Gen. Math. Notes, Vol. 20, No. 1, January 2014, pp.77-92
ISSN 2219-7184; Copyright © ICSRS Publication, 2014
www.i-csrs.org
Available free online at http://www.geman.in

Almost Slightly $\nu g-$ Continuous Functions

S. Balasubramanian
Department of Mathematics
Government Arts College (Autonomous)
Karur-639 005, Tamilnadu, India
E-mail: mani55682@rediffmail.com

(Received: 22-10-13 / Accepted: 3-12-13)

Abstract

In this paper we discuss a new type of continuous functions called almost slightly νg-continuous functions; its properties and interrelation with other continuous functions are studied.

Keywords: slightly continuous functions; slightly semi-continuous functions; slightly β-continuous functions; slightly γ-continuous functions and slightly ν-continuous functions.

1. Introduction

T.M.Nour introduced slightly semi-continuous functions during the year 1995. After him T.Noiri and G.I.Ghae further studied slightly semi-continuous functions on 2000. During 2001 T.Noiri individually studied slightly β - continuous functions. C.W.Baker introduced slightly precontinuous functions. Erdal Ekici and M. Caldas studied slightly γ-continuous functions. Arse Nagli Uresin and others studied slightly δ-continuous functions. Recently the Author of the present paper studied slightly νg-continuous functions. Inspired with these developements the author introduce in this paper a new variety of slightly continuous functions called almost slightly νg-continuous function and study its basic properties; interrelation with other type of such functions available in the literature. Throughout the paper a space X means a topological space (X, τ).

2. Preliminaries

Definition 2.1: $A \subset X$ is called
(i) closed[resp: Semi-closed; ν-closed] if its complement is open[resp:semi-open; ν-open].
(ii) $r \alpha$-closed if $\exists U \in \alpha O(X)] \ni U \subset A \subset \alpha \overline{(U)}]$.
(iii)semi- θ-open if it is the union of semi-regular sets and its complement is semi- θ-closed.
(iv) Regular closed[resp: α-closed; pre-closed; β-closed] if $A=\overline{A^{\circ}}[$ resp: $\left.\left(\overline{\left(A^{o}\right)}\right)^{o} \subseteq A ; \overline{\left(A^{o}\right)} \subseteq A ; \overline{(\bar{A})^{o}} \subseteq A\right]$.
(v) g-closed[resp: rg-closed] if $\bar{A} \subseteq U$ whenever $A \subseteq U$ and U is open in X .
(vi)sg-closed[resp: gs-closed] if $s(\bar{A}) \subseteq U$ whenever $A \subseteq U$ and U is semiopen\{open\} in X.
(vii)pg-closed[resp: gp-closed; gpr-closed] if $p(\bar{A}) \subseteq U$ whenever $A \subseteq U$ and U is pre-open\{open; regular-open\} in X.
(viii) α g-closed[resp: \quad α-closed; $\operatorname{rg} \alpha$-closed] if $\alpha(\bar{A}) \subseteq U$ whenever $A \subseteq U$ and U is $\{\alpha$-open; $\mathrm{r} \alpha$-open $\}$ open in X .
(ix) ν g-closed if $\nu(\bar{A}) \subseteq U$ whenever $A \subseteq U$ and U is ν-open in X .
(x) clopen[resp: r-clopen] if it is both open and closed[resp: regular-open and regular-closed]

Note 1: From the above definitions we have the following interrelations among the closed sets.

Definition 2.2: A function $f: \mathrm{X} \rightarrow \mathrm{Y}$ is said to be
(i) continuous[resp: nearly-continuous; r α - continuous; ν - continuous; $\alpha-$ continuous; semi-continuous; β - continuous; pre-continuous] if inverse image of each open set is open[resp: regular-open; r α-open; ν-open; α-open; semiopen; β-open; preopen].
(ii) nearly-irresolute[resp: $\mathrm{r} \alpha$ - irresolute; ν - irresolute; α - irresolute; irresolute; β-irresolute; pre-irresolute] if inverse image of each regular-open[resp: $\mathrm{r} \alpha$-open; ν-open; α-open; semi-open; β-open; preopen] set is regular-open[resp: r α-open; ν-open; α-open; semi-open; β-open; preopen].
(iii) almost continuous[resp: almost r α-continuous; almost ν-continuous; almost α-continuous; almost semi-continuous; almost β-continuous; almost
pre-continuous] if for each $x \in X$ and each open set $(\mathrm{V}, f(\mathrm{x})$), there exists an open[resp: r α-open; ν-open; α-open; semi-open; β-open; preopen] set $(U, x) \ni f(U) \subset(\bar{V})^{o}$.
(iv) weakly continuous[resp: weakly nearly-continuous; weakly $\mathrm{r} \alpha$-continuous; weakly ν-continuous; weakly α-continuous; weakly semi-continuous; weakly β-continuous; weakly pre-continuous] if for each $x \in X$ and each open set $(\mathrm{V}, f(\mathrm{x}))$, there exists an open $[$ resp: regular-open; r α-open; ν-open; α-open; semi-open; β-open; preopen] set $(U, x) \ni f(U) \subset \bar{V}$.
(v) slightly continuous[resp: slightly semi-continuous; slightly pre-continuous; slightly β-continuous; slightly γ-continuous; slightly α-continuous; slightly r-continuous; slightly ν-continuous] at $x \in X$ if for each clopen subset V in Y containing $f(x), \exists U \in \tau(X)[\exists U \in S O(X) ; \exists U \in P O(X) ; \exists U \in \beta O(X) ; \exists U \in$ $\gamma O(X) ; \exists U \in \alpha O(X) ; \exists U \in R O(X) ; \exists U \in \nu O(X)]$ containing x such that $f(U) \subseteq V$.
(vi) slightly continuous[resp: slightly semi-continuous; slightly pre-continuous; slightly β - continuous; slightly $\gamma-$ continuous; slightly $\alpha-$ continuous; slightly r-continuous; slightly ν - continuous] if it is slightly-continuous[resp:slightly semi-continuous; slightly pre-continuous; slightly β - continuous; slightly $\gamma-$ continuous; slightly α-continuous; slightly r-continuous; slightly ν-continuous] at each $x \in X$.
(vii) almost strongly θ-semi-continuous[resp: strongly θ-semi-continuous] if for each $x \in X$ and for each $V \in \sigma(Y, f(x)), \exists U \in S O(X, x) \ni f(\overline{s(U)}) \subset$ $s \overline{(} V)[$ resp: $f(\overline{s(U)}) \subset V]$.

Definition 2.3: A function $f: \mathrm{X} \rightarrow \mathrm{Y}$ is said to be [almost-] slightly g - continuous [resp: [almost-] slightly sg - continuous; [almost-] slightly pg-continuous; [almost-] slightly βg - continuous; [almost-] slightly γg - continuous; [almost] slightly $\alpha g-$ continuous; [almost-] slightly rg-continuous] at $x \in X$ if for each $V \in C O(V f(x))$, [resp: $V \in R C O(V f(x))], \exists U \in G O(X, x)[\exists U \in$ $S G O(X, x) ; \exists U \in P G O(X, x) ; \exists U \in \beta G O(X, x) ; \exists U \in \gamma G O(X, x) ; \exists U \in$ $\alpha G O(X, x) ; \exists U \in R G O(X, x)] \ni f(U) \subseteq V$, and [almost-] slightly g-continuous [resp: [almost-] slightly sg-continuous; [almost-] slightly pg-continuous; [almost] slightly βg - continuous; [almost-] slightly γg - continuous; [almost-] slightly $\alpha g-$ continuous; [almost-]slightly rg-continuous] if it is [almost-]slightly g continuous [resp:[almost-]slightly sg-continuous; [almost-] slightly pg-continuous; [almost-]slightly βg - continuous; [almost-] slightly $\gamma g-$ continuous; [almost-] slightly αg - continuous; [almost-] slightly rg-continuous] at each $x \in X$.

