

Gen. Math. Notes, Vol. 22, No. 1, May 2014, pp. 93-99 ISSN 2219-7184; Copyright © ICSRS Publication, 2014 www.i-csrs.org Available free online at http://www.geman.in

Properties of L Fuzzy Normal Sub λ- Groups

K. Sunderrajan¹ and A. Senthilkumar²

¹Department of Mathematics SRMV College of Arts and Science Coimbatore- 641020, Tamilnadu, India E-mail: drksrfuzzy@gmail.com ²Department of Mathematics SNS College of Technology Coimbatore- 641035, Tamilnadu, India E-mail: senthilpnp@gmail.com

(Received: 23-1-14 / Accepted: 23-2-14)

Abstract

This paper contains some definitions and results of L fuzzy normal sub λ -group of λ - groups and generalized characteristics of L fuzzy normal sub λ -group of a λ -group.

Keywords: Fuzzy set, L-fuzzy set, L-fuzzy sub λ - group, L-fuzzy normal sub λ -group, Homomorphism of L-fuzzy normal sub λ -group.

1 Introduction

L.A. Zadeh [10] introduced the notion of a fuzzy subset μ of a set S as a function from X into I = [0, 1]. Rosenfeld [7] applied this concept in group theory and semi group theory, and developed the theory of fuzzy subgroups and fuzzy subsemigroupoids respectively J.A. Goguen [2], replaced the valuations set [0, 1], by means of a complete lattice in an attempt to make a generalized study of fuzzy set theory by studying L-fuzzy sets. In fact it seems in order to obtain a complete analogy of crisp mathematics in terms of fuzzy mathematics, it is necessary to replace the valuation set by a system having more rich algebraic structure. These concepts λ -groups play a major role in mathematics and fuzzy mathematics. G.S.V Satya Saibaba [9] introduced the concept of L- fuzzy λ group and L-fuzzy λ -ideal of λ -group. In this paper, we initiate the study of Lfuzzy normal sub λ -groups. In this paper we study the properties of an L-fuzzy normal sub λ - groups under homomorphism are discussed.

2 **Preliminaries**

This section contains some definitions and results to be used in the sequel.

2.1 Definition [1, 2, 6] A lattice ordered group is a system $G = (G, *, \le)$ where

(i)	(G, *) is a group,		
(ii)	(G, \leq) is a lattice and		
(iii)	the inclusion is invariant under all translations $a * x * b$.	x	α
	<i>i.e</i> , $x \leq y \Rightarrow a * x * b \leq a * y * b$ for all $a, b \in G$.		

2.2 Definition [10]: Let S be any non-empty set. A fuzzy subset μ of S is a function μ : $S \rightarrow [0, 1]$.

2.3 Definition [7]: A L-fuzzy subset μ of G is said to be a L-fuzzy subgroup of G if for any x, $y \in G$,

 $\begin{array}{ll} i. & \mu(xy) \geq \mu(x) \wedge \mu(y), \\ ii & \mu(x^{\text{-}1}) = \mu(x). \end{array}$

2.4 Definition [9]: A L-fuzzy subset μ of G is said to be a L-fuzzy sub λ -group of G if for any $x, y \in G$,

 $\begin{array}{ll} i. & \mu(xy) & \geq \mu(x) \wedge \mu(y), \\ ii. & \mu(x^{-1}) & = \mu(x), \\ iii. & \mu(x \lor y) & \geq \mu(x) \wedge \mu(y), \\ iv. & \mu(x \land y) & \geq \mu(x) \wedge \mu(y). \end{array}$

2.5 Definition [3, 4]: If *a* is an element of λ group *G*, then $a \vee (-a)$ is called the absolute value of *a* and is denoted by |a|. Any element *a* of an λ -group *G* can be written as $a = (a \vee 0) * (a \wedge 0)$ i.e., $a = a^+ * a^-$, where a^+ is called positive part of *a* and a^- is called negative part of *a*.

94

2.6 Definition [8]: Let G and G^1 be any two λ - groups. Then the function $f: G \to G^1$ is said to be a homomorphism if f(xy) = f(x)f(y) for all $x, y \in G$.

2.7 Definition [8]: Let G and G^{1} be any two λ - groups. Then the function $f: G \rightarrow G^{1}$ is said to be anti homomorphism if f(xy) = f(y)f(x) for all $x, y \in G$.

2.8 Definition [9]: Let G be a λ - group. A L fuzzy sub λ - group A of G is said to be L fuzzy normal sub λ group (LFNS λ -G) of G if $\mu_A(xy) = \mu_A(yx)$, for all x and y $\in G$.

2.9 Definition [5, 9]: Let G be a λ - group. A L fuzzy sub λ -group μ of G is said to be a L fuzzy characteristic sub λ - group (LFCS λ - G) of G if $\mu_A(x) = \mu_A(f(x))$, for all $x \in G$ and $f \in Aut G$.

