

Gen. Math. Notes, Vol. 24, No. 2, October 2014, pp.78-84 ISSN 2219-7184; Copyright ©ICSRS Publication, 2014 www.i-csrs.org Available free online at http://www.geman.in

Minimality Conditions on Π_k^e -Connectedness in Graphs

B. Chaluvaraju¹, N. Manjunath² and K.M. Yogeesha³

¹Department of Studies and Research in Mathematics Tumkur University, B.H. Road, Tumkur-572103, India E-mail: bchaluvaraju@gmail.com
²Department of Mathematics, Bangalore University Central College Campus, Bangalore-560001, India E-mail: manjubub@gmail.com
³Department of Mathematics, Government First Grade College Dental College Road, Davanagere-577004, India E-mail: yogeeshadvg@gmail.com

(Received: 18-6-14 / Accepted: 21-7-14)

Abstract

Let k be a positive integer. A graph G = (V, E) is said to be Π_k^e - connected if for any given edge subset F of E(G) with |F| = k, the subgraph induced by F is connected. In this paper, we explore the minimality conditions on Π_k^e connectedness of a graph and also its properties of prism and corona graphs are obtained.

Keywords: Graph, subgraph, prism graph, corona graph, Π_k^e - connected graph.

1 Introduction

In this article, we consider finite, undirected, simple and connected graphs G = (V, E) with vertex set V and edge set E. As such p = |V| and q = |E| denote the number of vertices and edges of a graph G, respectively. An edge - induced subgraph is a subset of the edges of a graph G together with any vertices that are their endpoints. In general, we use $\langle X \rangle$ to denote the subgraph induced by the set of edges $X \subseteq E$. A graph G is connected if it has a u - v path whenever $u, v \in V(G)$ (otherwise, G is disconnected). A graph with no cycle is acyclic. A tree T is a connected acyclic graph. An edge - independent

set in a graph is a set of pairwise nonadjacent edges. A cut-edge or cut-vertex of a graph G is an edge or a vertex whose deletion increases the number of components. Difference between two sets A and B consists of the elements of A that are not in B and is denoted by $A \setminus B$. Unless mentioned otherwise, for terminology and notation the reader may refer Harary [8] and Bondy et.al. [3].

The concept of Π_k - connectedness was suggested by Sampathkumar [10] and [11], and studied by Chaluvaraju et al. [4] in the following manner. For any positive integer k. A graph G is said to be Π_k - connected if for any given subset S of V(G) with |S| = k, the subgraph induced by S is connected.

Here, we shall introduce an edge analogue of this concept as follows: A graph G is said to be Π_k^e - connected if for any given edge subset F of E(G) with |F| = k, the subgraph induced by F is connected. A Π_k^e - connected graph G is said to be edge minimal Π_k^e - connected if the graph G is not Π_{k-1}^e - connected. Let G be a nontrivial graph. Then a generalized vertex (edge)induced connected subsets of a graph is denoted as $\Pi_k(G)(\Pi_k^e(G))$. For more details on related concepts, we refer [1], [2], [5], [9] and [12].

2 Π_k^e - Connectedness

Theorem 2.1 Let s and t be a positive integer. If the graph G is not Π_t^e - connected graph, then it is also not Π_s^e - connected graph, where $2 \le s \le t$.

Proof. Let the graph G be not a Π_t^e - connected graph, then there exists tedges whose edge induced subgraph, say F_1 is disconnected. Let $F_2, 2 \leq |F_2| \leq t$ be set of edges formed by taking at least one edge from each component of F_1 . Clearly the subgraph induced by F_2 is also disconnected. Hence G is not Π_s^e - connected graph, where $2 \leq s \leq t$.

Theorem 2.2 For any connected graph G is an edge minimal Π_q^e - connected graph if and only if it has a cut edge.

Proof. Let G be an edge minimal Π_q^e - connected graph then there exists an edge e such that the subgraph induced by $E(G) \setminus \{e\}$ is disconnected. Hence e is a cut edge of a graph G. Conversely, if the graph G has a cut edge e, then the subgraph induced by $E(G) \setminus \{e\}$ is disconnected and the graph on q- edges is connected. Hence the graph G is an edge minimal Π_q^e - connected graph.

Theorem 2.3 For any tree T with $p \ge 3$ vertices is an edge minimal $\prod_{p=1}^{e}$ - connected graph.