Definition 2.4: X is said to be a
(i) compact[resp: nearly-compact; r $\alpha-$ compact; ν - compact; $\alpha-$ compact; semi-compact; β - compact; pre-compact; mildly-compact] space if every open [resp: regular-open; α-open; ν-open; α-open; semi-open; β-open; preopen;
clopen] cover has a finite subcover.
(ii) countably-compact[resp: countably-nearly-compact; countably - r $\alpha-$ compact; countably - ν - compact; countably- α - compact; countably - semi compact; countably - β - compact; countably-pre-compact; mildly-countably compact] space if every countable open[resp: regular-open; $\mathrm{r} \alpha$ - oover.
(iii) closed-compact[resp: closed-nearly-compact; closed-r α - compact; closedν - compact; closed- α - compact; closed-semi-compact; closed- β-compact; closed-pre-compact] space if every closed[resp: regular-closed; r α-closed; ν closed; α-closed; semi-closed; β-closed; preclosed] cover has a finite subcover. (iv) Lindeloff [resp: nearly-Lindeloff; r α - Lindeloff; ν - Lindeloff; α-Lindeloff; semi-Lindeloff; β - Lindeloff; pre-Lindeloff; mildly-Lindeloff] space if every open[resp: regular-open; r α-open; ν-open; α-open; semi-open; β-open; preopen; clopen] cover has a countable subcover.
(v) Extremally disconnected[briefly e.d] if the closure of each open set is open.