2.10 Definition [9]: A fuzzy subset μ of a set X is said to be normalized if there exist $x \in X$ such that $\mu_A(x) = 1$.

3 Properties of L Fuzzy Normal Sub λ - Groups

3.1 Theorem: Let G be an λ -group. If A and B are two L fuzzy normal sub λ groups of G, then their intersection $A \cap B$ is a L fuzzy normal sub λ - group of G.

Proof: Let x and $y \in G$.

Let $A = \{ \langle x, \mu_A(x) \rangle | x \in G \}$ and $B = \{ \langle x, \mu_B(x) \rangle | x \in G \}$ be a L fuzzy normal sub λ -groups of a λ -group G.

Let $C = A \cap B$ and $C = \{ \langle x, \mu_C(x) \rangle / x \in G \}.$

Then,

Clearly C is a L fuzzy sub λ -group of a λ -group G,

Since A and B are two L fuzzy sub λ -groups of a $\ \lambda$ -group G. And,

(i) $\mu_C(xy) = \mu_A(xy) \wedge \mu_B(xy)$ as A and B are LFNS λ Gs of a λ group G. = $\mu_A(yx) \wedge \mu_B(yx)$ = $\mu_C(yx)$.

Therefore, $\mu_C(xy) = \mu_C(yx)$.

Hence $A \cap B$ is an L fuzzy normal sub λ -group of a λ -group G.

3.2 Theorem: Let G be a M-group. The intersection of a family of L fuzzy normal sub λ -group of G is an L fuzzy normal sub λ -group of G.

Proof: Let $\{Ai_{\}i\in I}$ be a family of L fuzzy normal sub λ groups of a λ group G and let $A = \bigcap A_i$

Then for x and $y \in G$.

Clearly the intersection of a family of L fuzzy sub λ - groups of a λ - group G is a L fuzzy sub λ -group of a λ - group G.

(i) $\mu_{A}(xy) = \wedge \mu_{A_{i}}(xy)$ = $\wedge \mu_{A_{i}}(yx)$, as { A_{i} }_{i \in I} are LFNS λ - Gs of a λ - group G = $\mu_{A}(yx)$.

Therefore, $\mu_A(xy) = \mu_A(yx)$.

Hence the intersection of a family of L fuzzy normal sub λ -groups of a λ - group G is a L fuzzy normal sub λ -group of a λ -group G.

3.3 Theorem: If A is a fuzzy characteristic of L fuzzy sub λ -group of a λ - group G, then A is a L fuzzy normal sub λ - group of a λ -group G.

Proof: Let A be a L fuzzy characteristic sub λ - group of a λ -group G and let $x,y \in G$.

Consider the map $f: G \to G$ defined by $f(x) = yxy^{-1}$.

Clearly, $f \in AutG$.

Now, $\mu_A(xy) = \mu_A(f(xy))$, as A is a LFCS λ G of a λ group G = $\mu_A(y(xy)y^{-1})$ = $\mu_A(yx)$.

Therefore, $\mu_A(xy) = \mu_A(yx)$.

Hence A is a L fuzzy normal sub λ group of a λ group G.

3.4 Theorem: A L fuzzy sub λ -group A of a λ -group G is a L fuzzy normal sub λ -group of G if and only if A is constant on the conjugate classes of G.

Proof: Suppose that A is a L fuzzy normal sub λ -group of a λ -group G and let x and $y \in G$.

Now,
$$\mu_A(y^{-1}xy) = \mu_A(xyy^{-1})$$
, since A is a LFNS λ G of G
= $\mu_A(x)$.

Therefore, $\mu_A(y^{-1}xy) = \mu_A(x)$.

Hence $(x) = \{ y^{-1}xy / y \in G \}.$

Hence A is constant on the conjugate classes of G.

Conversely, suppose that A is constant on the conjugate classes of G.

Then, $\mu_A(xy) = \mu_A(xyxx^{-1})$ = $\mu_A(x(yx)x^{-1})$, as A is constant on the conjugate classes of G = $\mu_A(yx)$.

Therefore, $\mu_A(xy) = \mu_A(yx)$.

Hence A is a L fuzzy normal sub λ - group of a group G.

3.5 Theorem: Let A be a L fuzzy normal sub λ group of a λ - group G. Then for any $y \in G$ we have $\mu_A(yxy^{-1}) = \mu_A(y^{-1}xy)$, for every $x \in G$.

Proof: Let A be a L fuzzy normal sub λ -group of a λ -group G.

For any $y \in G$, we have,

$$\begin{split} & \mu_A(\ yxy^{-1}) = \mu_A(x), \text{ since A is a FNS } \lambda\text{-}G \text{ of } G \\ & = \mu_A(\ xyy^{-1}), \text{ since A is a FNS } \lambda\text{-}G \text{ of } G \\ & = \mu_A(\ y^{-1}xy). \end{split}$$

Therefore, $\mu_A(yxy^{-1}) = \mu_A(y^{-1}xy)$.