Proof. Let T be any tree with $p \ge 3$ vertices. Since the total number of edges in T is p-1, the graph induced by p-1 edges is isomorphic to T and hence

connected. Let e be an edge whose end vertices have degree greater than one, then the subgraph induced by $E(T) \setminus \{e\}$ is disconnected. Hence the tree Twith $p \geq 3$ vertices is an edge minimal $\prod_{p=1}^{e}$ - connected graph.

Theorem 2.4 For any Complete graph K_p with $p \ge 4$ vertices is an edge minimal \prod_k^e - connected graph, where $k = \frac{(p-2)(p-3)}{2} + 2$.

Proof. Let K_p be a complete graph with $p \ge 4$ vertices. The maximum number of independent edges of a complete graph K_p is $\lfloor \frac{p}{2} \rfloor$. There fore only disconnected edge induced subgraph of K_p with maximum number of vertices is $K_2 \cup K_{p-2}$. Hence K_p is not $\prod_{k=1}^e$ - connected graph, where $k = \frac{(p-2)(p-3)}{2} + 2$. Addition of any edge makes the subgraph $K_2 \cup K_{p-2}$ is connected. Hence the complete graph K_p with $p \ge 4$ vertices is an edge minimal \prod_k^e - connected graph, where $k = \frac{(p-2)(p-3)}{2} + 2$.

By the above two results, we have the following Theorem.

Theorem 2.5 Let $\Pi_k^e(G)$ be an edge minimal Π_k^e - connected graph of a (p,q)-graph. Then

$$q \le \Pi_k^e(G) \le \frac{(p-2)(p-3)}{2} + 2.$$

Theorem 2.6 For any Cycle C_p with $p \ge 4$ vertices is an edge minimal $\prod_{p=1}^{e}$ - connected graph.

Proof. Let C_p be any cycle on $p \ge 4$ vertices and e be any edge in C_p . The subgraph induced by $E(C_p) \setminus \{e\}$ is connected. Since an edge e is arbitrarily chosen, the cycle C_p with $p \ge 4$ vertices is $\prod_{p=1}^{e}$ - connected graph. Now we prove C_p is an edge minimal $\prod_{p=1}^{e}$ - connected graph, i.e., C_p is not $\prod_{p=2}^{e}$ - connected graph. Let e_1 and e_2 be two independent edges in C_p . The subgraph induced by $E(C_p) \setminus \{e_1, e_2\}$ is disconnected. Hence C_p with $p \ge 4$ vertices is an edge minimal $\prod_{p=1}^{e}$ - connected graph.

3 Π_k^e - Connectedness in Prism Graphs

The prism of a graph G is defined as the cartesian product $G \times K_2$. For more details, we refer [7].

Theorem 3.1 For any Prism C_p^* of a cycle C_p with $p \ge 5$ vertices is \prod_{3p-3}^e - connected graph.

Proof. Let C_p be a cycle with $p \geq 5$ vertices and C_p^* be its prism. Let C_p^1 and C_p^2 be two copies of C_p in the prism. We have to prove the subgraph induced by any set of (3p-3)- edges is connected. The total number of edges in C_p^* is 3p. Let $E(C_p^*)$ be the set of edges in C_p^* and e_1 , e_2 , e_3 be any three edges in $E(C_p^*)$. Instead of proving the subgraph induced by any set of 3p-3 edges is connected, we prove the equivalent statement the subgraph induced by $E(C_p^*) \setminus \{e_1, e_2, e_3\}$ is connected for every set of three edges. Hence the following cases arise depending on the selection of edges in $E(C_p^*)$.

Case 1. Let $e_1 \in C_1$ and $e_2, e_3 \in C_2$. Then again we have the following two subcases,

Subcase 1.1. Let e_2 and e_3 are consecutive edges. Then both the subgraphs F_1 and F_2 induced by $E(C_1) \setminus \{e_1\}$ and $E(C_2) \setminus \{e_2, e_3\}$, respectively are connected. Now by adding all the edges between F_1 and F_2 from the C_p^* , we get a connected graph induced by $E(C_p^*) \setminus \{e_1, e_2, e_3\}$.

Subcase 1.2. Let e_2 and e_3 are nonconsecutive edges. Then the subgraph induced by $E(C_1) \setminus \{e_1\}$ is connected and the subgraph induced by $E(C_2) \setminus \{e_2, e_3\}$ is disconnected. But the edges between H_1 and H_2 from the C_p^* makes the subgraph induced by $E(C_p^*) \setminus \{e_1, e_2, e_3\}$ connected.