Definition 2.5: X is said to be a
(i) T_{0} [resp: $\mathrm{r}-T_{0} ; \mathrm{r} \alpha-T_{0} ; \nu-T_{0} ; \alpha-T_{0} ;$ semi- $T_{0} ; \beta-T_{0} ;$ pre- T_{0}; Ultra T_{0}] space if for each $x \neq y \in X \exists U \in \tau(X)[$ resp: rO(X); r $\alpha \mathrm{O}(\mathrm{X}) ; \nu \mathrm{O}(\mathrm{X}) ; \alpha \mathrm{O}(\mathrm{X})$; $\mathrm{SO}(\mathrm{X}) ; \beta \mathrm{O}(\mathrm{X}) ; \mathrm{PO}(\mathrm{X}) ; \mathrm{CO}(\mathrm{X})]$ containing either x or y .
(ii) T_{1} [resp: r- $T_{1} ; \mathrm{r} \alpha-T_{1} ; \nu-T_{1} ; \alpha-T_{1} ;$ semi- $T_{1} ; \beta-T_{1} ;$ pre- T_{1}; Ultra $\left.T_{1}\right]$ space if for each $x \neq y \in X \exists U, V \in \tau(X)[$ resp: $\mathrm{rO}(\mathrm{X}) ; \mathrm{r} \alpha \mathrm{O}(\mathrm{X}) ; \nu \mathrm{O}(\mathrm{X})$; $\alpha \mathrm{O}(\mathrm{X}) ; \mathrm{SO}(\mathrm{X}) ; \beta \mathrm{O}(\mathrm{X}) ; \mathrm{PO}(\mathrm{X}): \mathrm{CO}(\mathrm{X})]$ such that $x \in U-V$ and $y \in V-U$. (iii) $T_{2}\left[\right.$ resp: $\mathrm{r}-T_{2} ; \mathrm{r} \alpha-T_{2} ; \nu-T_{2} ; \alpha-T_{2} ;$ semi- $T_{2} ; \beta-T_{2} ;$ pre- $T_{2} ;$ Ultra $\left.T_{2}\right]$ space if for each $x \neq y \in X \exists U, V \in \tau(X)[$ resp: $\mathrm{rO}(\mathrm{X}) ; \mathrm{r} \alpha \mathrm{O}(\mathrm{X}) ; \nu \mathrm{O}(\mathrm{X}) ; \alpha \mathrm{O}(\mathrm{X})$; $\mathrm{SO}(\mathrm{X}) ; \beta \mathrm{O}(\mathrm{X}) ; \mathrm{PO}(\mathrm{X}) ; \mathrm{CO}(\mathrm{X})]$ such that $x \in U ; y \in V$ and $U \cap V=\phi$.
(iv) $C_{0}\left[\right.$ resp: r- $C_{0} ;$ r $\alpha-C_{0} ; \nu-C_{0} ; \alpha-C_{0} ;$ semi- $C_{0} ; \beta-C_{0} ;$ pre- C_{0}; Ultra C_{0}] space if for each $x \neq y \in X \exists U \in \tau(X)[$ resp: $\mathrm{rO}(\mathrm{X}) ; \mathrm{r} \alpha \mathrm{O}(\mathrm{X}) ; \nu \mathrm{O}(\mathrm{X}) ; \alpha \mathrm{O}(\mathrm{X})$; $\mathrm{SO}(\mathrm{X}) ; \beta \mathrm{O}(\mathrm{X}) ; \mathrm{PO}(\mathrm{X}) ; \mathrm{CO}(\mathrm{X})]$ whose closure contains either x or y
(v) C_{1} [resp: r- $C_{1} ;$ r $\alpha-C_{1} ; \nu-C_{1} ; \alpha-C_{1}$; semi- $C_{1} ; \beta-C_{1} ;$ pre- C_{1}; Ultra $\left.C_{1}\right]$ space if for each $x \neq y \in X \exists U, V \in \tau(X)[$ resp: $\mathrm{rO}(\mathrm{X}) ; \mathrm{r} \alpha \mathrm{O}(\mathrm{X}) ; \nu \mathrm{O}(\mathrm{X})$; $\alpha \mathrm{O}(\mathrm{X}) ; \mathrm{SO}(\mathrm{X}) ; \beta \mathrm{O}(\mathrm{X}) ; \mathrm{PO}(\mathrm{X}) ; \mathrm{CO}(\mathrm{X})]$ whose closure contains x and y .
(vi) C_{2} [resp: r- $C_{2} ;$ r $\alpha-C_{2} ; \nu-C_{2} ; \alpha-C_{2}$; semi- $C_{2} ; \beta-C_{2}$; pre- C_{2}; Ultra C_{2}] space if for each $x \neq y \in X \exists U, V \in \tau(X)[$ resp: $\mathrm{rO}(\mathrm{X}) ; \mathrm{r} \alpha \mathrm{O}(\mathrm{X}) ; \nu \mathrm{O}(\mathrm{X})$; $\alpha \mathrm{O}(\mathrm{X}) ; \mathrm{SO}(\mathrm{X}) ; \beta \mathrm{O}(\mathrm{X}) ; \mathrm{PO}(\mathrm{X}) ; \mathrm{CO}(\mathrm{X})]$ whose closure contains x and y and $U \cap V=\phi$.
(vii) $D_{0}\left[\right.$ resp: r- $D_{0} ;$ r $\alpha-D_{0} ; \nu-D_{0} ; \alpha-D_{0} ;$ semi- $D_{0} ; \beta-D_{0}$; pre- D_{0}; Ultra $\left.D_{0}\right]$ space if for each $x \neq y \in X \exists U \in D(X)$ resp: $\mathrm{rD}(\mathrm{X}) ; \mathrm{r} \alpha \mathrm{D}(\mathrm{X}) ; \nu \mathrm{D}(\mathrm{X})$; $\alpha \mathrm{D}(\mathrm{X}) ; \mathrm{SD}(\mathrm{X}) ; \beta \mathrm{D}(\mathrm{X}) ; \mathrm{PD}(\mathrm{X}) ; \mathrm{COD}(\mathrm{X})]$ containing either x or y .
(viii) D_{1} [resp: r- $D_{1} ; \mathrm{r} \alpha-D_{1} ; \nu-D_{1} ; \alpha-D_{1} ;$ semi- $D_{1} ; \beta-D_{1} ;$ pre- D_{1}; Ultra $\left.D_{1}\right]$ space if for each $x \neq y \in X \exists U, V \in D(X)[$ resp: $\mathrm{rD}(\mathrm{X}) ; \mathrm{r} \alpha \mathrm{D}(\mathrm{X}) ; \nu \mathrm{D}(\mathrm{X})$; $\alpha \mathrm{D}(\mathrm{X}) ; \mathrm{SD}(\mathrm{X}) ; \beta \mathrm{D}(\mathrm{X}) ; \mathrm{PD}(\mathrm{X}) ; \mathrm{COD}(\mathrm{X})] \ni x \in U-V$ and $y \in V-U$.
(ix) D_{2} [resp: r- $D_{2} ; \mathrm{r} \alpha-D_{2} ; \nu-D_{2} ; \alpha-D_{2} ;$ semi- $D_{2} ; \beta-D_{2} ;$ pre- D_{2}; Ultra
$\left.D_{2}\right]$ space if for each $x \neq y \in X \exists U, V \in D(X)[$ resp: $\mathrm{rD}(\mathrm{X}) ; \mathrm{r} \alpha \mathrm{D}(\mathrm{X}) ; \nu \mathrm{D}(\mathrm{X}) ;$ $\alpha \mathrm{D}(\mathrm{X}) ; \mathrm{SD}(\mathrm{X}) ; \beta \mathrm{D}(\mathrm{X}) ; \mathrm{PD}(\mathrm{X}) ; \mathrm{CD}(\mathrm{X})]$ such that $x \in U ; y \in V$ and $U \cap V=\phi$.
(x) R_{0} [resp: $\mathrm{r}-R_{0} ; \mathrm{r} \alpha-R_{0} ; \nu-R_{0} ; \alpha-R_{0}$; semi- $R_{0} ; \beta-R_{0}$; pre- R_{0}; Ultra $\left.R_{0}\right]$ space if for each $x \in X \exists U \in \tau(X)[$ resp: $\mathrm{RO}(\mathrm{X}) ; \mathrm{r} \alpha \mathrm{O}(\mathrm{X}) ; \nu \mathrm{O}(\mathrm{X}) ; \alpha \mathrm{O}(\mathrm{X})$; $\mathrm{SO}(\mathrm{X}) ; \beta \mathrm{O}(\mathrm{X}) ; \mathrm{PO}(\mathrm{X}) ; \mathrm{CO}(\mathrm{X})] \overline{\{x\}} \subseteq U[$ resp $: r \overline{\{x\}} \subseteq U ; \nu \overline{\{x\}} \subseteq U ; \alpha \overline{\{x\}} \subseteq$ $U ; s \overline{\{x\}} \subseteq U]$ whenever $x \in U \in \tau(X)[$ resp: $x \in U \in R O(X) ; x \in U \in$ $\nu O(X) ; x \in U \in \alpha O(X) ; x \in U \in S O(X)]$
(xi) $R_{1}\left[\right.$ resp: r- R_{1}; r $\alpha-R_{1} ; \nu-R_{1} ; \alpha-R_{1}$; semi- $R_{1} ; \beta-R_{1}$; pre- R_{1}; Ul$\left.\operatorname{tra} R_{1}\right]$ space if for $x, y \in X \ni \overline{\{x\}} \neq \overline{\{y\}}[$ resp: $\ni r \overline{\{x\}} \neq r \overline{\{y\}} ; \ni r \alpha \overline{\{x\}} \neq$ $r \alpha \overline{\{y\}} ; \ni \nu \overline{\{x\}} \neq \nu \overline{\{y\}} ; \ni \alpha \overline{\{x\}} \neq \alpha \overline{\{y\}} ; \ni \nu \overline{\{x\}} \neq \nu \overline{\{y\}} ; \ni \alpha \overline{\{x\}} \neq \alpha \overline{\{y\}} ; \ni$ $s \overline{\{x\}} \neq s \overline{\{y\}} ; \ni \beta \overline{\{x\}} \neq \beta \overline{\{y\}} ; \ni p \overline{\{x\}} \neq p \overline{\{y\}} ; \ni C O \overline{\{x\}} \neq C O \overline{\{y\}} ;] V \in \tau(X)$ \exists disjoint $U ; V \in \tau(X) \ni \overline{\{x\}} \subseteq U[$ resp: $R O(X) \ni r \overline{\{x\}} \subseteq U ; R \alpha O(X) \ni$ $r \alpha \overline{\{x\}} \subseteq U ; \nu O(X) \ni \nu \overline{\{x\}} \subseteq \bar{U} ; R O(X) \ni \alpha \overline{\{x\}} \subseteq U ; S O(X) \ni s \overline{\{x\}} \subseteq$ $U ; \beta O(X) \ni \beta \overline{\{x\}} \subseteq U ; P O(X) \ni p \overline{\{x\}} \subseteq U ; C O(X) \ni c o\{x\} \subseteq U]$ and $\overline{\{y\}} \subseteq V[$ resp: $R O(X) \ni r \overline{\{y\}} \subseteq V ; R \alpha O(X) \ni r \alpha \overline{\{y\}} \subseteq V ; \nu O(X) \ni \nu \overline{\{y\}} \subseteq$ $V ; R O(X) \ni \alpha \overline{\{y\}} \subseteq V ; S O(X) \ni s \overline{\{y\}} \subseteq V ; \beta O(X) \ni \beta \overline{\{y\}} \subseteq V ; P O(X) \ni$ $p \overline{\{y\}} \subseteq V ; C O(X) \ni c o \overline{\{y\}} \subseteq V]$.

Lemma 2.1:

(i) Let A and B be subsets of a space X , if $A \in \nu O(X)$ and $B \in R O(X)$, then $A \cap B \in \nu O(B)$.
(ii)Let $A \subset B \subset X$, if $A \in \nu O(B)$ and $B \in R O(X)$, then $A \in \nu O(X)$.

Remark 1: $\nu G O(X, x)[$ resp: $\mathrm{RCO}(\mathrm{X}, \mathrm{x})]$ represents νg-open set containing $\mathrm{x}[$ resp: r -clopen set containing x$]$.