3.6 Theorem: A L fuzzy sub λ -group A of a λ -group G is normalized if and only if $\mu_A(e) = 1$, where e is the identity element of the λ group G.

Proof: If A is normalized, then there exists $x \in G$ such that $\mu_A(x) = 1$, but by properties of L fuzzy sub λ -group A of the λ -group G, $\mu_A(x) \le \mu_A(e)$, for every $x \in G$.

Since $\mu_A(x) = 1$ and $\mu_A(x) \le \mu_A(e)$, $1 \le \mu_A(e)$.

But $1 \ge \mu_A(e)$.

Hence $\mu_A(e) = 1$.

Conversely, if $\mu_A(e) = 1$, then by the definition of normalized fuzzy subset, A is normalized.

3.7 Theorem: Let A and B be L fuzzy sub λ - groups of λ -groups G and H, respectively. If A and B are L fuzzy normal sub λ - groups, then AxB is a L fuzzy normal sub λ -group of GxH.

Proof: Let A and B be L fuzzy normal sub λ groups of the λ groups G and H respectively.

Clearly AxB is a L fuzzy sub λ -group of GxH.

Let x_1 and x_2 be in G, y_1 and y_2 be in H.

Then (x_1, y_1) and (x_2, y_2) are in GxH.

Now,

 $\mu_{AxB} [(x_1, y_1)(x_2, y_2)] = \mu_{AxB} (x_1 x_2, y_1 y_2)$ = $\mu_A (x_1 x_2) \land \mu_B (y_1 y_2)$ = $\mu_A (x_2 x_1) \land \mu_B (y_2 y_1)$

Since A and B are LFNS λ Gs of the groups G and H = μ_{AxB} (x_2x_1, y_2y_1) = μ_{AxB} [(x_2, y_2)(x_1, y_1)].

Therefore, $\mu_{AxB} [(x_1, y_1)(x_2, y_2)] = \mu_{AxB} [(x_2, y_2)(x_1, y_1)].$

Hence AxB is a L fuzzy normal sub λ group of GxH.

3.8 Theorem: Let the L fuzzy normal sub λ - group A of a λ -group G be conjugate to a L fuzzy normal sub λ -group of G and a L fuzzy normal sub λ -group B of a λ -group H be conjugate to a L fuzzy normal sub λ - group N of H. Then a L fuzzy normal sub λ -group AxB of a λ group GxH is conjugate to a L fuzzy normal sub λ -group MxN of GxH.

Proof: It is trivial.

3.9 Theorem: Let A and B be L fuzzy subsets of the λ - groups G and H, respectively. Suppose that e and e' are the identity element of G and H, respectively. If AxB is a L fuzzy normal sub λ - group of GxH, then at least one of the following two statements must hold.

- (i) $\mu_B(e^{\perp}) \ge \mu_A(x)$, for all x in G,
- (*ii*) $\mu_A(e) \ge \mu_B(y)$, for all y in H.

Proof: It is trivial.

3.10 Theorem: Let A and B be L fuzzy subsets of the λ - groups G and H, respectively and AxB is a L fuzzy normal sub λ - group of GxH. Then the following are true:

- (i) if $\mu_A(x) \le \mu_B(e^{\iota})$, then A is a L fuzzy normal sub λ group of G.
- (ii) if $\mu_B(x) \le \mu_A(e)$, then B is a L fuzzy normal sub λ -group of H.
- (iii) either A is a L fuzzy normal sub λ group of G or B is a L fuzzy normal sub λ group of H.

Proof: It is trivial.

References

- [1] S.K. Bhakat and P.S. Das, Fuzzy sub algebras of a universal algebra, *Bull. Cal. Math. Soc*, 85(1993), 79-92.
- [2] G. Birkhof, *Lattice Theory (Volume XXV)*, American Mathematical Society Colloquium Publications, (1940).
- [3] J.A. Goguen, L-fuzzy sets, J. Math. Anal. Appl., 18(1967), 145-174.
- [4] L. Filep, Study of fuzzy algebras and relations from a general view point, Acto Mathematica Academiae Paedagogocae Nyiregyhaziensis Tamus, 14(1998), 49-55.
- [5] L. Xiaoping, The intuitionistic fuzzy group and its homomorphic image, *Fuzzy Systems and Math.*, 14(1) (2000), 45-50.
- [6] V. Murali, Lattice of fuzzy algebras and closure systems in IX, *Fuzzy Sets* and Systems, 41(1991), 101-111.
- [7] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35(1971), 512-517.
- [8] U.M. Swamy and D.V. Raju, Algebraic fuzzy systems, *Fuzzy Sets and Systems*, 41(1991), 187-194.
- [9] L.A. Zadeh, Fuzzy sets, *Inform and Control*, 8(1965), 338-353.
- [10] G.S.V.S. Saibaba, Fuzzy lattice ordered groups, *Southeast Asian Bulletin* of Mathematics, 32(2008), 749-766.