Case 2. Let $e_1, e_2 \in C_1$ and $e_3 \in C_2$. Proof follows on similar lines as in Case 1.

Case 3. Let all three edges e_1 , e_2 and e_3 are in the first copy of C_p in the prism C_p^* . Then the subgraph induced by $E(C_1) \setminus \{e_1, e_2, e_3\}$ may be connected or disconnected. If the subgraph induced by $E(C_1) \setminus \{e_1, e_2, e_3\}$ is connected, then clearly the subgraph induced by $E(C_p^*) \setminus \{e_1, e_2, e_3\}$ is connected. If the subgraph induced by $E(C_p^*) \setminus \{e_1, e_2, e_3\}$ is connected. If the subgraph induced by $E(C_p^*) \setminus \{e_1, e_2, e_3\}$ is connected. If the subgraph induced by $E(C_1) \setminus \{e_1, e_2, e_3\}$ is disconnected having two or three components then the edges between each of these components and C_2 from the prism C_p^* makes the subgraph induced by $E(C_p^*) \setminus \{e_1, e_2, e_3\}$ connected.

Case 4. Let all three edges e_1 , e_2 and e_3 are in the second copy of C_p in the prism C_p^* . Proof of this case follows on the similar lines as in Case 3.

Case 5. Let $e_1, e_2 \in C_1$ and e_3 belongs to the set of edges between the two copies of C_p in the prism. The subgraph H_1 induced by $E(C_1) \setminus \{e_1, e_2\}$ may be connected or disconnected depending on the edges e_1 and e_2 are consecutive or not. As seen before, the subgraph induced by $E(C_p^*) \setminus \{e_1, e_2, e_3\}$ connected, since $p \geq 5$, there exists edges between the two copies of C_p even after removal of e_3 , connecting each component of H_1 with the second copy of C_p in the

prism. Hence the subgraph induced by $E(C_p^*) \setminus \{e_1, e_2, e_3\}$ is connected.

Similarly we can prove the remaining cases as follows.

Case 6. $e_1 \in C_1$ and e_2 , e_3 belongs to the set of edges between the two copies of C_p in the prism.

Case 7. All three edges e_1 , e_2 and e_3 are in the set of edges between the two copies of C_p in the prism.

Case 8. $e_1, e_2 \in C_2$ and e_3 belongs to the set of edges between the two copies of C_p in the prism.

Case 9. $e_1 \in C_2$ and e_2 , e_3 belongs to the set of edges between the two copies of C_p in the prism.

Hence the result follows.

Theorem 3.2 Let T be a nontrivial tree. Then Prism T^* of T is an edge minimal Π_{3q}^e - connected graph.

Proof. Let T be any nontrivial tree and T^* be its prism. The number of edges in T^* is equal to the number of edges in the first copy of a tree T + the number of edges in the second copy of a tree T + the number of edges between these two copies of a tree T, i.e., $|E(T^*)| = 2q + p = 3q + 1$. First, we prove T^* is not Π_{3q-1}^e - connected graph. Let e be an edge in the first copy of a tree T in its prism T^* and f(e) in the second copy of T in T^* be the mirror image of e. The subgraph induced by $E(T^*) \setminus \{e, f(e)\}$ is disconnected, since e is a bridge in the first copy of a tree T and f(e) is a bridge in the second copy of a tree T in the prism T^* . Hence there exist a set $E(T^*) \setminus \{e, f(e)\}$ of 3q-1 edges whose induced subgraph is disconnected. Hence T^* is not \prod_{3q-1}^e - connected graph. The subgraph induced by $E(T^*) \setminus \{e\}$ is connected for all e in the first copy or second copy of a tree T. Now suppose $e \in E(T_1 - T_2)$, where $E(T_1 - T_2)$ is the set of all edges between the two copies of a tree T in the prism T^* , clearly in this case also the subgraph induced by $E(T^*) \setminus \{e\}$ is connected for all e in the $E(T_1 - T_2)$. Hence the prism T^* of any nontrivial tree T is an edge minimal Π_{3q}^e - connected graph.

4 Π_k^e - Connectedness in Corona Graphs

The corona $G_1 \circ G_2$ was defined by Frucht and Harary [6] as the graph G obtained by taking one copy of G_1 of order p_1 and p_1 copies of G_2 , and then joining the i^{th} node of G_1 to every node in the i^{th} copy of G_2 .