Theorem 2.1:

(i) If f is $\nu g . c$. , then f is al. $\nu g . c$.
(i) If f is c. $\nu g . \mathrm{c}$., then f is al.c. $\nu g . \mathrm{c}$.

3. Almost Slightly νg-Continuous Functions:

Definition 3.1: A function $f: \mathrm{X} \rightarrow \mathrm{Y}$ is said to be almost slightly νg-continuous function at $x \in X$ if for each $V \in R C O(Y, f(x)), \exists U \in \nu G O(X, x)$ such that $f(U) \subseteq V$ and almost slightly νg-continuous function if it is almost slightly νg-continuous at each $x \in X$.

Note 2: Here after we call almost slightly νg-continuous function as al.sl. $\nu g . c$ function shortly.

Example 3.1: $X=Y=\{a, b, c\} ; \tau=\{\phi,\{a\},\{b\},\{a, b\}, X\}$ and $\sigma=$ $\{\phi,\{a\},\{b, c\}, Y\}$. Let f is identity function, then f is al.sl. $\nu g . c$.

Example 3.2: $X=Y=\{a, b, c, d\} ; \tau=\sigma=\{\phi,\{a\},\{b\},\{d\},\{a, b\},\{a, d\},\{b, d\}$, $\{a, b, c\},\{a, b, d\}, X\}$. Let f be defined by $f(a)=b ; f(b)=c ; f(c)=d$ and $f(d)=a$, then f is not sl. $\nu g . c$., and not al.sl. $\nu g . c$. Since it is not satisfying the condition at the points c and d.

Theorem 3.1: The following are equivalent.
(i) f is al.sl. $\nu g . c$.
(ii) $f^{-1}(V)$ is νg-open for every r-clopen set V in Y.
(iii) $f^{-1}(V)$ is νg-closed for every r-clopen set V in Y .
(iv) $f(\nu g \overline{(A)}) \subseteq \nu g \overline{(f(A))}$.

Corollary 3.1: The following are equivalent.
(i) f is al.sl. $\mathrm{\nu g}$.c.
(ii) For each $x \in X$ and each r-clopen subset $V \in(Y, f(x)) \exists U \in \nu G O(X, x) \ni$ $f(U) \subseteq V$.
Proof: Strightforward from definition 3.1.
Theorem 3.2: Let $\Sigma=\left\{U_{i}: i \in I\right\}$ be any cover of X by regular open sets in X. A function f is al.sl. $\nu g . c$. iff $f_{/ U_{i}}$: is al.sl. νg.c., for each $i \in I$.
Proof: Let $i \in I$ be an arbitrary index and $U_{i} \in R O(X)$. Let $x \in U_{i}$ and $V \in R C O\left(Y, f_{U_{i}}(x)\right)$. For f is al.sl. $\nu g . c, \exists U \in \nu G O(X, x) \ni f(U) \subset V$. Since $U_{i} \in R O(X)$, by lemma $2.1 x \in U \cap U_{i} \in \nu G O\left(U_{i}\right)$ and $\left(f_{/ U_{i}}\right) U \cap U_{i}=$ $f\left(U \cap U_{i}\right) \subset f(U) \subset V$. Hence $f_{/ U_{i}}$ is al.sl. νg.c.

Conversely Let $x \in X$ and $V \in R C O(Y, f(x)), \exists i \in I \ni x \in U_{i}$. Since $f_{/ U_{i}}$ is al.sl. $\nu g . c, \exists U \in \nu G O\left(U_{i}, x\right) \ni f_{J_{i}}(U) \subset V$. By lemma 2.1, $U \in \nu G O(X)$ and $f(U) \subset V$. Hence f is al.sl. $\nu g . c$.

Theorem 3.3:

(i) If f is νg-irresolute and g is al.sl. $\nu g . c .[a l . s l . c$.$] , then g \circ f$ is al.sl. $\nu g . c$.
(i) If f is νg-irresolute and g is al. $\nu g . c$. , then $g \circ f$ is al.sl. $\nu g . c$.
(iii)If f is νg-continuous and g is al.sl.c., then $g \circ f$ is al.sl. $\nu g . c$.
(iv) If f is rg -continuous and g is al.sl. $\nu g . c$. [al.sl.c.], then $g \circ f$ is al.sl. $\nu g . c$.

Theorem 3.4: If f is νg-irresolute, νg-open and $\nu G O(X)=\tau$ and g be any function, then $g \circ f$ is al.sl. νg.c iff g is al.sl. $\nu g . c$.
Proof:If part: Theorem 3.3(i)
Only if part: Let A be r-clopen subset of Z. Then $(g \circ f)^{-1}(A)$ is a νg-open subset of X and hence open in X [by assumption]. Since f is $\nu g-$ open $f(g \circ f)^{-1}(A)$ $=g^{-1}(A)$ is $\nu g-$ open in Y. Thus g is al.sl. νg.c.

Corollary 3.2: If f is νg-irresolute, νg-open and $\nu G O(X)=R O(X)$ and g be any function, then $g \circ f$ is al.sl. $\nu g . c$ iff g is al.sl. $\nu g . c$.

Corollary 3.3: If f is νg-irresolute, νg-open and bijective, g is a function. Then g is al.sl. $\nu g . c$. iff $g \circ f$ is al.sl. $\nu g . c$.

Theorem 3.5: If $g: X \rightarrow X \times Y$, defined by $g(x)=(x, f(x)) \forall x \in X$ be the graph function of $f: X \rightarrow Y$. Then g is al.sl. $\nu g . c$ iff f is al.sl. $\nu g . c$.
Proof: Let $V \in R C O(Y)$, then $X \times V \in R C O(X \times Y)$. Since g is al.sl. $\nu g . c$., $f^{-1}(V)=f^{-1}(X \times V) \in \nu G O(X)$. Thus f is al.sl. $\nu g . c$.
Conversely, let $x \in X$ and $F \in R C O(X \times Y, g(x))$. Then $F \cap(\{x\} \times Y) \in$ $R C O(\{x\} \times Y), g(x))$. Also $\{x\} \times Y$ is homeomorphic to Y. Hence $\{y \in Y$: $(x, y) \in F\} \in R C O(Y)$. Since f is al.sl. $\nu g . c$. $\bigcup\left\{f^{-1}(y):(x, y) \in F\right\} \in$ $\nu G O(X)$. Further $x \in \bigcup\left\{f^{-1}(y):(x, y) \in F\right\} \subseteq g^{-1}(F)$. Hence $g^{-1}(F)$ is $\nu g-$ open. Thus g is al.sl. $\nu g . c$.

Theorem 3.6:

(i) If $f: X \rightarrow \Pi Y_{\lambda}$ is al.sl. $\nu g . c$, then $P_{\lambda} \circ f: X \rightarrow Y_{\lambda}$ is al.sl. $\nu g . c$ for each $\lambda \in \Lambda$, where P_{λ} is the projection of ΠY_{λ} onto Y_{λ}.
(ii) $f: \Pi X_{\lambda} \rightarrow \Pi Y_{\lambda}$ is al.sl. $\nu g . c$, iff $f_{\lambda}: X_{\lambda} \rightarrow Y_{\lambda}$ is al.sl. $\nu g . c$ for each $\lambda \in \Lambda$.

Remark 2:

(i)Composition, Algebraic sum and product of al.sl. $\mathrm{yg} . \mathrm{c}$ functions is not in general al.sl. $\mathrm{\nu g} . c$.
(iii) The pointwise limit of a sequence of al.sl. $\nu g . c$ functions is not in general al.sl. ν g.c.

