qf w q θ= = − ∧ + ∧ɶ ɶ
ɶ ɶ , 

or 

1 1 1 1 1, ,2 cosh , 2 ( cosh sinh )q q q q q q q q qf fλ λ θ θ λ θ θ∗ ∗= − = − − +ℓ ℓ . 

      
Theorem 6.6: Let the trajectory timelike ruled surfaces qϕ  and 

1qϕ  of the type 
1N−  form a Mannheim offset. Then the relationships between area of projections 

of spherical images of ruled surfaces hϕ  and 
1qϕ  and their integral invariants are 

given as follows 

1 11,
2 , sinhq h qq h

f w h θ= = − ∧ + ∧ɶɶ
ɶɶ , 

or  

1 1 1 1 1, ,2 sinh , 2 sinh coshq h h q q h h q qf fλ λ θ θ λ θ θ∗ ∗= = − +ℓ ℓ . 

      
Theorem 6.7: Let the trajectory timelike ruled surfaces qϕ  and 

1qϕ of the type 1N−  

form a Mannheim offset. Then the relationships between area of projections of 
spherical images of ruled surfaces aϕ  and 

1qϕ  and their integral invariants are 

given as follows 
 

1 1 1,2 ,q a q a hf w a= = ∧ = ∧ɶ ɶ
ɶ ɶ    or   

1 1 1 1, ,,q a h a q a h af fλ λ ∗= = = =ℓ ℓ . 
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