Minimality Conditions on Π_k^e -Connectedness in Graphs

Theorem 4.1 Let C_p be a cycle with $p \geq 3$ vertices and $G(p_1, q_1)$ be a graph. Then the corona $C_p \circ G$ is an edge minimal $\prod_{p \mid p_1+q_1+1 \mid -1}^{e}$ - connected graph.

Proof. Let $C_p : u_1, u_2, \ldots, u_p, p \geq 3$ be any cycle and $G(p_1, q_1)$ be any graph of order p_1 and size q_1 . Let G_1, G_2, \ldots, G_p be p copies of G in the corona $C_p \circ G$. Let $E(C_p)$ be the set of edges in C_p , E_i be the set of edges from u_i to G_i in the corona and $E(G_i)$ be the set of edges in G_i . We first prove the corona $C_p \circ G$ is not $\prod_{p[p_1+q_1+1]=2}^{e}$ - connected. Then there exists a set of $p[p_1 + q_1 + 1] - 2$ edges in $C_p \circ G$ whose edge induced subgraph is disconnected or equivalently we show the existence of a pair of edges e_1, e_2 in $C_p \circ G$ such that the subgraph induced by $E(C_p \circ G) \setminus \{e_1, e_2\}$ is disconnected, as the total number of edges in $C_p \circ G$ is $p[p_1 + q_1 + 1]$. Suppose e_1 and e_2 be any two edges on the cycle C_p in the corona, then clearly the subgraph induced by $E(C_p \circ G) \setminus \{e_1, e_2\}$ is disconnected. Hence the corona $C_p \circ G$ is not $\prod_{p[p_1+q_1+1]=2}^{e}$ - connected. Now we prove $C_p \circ G$ is $\prod_{p[p_1+q_1+1]=1}^{e}$ - connected or equivalently we for every edge e in $C_p \circ G$, the subgraph induced by $E(C_p \circ G) \setminus \{e\}$ is connected. Thus the following cases arise.

Case 1. If $e \in G_i$ then the subgraph induced by $E(C_p \circ G) \setminus \{e\}$ is connected, since every left out edge in G_i after removal of e is connected with u_i of C_p .

Case 2. If $e \in E_i$ then the subgraph induced by $E(C_p \circ G) \setminus \{e\}$ is connected, u_i is adjacent to all the vertices of G_i .

Case 3. If $e \in C_p$ then the removal e does not disconnect C_p . Hence the subgraph induced by $E(C_p \circ G) \setminus \{e\}$ is connected. Hence the proof.

Acknowledgements: The authors wish to thank Prof. E. Sampathkumar for his help and valuable suggestions in the preparation of this paper.

References

- [1] C. Balbuena and D. Ferrero, Edge-connectivity and super edgeconnectivity of P_2 -path graphs, *Discrete Mathematics*, 269(2003), 13-20.
- [2] E.A. Bender, P.J. Cameron, A.M. Odlyzko and L.B. Richmond, Connectedness classes and cycle index, *Probab. Comput.*, 8(1-2) (1999), 31-43.
- [3] J.A. Bondy and U.S.R. Murty, *Graph Theory with Applications*, Macmillan, London, (1976).

- [4] B. Chaluvaraju, M.I. Huilgol, N. Manjunath and S.S.A. Ulla, Generalized vertex induced connected subsets of a graph, (*Manuscript*).
- [5] S.A. Choudum and S. Sivagurunathan, Optimal fault-tolerant networks with a server, *Networks*, 35(2) (2000), 157-160.
- [6] R. Frucht and F. Harary, On the corona of two graphs, Aequationes Math, 4(1970) 322-324.
- [7] R. Hammock, W. Imrich and S. Klavzar, *Handbook of Product Graph*, CRC Press, Taylor and Francis Group, LLC, (2011).
- [8] F. Harary, *Graph Theory*, Addison Wesley, Reading Mass, (1969).
- [9] L. Lesniak, Results on the edge-connectivity of graphs, Discrete Mathematics, 8(1974), 351-354.
- [10] E. Sampathkumar, Report on UGC Emeritus Fellowship, No.F.6-120/2000(SA), (2004).
- [11] E. Sampathkumar, Connectivity of a graph- A generalization, J. Combinatorics, Information and System Sciences, 9(2) (1984), 71-78.
- [12] S. Spacapan, Connectivity of cartesian products of graphs, Appl. Math. Lett., 21(2008), 682-685.