Example 3.3: Let $\mathrm{X}=\mathrm{Y}=[0,1]$. Let $f_{n}: X \rightarrow Y$ is defined as follows $f_{n}(x)=x_{n}$ for $\mathrm{n}=1,2,3, . .$. , then f defined by $f(x)=0$ if $0 \leq x<1$ and $f(x)=1$ if $\mathrm{x}=1$. Therefore each f_{n} is al.sl. $\nu g . c$ but f is not al.sl. $\nu g . c$. For $\left(\frac{1}{2}, 1\right]$ is r-clopen in Y, but $f^{-1}\left(\left(\frac{1}{2}, 1\right]\right)=\{1\}$ is not νg-open in X .

However we can prove the following:
Theorem 3.7: The uniform limit of a sequence of al.sl. $\nu g . c$ functions is al.sl.. g.c.

Note 3: Pasting lemma is not true for al.sl. l .c functions. However we have the following weaker versions.

Theorem 3.8: Let X and Y be topological spaces such that $X=A \cup B$ and let $f_{/ A}$ and $g_{/ B}$ are al.sl.r.c maps such that $f(\mathrm{x})=g(\mathrm{x}) \forall x \in A \cap B$. If
$A, B \in R O(X)$ and $\mathrm{RO}(\mathrm{X})$ is closed under finite unions, then the combination $\alpha: X \rightarrow Y$ is al.sl. $\nu g . c$ continuous.

Theorem 3.9: Pasting lemma Let X and Y be spaces such that $X=A \cup B$ and let $f_{/ A}$ and $g_{/ B}$ are al.sl. $\nu g . c$ maps such that $f(\mathrm{x})=g(\mathrm{x}) \forall x \in A \cap B$. If $A, B \in R O(X)$ and $\nu G \mathrm{O}(\mathrm{X})$ is closed under finite unions, then the combination $\alpha: X \rightarrow Y$ is al.sl. ν g.c.
Proof: Let $F \in R C O(Y)$, then $\alpha^{-1}(F)=f^{-1}(F) \cup g^{-1}(F)$, where $f^{-1}(F) \in$ $\nu G O(A)$ and $g^{-1}(F) \in \nu G O(B) \Rightarrow f^{-1}(F) ; g^{-1}(F) \in \nu G O(X) \Rightarrow f^{-1}(F) \cup$ $g^{-1}(F)=\alpha^{-1}(F) \in \nu G O(X)$ [by assumption]. Hence $\alpha: X \rightarrow Y$ is al.sl. $\nu g . c$.

4. Comparisons:

Theorem 4.1: If f is sl. νg.c., then f is al.sl. $\nu g . c$.
Proof: Let $x \in X$ and $V \in R C O(Y, f(x))$, then $x \in X$ and $V \in C O(Y, f(x))$. Since f is sl. νg.c., \exists an $U \in \nu G O(X, x) \ni f(U) \subset V$. Hence f is al.sl. $\nu g . c$.

Theorem 4.2: If f is νg.c., then f is sl. $\nu g . \mathrm{c}$.
Proof: Let $x \in X$ and $V \in C O(Y, f(x))$, then $x \in X$ and $V \in \sigma(Y, f(x))$. Since f is ν g.c., $f^{-1}(V) \in \nu G O(X, x)$ i.e., \exists an $U_{x} \in \nu G O(X, x) \ni U_{x} \subset f^{-1}(V)$ $\Rightarrow f\left(U_{x}\right) \subset V$. Hence f is sl. $\nu g . c$.

Theorem 4.3: If f is c. $\nu g . \mathrm{c}$., then f is sl. $\nu g . \mathrm{c}$.
Proof: Let $x \in X$ and $V \in C O(Y, f(x))$, then $x \in X$ and V is closed in Y containing $f(x)$. Since f is c. νg.c., $f^{-1}(V) \in \nu G O(X, x)$ i.e., \exists an $U_{x} \in \nu G O(X, x)$ $\ni U_{x} \subset f^{-1}(V) \Rightarrow f\left(U_{x}\right) \subset V$. Hence f is sl. νg.c.

Theorem 4.4: If f is al. νg.c., then f is al.sl. $\nu g . c$.
Proof: Let $x \in X$ and $V \in R C O(Y, f(x))$, then $x \in X$ and $V \in \sigma(Y, f(x))$. Since f is al. ν g.c., $f^{-1}(V) \in \nu G O(X, x)$ i.e., \exists an $U_{x} \in \nu G O(X, x) \ni U_{x} \subset$ $f^{-1}(V) \Rightarrow f\left(U_{x}\right) \subset V$. Hence f is sl. $\nu g . c$.

Theorem 4.5: If f is al.c. $\nu g . c$. , then f is al.sl. $\nu g . c$.
Proof: Let $x \in X$ and $V \in R C O(Y, f(x))$, then $x \in X$ and V is closed in Y containing $f(x)$. Since f is al.c. νg.c., $f^{-1}(V) \in \nu G O(X, x)$ i.e., \exists an $U_{x} \in \nu G O(X, x) \ni U_{x} \subset f^{-1}(V) \Rightarrow f\left(U_{x}\right) \subset V$. Hence f is sl. νg.c.

Theorem 4.6:

(i) If f is al.sl.rg.c, then f is al.sl. νg.c.
(ii) If f is al.sl.sg.c, then f is al.sl. $\nu g . c$.
(iii) If f is al.sl.g.c, then f is al.sl. $\nu g . c$.
(iv) If f is al.sl.s.c, then f is al.sl. $\nu g . c$.
(v) If f is al.sl. $\nu . \mathrm{c}$, then f is al.sl. $\nu g . \mathrm{c}$.
(vi) If f is al.sl.r.c, then f is al.sl. $\nu g . c$.
(vii) If f is al.sl.c, then f is al.sl. $\nu g . c$.
(viii)If f is al.sl. $\omega . c$, then f is al.sl. $\nu g . c$.
(ix) If f is al.sl.rg $\alpha . c$, then f is al.sl.rg.c.
(x) If f is al.sl. ω-irresolute, then f is al.sl. $\nu g . c$.
(xi) If f is al.sl.r.w.c, then f is al.sl. $\nu g . c$.
(xii) If f is al.sl. $\pi . c$, then f is al.sl. $\nu g . c$.
(xiii)If f is al.sl. $\alpha . c$, then f is al.sl. $\nu g . c$.
(xiv) If f is al.sl.g $\alpha . c$, then f is al.sl. $\nu g . c$.

Note 4: By note 1 and from the above theorem we have the following implication diagram.

Theorem 4.7:

(i) If $\mathrm{R} \alpha \mathrm{O}(\mathrm{X})=\mathrm{RO}(\mathrm{X})$ then f is al.sl.r $\alpha . c$. iff f is al.sl.r.c.
(ii) If $\nu G \mathrm{O}(\mathrm{X})=\mathrm{R} \alpha \mathrm{O}(\mathrm{X})$ then f is al.sl.r $\alpha . c$. iff f is al.sl. νg.c.
(iii) If $\nu G \mathrm{O}(\mathrm{X})=\mathrm{RO}(\mathrm{X})$ then f is al.sl.r $\alpha . c$. iff f is al.sl. νg.c.
(iv) If $\nu G \mathrm{O}(\mathrm{X})=\alpha \mathrm{O}(\mathrm{X})$ then f is al.sl. $\alpha . c$. iff f is al.sl. $\nu g . c$.
(v) If $\nu G \mathrm{O}(\mathrm{X})=\mathrm{SO}(\mathrm{X})$ then f is al.sl.s.c. iff f is al.sl. $\nu g . c$.
(vi) If $\nu G \mathrm{O}(\mathrm{X})=\beta \mathrm{O}(\mathrm{X})$ then f is al.sl. $\beta . c$. iff f is al.sl. $\nu g . \mathrm{c}$.

Theorem 4.8: If f is al.sl. $\nu g . c$., from a discrete space X into a e.d space Y , then f is w.s.c.
Proof: Follows from note 3 above and theorem 3[41] of T.M.Nour.
Corollary 4.1: If f is al.sl. ν g.c., from a discrete space X into a e.d space Y , then:
(i) f is w.s.c.
(ii) f is w. β.c.
(iii) f is w.p.c.

Proof: Follows from note 3 above and theorem 4.8.
Theorem 4.9: If f is al.sl. $\nu g . c$., and X is discrete and e.d, then f is al.sl.c.

Proof: Let $x \in X$ and $V \in R C O(Y, f(x))$. Since f is al.sl. $\nu g . c, \exists U \in$ $\nu G O(X, x) \ni f(U) \subset V \Rightarrow U \in S R(X, x) \ni f(U) \subset V$. Since X is discrete and e.d. $U \in C O(X)$. Hence f is al.sl.c.

Corollary 4.2: If f is al.sl. ν g.c., and X is $\nu T_{\frac{1}{2}}$, discrete and e.d, then:
(i) f is al.sl.c.
(ii) f is al.sl. $\alpha . c$.
(iii) f is al.sl.s.c.
(iv) f is al.sl. $\beta . \mathrm{c}$.
(v) f is al.sl.p.c.

Proof: Follows from note 3 above and theorem 4.9.

Theorem 4.10: If f is al.sl. $\nu g . c$., from a discrete space X into a e.d space Y , then f st. .s.s.c.
Proof: Let $x \in X$ and $V \in \sigma(Y, f(x))$, then $s \overline{(V)} \subset(\bar{V})^{o} \in R O(Y)$. Since Y is e.d, $s \overline{(V)} \in C O(Y)$. Since f is al.sl. $\nu g . c, f$ is al.sl.s.c, $\exists U \in S O(X, x) \ni$ $f(\overline{s(U)}) \subset s \overline{(V)}$, so f is a.st.ब.s.c.

Theorem 4.11: If f is al.sl. νg.c from a discrete space X into a T_{3} space Y , then f st. θ.s.c.
Proof: Let $x \in X$ and $V \in \sigma(Y, f(x))$. Since Y is Ultra regular, $\exists W \in$ $C O(Y) \ni f(x) \in W \subset V$. Since f is al.sl. $. \nu g . c, \exists U \in S O(X, x) \ni f(\overline{s(U)}) \subset W$ and $f(s(U)) \subset V$. Thus f is st. .s.c.

Example 4.1: Example 3.1 above f is al.sl. $\nu g . c$; al.sl.sg.c; al.sl.gs.c; al.sl.r $\alpha . c$; al.sl.ע.c; al.sl.s.c. and al.sl. $\beta . c$; but not al.sl.g.c; al.sl.rg.c; al.sl.gr.c; al.sl.pg.c; al.sl.gp.c; al.sl.gpr.c; al.sl.g $\alpha . c ;$ al.sl. α g.c; al.sl.rg $\alpha . c ; ~ a l . s l . r . c ; ~ a l . s l . p . c ; ~ a l . s l . \alpha . c ; ~ ; ~$ and al.sl.c;

Example 4.2: Example 3.2 above f is al.sl.r $\alpha . c ;$ and al.sl.gpr.c; but not al.sl. $. \mathrm{g} . c ; ~ a l . s l . s g . c ; ~ a l . s l . g s . c ; ~ a l . s l . \nu . c ; ~ a l . s l . s . c ; ~ a l . s l . \beta . c ; ~ a l . s l . g . c ; ~ a l . s l . r g . c ; ~ ; ~$ al.sl.gr.c; al.sl.pg.c; al.sl.gp.c; al.sl.g $\alpha . c ;$ al.sl. α g.c; al.sl.rg $\alpha . c ; ~ a l . s l . r . c ; ~ a l . s l . p . c ; ~$ al.sl. $\alpha . c ;$ and al.sl.c;

Remark 4.1: al.sl.r $\alpha . c$; al.sl.gpr.c; and al.sl. $\nu g . c$. are independent to each other.

Example 4.3: Example 3.1 above f is al.sl. $\nu g . c$ and al.sl.r $\alpha . c$; but not al.sl.gpr.c
Example 4.4: Example 3.2 above f is al.sl.r $\alpha . c$; and al.sl.gpr.c; but not al.sl.. g.c

Theorem 4.12:

(i) If f is sl.rg.c, then f is al.sl. $\nu g . c$.
(ii) If f is sl.sg.c, then f is al.sl. $\nu g . c$.
(iii) If f is sl.g.c, then f is al.sl. $\nu g . c$.
(iv) If f is sl.s.c, then f is al.sl. νg.c.
(v) If f is sl. $\nu . c$, then f is al.sl. $\nu g . c$.
(vi) If f is sl.r.c, then f is al.sl. $\nu g . c$.
(vii) If f is sl.c, then f is al.sl. $\nu g . c$.
(viii)If f is sl.w.c, then f is al.sl. $\nu g . c$.
(ix) If f is sl.rg $\alpha . c$, then f is al.sl.rg.c.
(x) If f is sl. ω-irresolute, then f is al.sl. $\nu g . c$.
(xi) If f is sl.r.w.c, then f is al.sl. νg.c.
(xii) If f is sl. $\pi . c$, then f is al.sl. $\nu g . c$.
(xiii)If f is sl. $\alpha . c$, then f is al.sl. $\nu g . c$.
(xiv) If f is sl.g $\alpha . c$, then f is al.sl. νg.c.

Proof: Follows from Note 3[12] and above theorem.

Note 5: By note 1 and from the above theorem we have the following implication diagram.

5. Covering and Separation Properties:

 then Y is compact.
Proof: Let $\left\{G_{i}: i \in I\right\}$ be any open cover for Y. Then each G_{i} is open in Y and hence each G_{i} is r-clopen in Y. Since f is al.sl. νg.c., $f^{-1}\left(G_{i}\right)$ is νg-open in X. Thus $\left\{f^{-1}\left(G_{i}\right)\right\}$ forms a νg-open cover for X and hence have a finite subcover, since X is νg-compact. Since f is surjection, $Y=f(X)=\bigcup_{i=1}^{n} G_{i}$. Therefore Y is compact.

Corollary 5.1: If f is al.sl. $\nu . \mathrm{cc}$.[resp: al.sl.r.c] surjection and X is νg-compact, then Y is compact.

Theorem 5.2: If f is al.sl. νg.c., surjection and X is νg-compact $[\nu g$-lindeloff $]$ then Y is mildly compact[mildly lindeloff].
Proof: Let $\left\{U_{i}: i \in I\right\}$ be r-clopen cover for Y. For each $x \in X, \exists \alpha_{x} \in$ $I \ni f(x) \in U_{\alpha_{x}}$ and $\exists V_{x} \in \nu G O(X, x) \ni f\left(V_{x}\right) \subset U_{\alpha_{x}}$. Since the family $\left\{V_{i}: i \in I\right\}$ is a cover of X by νg-open sets of X , there exists a finite subset I_{0} of $I \ni X \subset\left\{V_{x}: x \in I_{0}\right\}$. Therefore $Y \subset \bigcup\left\{f\left(V_{x}\right): x \in I_{0}\right\} \subset \bigcup\left\{U_{\alpha_{x}}: x \in I_{0}\right\}$. Hence Y is mildly compact.

Corollary 5.2:

(i) If f is al.sl.rg.c[resp: al.sl. $\nu . c . ;$ al.sl.r.c] surjection and X is $\nu g-$ compact [νg - lindeloff] then Y is mildly compact [mildly lindeloff].
(ii) If f is al.sl. $\nu g . c .[r e s p: ~ a l . s l . r g . c ; ~ a l . s l . ~ \nu . c . ; ~ a l . s l . r . c] ~ s u r j e c t i o n ~ a n d ~ X ~ i s ~ l o-~$ cally νg-compact [resp: νg-Lindeloff; locally νg-lindeloff], then Y is locally compact[resp: Lindeloff; locally lindeloff].
(iii)If f is al.sl. $\nu g . c$.[al.sl.r.c.], surjection and X is locally νg-compact[resp: νg-lindeloff; locally νg-lindeloff] then Y is locally mildly compact\{resp: locally mildly lindeloff\}.

Theorem 5.3: If f is al.sl. $\nu g . c$. , surjection and X is s-closed then Y is mildly compact[mildly lindeloff].
Proof: Let $\left\{V_{i}: V_{i} \in R C O(Y) ; i \in I\right\}$ be a cover of Y , then $\left\{f^{-1}\left(V_{i}\right): i \in I\right\}$ is νg-open cover of $\mathrm{X}\left[\right.$ by Thm 3.1] and so there is finite subset I_{0} of I, such that $\left\{f^{-1}\left(V_{i}\right): i \in I_{0}\right\}$ covers X . Therefore $\left\{\left(V_{i}\right): i \in I_{0}\right\}$ covers Y since f is surjection. Hence Y is mildly compact.

Corollary 5.3: If f is al.sl.rg.c[resp: al.sl. $\nu . c$. ; al.sl.r.c.] surjection and X is s-closed then Y is mildly compact[mildly lindeloff].
 and X is νg-connected, then Y is connected.
Proof: If Y is disconnected, then $Y=A \cup B$ where A and B are disjoint rclopen sets in Y. Since f is al.sl. νg.c. surjection, $X=f^{-1}(Y)=f^{-1}(A) \cup f^{-1}(B)$ where $f^{-1}(A) f^{-1}(B)$ are disjoint νg-open sets in X , which is a contradiction for X is νg-connected. Hence Y is connected.

Corollary 5.4:The inverse image of a disconnected space under a al.sl. $\nu g . c .,[r e s p:$ al.sl.rg.c.; al.sl. $\nu . c . ;$ al.sl.r.c.] surjection is νg-disconnected.

Theorem 5.5: If f is al.sl. ν g.c.[resp: al.sl.rg.c.; al.sl. $\nu . c$.$] , injection and \mathrm{Y}$ is $U T_{i}$, then X is $\nu g_{i} \mathrm{i}=0,1,2$.
Proof: Let $x_{1} \neq x_{2} \in X$. Then $f\left(x_{1}\right) \neq f\left(x_{2}\right) \in Y$ since f is injective. For Y is $U T_{2} \exists V_{j} \in R C O(Y) \ni f\left(x_{j}\right) \in V_{j}$ and $\cap V_{j}=\phi$ for $\mathrm{j}=1,2$. By Theorem 3.1,
$x_{j} \in f^{-1}\left(V_{j}\right) \in \nu G O(X)$ for $\mathrm{j}=1,2$ and $\cap f^{-1}\left(V_{j}\right)=\phi$ for $\mathrm{j}=1,2$. Thus X is νg_{2}.
 Y is $U T_{i}$, then X is $\nu g g_{i} \mathrm{i}=3,4$.
Proof:(i) Let $x \in X$ and F be disjoint closed subset of X not containing x, then $f(x)$ and $f(F)$ are disjoint closed subset of Y, since f is closed and injection. Since Y is ultraregular, $f(x)$ and $f(F)$ are separated by disjoint r-clopen sets U and V respectively. Hence $x \in f^{-1}(U) ; F \subseteq f^{-1}(V), f^{-1}(U) ; f^{-1}(V) \in \nu G O(X)$ and $f^{-1}(U) \cap f^{-1}(V)=\phi$. Thus X is $\nu g g_{3}$.
(ii) Let F_{j} and $f\left(F_{j}\right)$ are disjoint closed subsets of X and Y respectively for j $=1,2$, since f is closed and injection. For Y is ultranormal, $f\left(F_{j}\right)$ are separated by disjoint r-clopen sets V_{j} respectively for $\mathrm{j}=1,2$. Hence $F_{j} \subseteq f^{-1}\left(V_{j}\right)$ and $f^{-1}\left(V_{j}\right) \in \nu G O(X)$ and $\cap f^{-1}\left(V_{j}\right)=\phi$ for $\mathrm{j}=1,2$. Thus X is $\nu g g_{4}$.

(i) Y is $U C_{i}\left[\right.$ resp: $\left.U D_{i}\right]$ then X is $\nu g C_{i}\left[\right.$ resp: $\left.\nu g D_{i}\right] \mathrm{i}=0,1,2$.
(ii) Y is $U R_{i}$, then X is $\nu g R_{i} \mathrm{i}=0,1$.

Theorem 5.8: If f is al.sl. νg.c.[resp: al.sl. $\nu . c . ;$ al.sl.rg.c; al.sl.r.c] and Y is $U T_{2}$, then the graph $\mathrm{G}(f)$ of f is νg-closed in the product space $X \times Y$.
Proof: Let $\left(x_{1}, x_{2}\right) \notin G(f) \Rightarrow y \neq f(x) \Rightarrow \exists$ disjoint r-clopen sets V and W $\ni f(x) \in V$ and $\mathrm{y} \in W$. Since f is al.sl. $\nu g . c ., \exists U \in \nu G O(X) \ni x \in U$ and $f(U) \subset W$. Therefore $(x, y) \in U \times V \subset X \times Y-G(f)$. Hence $\mathrm{G}(f)$ is $\nu g-$ closed in $X \times Y$.

Theorem 5.9: If f is al.sl. ν g.c.[resp: al.sl. $\nu . c . ;$ al.sl.rg.c; al.sl.r.c] and Y is $U T_{2}$, then $A=\left\{\left(x_{1}, x_{2}\right) \mid f\left(x_{1}\right)=f\left(x_{2}\right)\right\}$ is νg-closed in the product space $X \times X$.
Proof: If $\left(x_{1}, x_{2}\right) \in X \times X-A$, then $f\left(x_{1}\right) \neq f\left(x_{2}\right) \Rightarrow \exists$ disjoint $V_{j} \in$ $R C O(Y) \ni f\left(x_{j}\right) \in V_{j}$, and since f is al.sl. νg.c., $f^{-1}\left(V_{j}\right) \in \nu G O\left(X, x_{j}\right)$ for each $\mathrm{j}=1,2$. Thus $\left(x_{1}, x_{2}\right) \in f^{-1}\left(V_{1}\right) \times f^{-1}\left(V_{2}\right) \in \nu G O(X \times X)$ and $f^{-1}\left(V_{1}\right) \times f^{-1}\left(V_{2}\right) \subset X \times X-A$. Hence A is $\nu g-$ closed.

Theorem 5.10: If f is al.sl.r.c.[resp: al.sl.c.]; g is al.sl. $\nu g . \mathrm{c}[\mathrm{resp}$: al.sl.rg.c; al.sl. $\nu . \mathrm{c}]$; and Y is $U T_{2}$, then $E=\{x \in X: f(x)=g(x)\}$ is νg-closed in X.

Conclusion: In this paper we defined almost slightly- νg-continuous functions, studied its properties and their interrelations with other types of almost slightly-continuous functions.

References

[1] M.E. Abd El-Monsef, S.N. Eldeeb and R.A. Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut. Chiv., A 12(1) (1983), 77-90.
[2] Andreivic, β-open sets, Math. Vestnick., 38(1986), 24-32.
[3] A.N. Uresin, A. Kerkin and T. Noiri, Slightly δ-precontinuous funtions, Commen. Fac. Sci. Univ. Ark., Series 41, 56(2) (2007), 1-9.
[4] S.P. Arya and M.P. Bhamini, Some weaker forms of semi-continuous functions, Ganita, 33(1-2) (1982), 124-134.
[5] C.W. Baker, Slightly precontinuous funtions, Acta Math Hung, 94(1-6) (2002), 45-52.
[6] S. Balasubramanian, C. Sandhya and P.A.S. Vyjayanthi, On $\nu-T_{i}, \nu-R_{i}$ and $\nu-C_{i}$ axioms, Scientia Magna, 4(4) (2008), 86-103.
[7] S. Balasubramanian, νg-closed sets, Bull. Kerala Math. Association, 5(2) (2009), 81-92.
[8] S. Balasubramanian, C. Sandhya and P.A.S. Vyjayanthi, On $\nu D-$ sets and separation axioms, Int. J. Math. Anal, 4(19) (2010), 909-919.
[9] S. Balasubramanian, νg-continuity, Proc. International Seminar on New Trends in Applied Mathematics, Bharatha Matha College, Ernakulam, Kerala, (2011).
[10] S. Balasubramanian, Slightly νg-continuity, Inter. J. Math. Archive, 2(8) (2011), 1455-1463.
[11] S. Balasubramanian, On νg-closed sets, Inter. J. Math. Archive, 2(10) (2011), 1909-1915.
[12] S. Balasubramanian, νg-open mappings, Inter. J. Comp. Math. Sci. and Application, 5(2) (2011), 7-14.
[13] S. Balasubramanian, νg-boundary and νg-exterior operators, Acta Ciencia Indica, 37(M)(1) (2011), 11-18.
[14] S. Balasubramanian, Almost νg-Continuity, Scientia Magna, 7(3) (2011), 1-11.
[15] S. Balasubramanian, Somewhat almost νg-continuity and somewhat almost νg-open map, Proc. ICMANW, (2011).
[16] S. Balasubramanian, Contra νg-Continuity, General Mathematical Notes, 10(1) (2012), 1-18.
[17] S. Balasubramanian, Somewhat νg-continuity, Bull. Kerala Math. Soc., 9(1) (2012), 185-197.
[18] S. Balasubramanian, Almost contra νg-Continuity, International Journal of Mathematical Engineering and Science, 1(8) (2012), 51-65.
[19] S. Balasubramanian, Somewhat M- $\nu g-o p e n ~ m a p, ~ A r y a b h a t t a ~ J . ~ M a t h ~$ and Informatics, 4(2) (2012), 315-320.
[20] S. Balasubramanian, Somewhat almost $\nu g-o p e n ~ m a p, ~ R e f . ~ D e s . ~ E r a, ~ J . ~$. Math. Sci., 7(4) (November) (2012), 289-296.
[21] S. Balasubramanian, Somewhat almost $\nu g-$ continuity, Ref. Des. Era, J. Math. Sci., 7(4) (November) (2012), 335-342.
[22] S. Balasubramanian, νg-separation axioms, Scientia Magna, 9(2) (2013), 57-75.
[23] S. Balasubramanian, More on νg-separation axioms, Scientia Magna, 9(2) (2013), 76-92.
[24] Y. Beceron, S. Yukseh and E. Hatir, On almost strongly θ-semi continuous functions, Bull. Cal. Math. Soc., 87(2013), 329.
[25] A. Davis, Indexed system of neighbourhoods for general topological spaces, Amer. Math. Monthly, 68(1961), 886-893.
[26] G. Di. Maio, A separation axiom weaker than R_{0}, IJPAM, 16(1983), 373375.
[27] G. Di. Maio and T. Noiri, On s-closed spaces, Indian J. Pure and Appl. Math, 18(3) (1987), 226-233.
[28] W. Dunham, $T_{\frac{1}{2}}$ spaces, Kyungpook Math. J., 17(1977), 161-169.
[29] E. Ekici and M. Caldas, Slightly $\gamma-$ continuous functions, Bol. Sac. Paran. Mat, (38) (V.22.2) (2004), 63-74.
[30] S.N. Maheswari and R. Prasad, On R_{0} spaces, Portugal Math., 34(1975), 213-217.
[31] S.N. Maheswari and R. Prasad, Some new separation axioms, Ann. Soc. Sci, Bruxelle, 89(1975), 395.
[32] S.N. Maheswari and R. Prasad, On s-normal spaces, Bull. Math. Soc. Sci. R.S. Roumania, 22(70) (1978), 27.
[33] S.N. Maheswari and S.S. Thakur, On α-iresolute mappings, Tamkang J. Math., 11(1980), 201-214.
[34] R.A. Mahmoud and M.E. Abd El-Monsef, β-irresolute and β-topological invariant, Proc. Pak. Acad. Sci, 27(3) (1990), 285-296.
[35] A.S. Mashhour, M.E. Abd El-Monsef and S.N. El-Deep, On precontinuous and weak precontinuous functions, Proc. Math. Phy. Soc. Egypt, 3(1982), 47-53.
[36] A.S. Mashhour, M.E. Abd El-Monsef and S.N. El-Deep, α-continuous and α-open mappings, Acta Math Hung., 41(3-4) (1983), 231-218.
[37] G.B. Navalagi, Further propertis on pre- T_{0}, pre- T_{1}, pre- T_{2} spaces, (Preprint).
[38] T. Noiri and G.I. Chae, A note on slightly semi continuous functions, Bull. Cal. Math. Soc, 92(2) (2000), 87-92.
[39] T. Noiri, Slightly β-continuous functions, I.J.M.छM.S., 28(8) (2001), 469-478.
[40] T.M. Nour, Slightly semi continuous functions, Bull. Cal. Math. Soc, 87(1995), 187-190.
[41] Singhal and Singhal, Almost continuous mappings, Yoko. J. Math., 16(1968), 63-73.

