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Abstract 

     A Linear Multistep Hybrid Method (LMHM) with continuous coefficients is 
considered and directly applied to solve third order Initial Value Problems 
(IVPs). The continuous method is used to obtain Multiple Finite Difference 
Methods (MFDMs) each of order 5 which are combined as simultaneous 
numerical integrators to provide a direct solution to IVPs over sub-intervals 
which do not overlap. The convergence of the MFDMs is discussed by 
conveniently representing the MFDMs as a block method and verifying that the 
block method is zero-stable and consistent. The superiority of the MFDMs over 
the existing methods is established numerically.  

     Keywords: Multiple finite difference methods, third order, boundary value 
problem, block methods, multistep methods.      
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1 Introduction 
 
The mathematical formulation of physical phenomena in science and engineering 
often leads to initial value problems of the form: 
 

( ) ( ) ( ) ( ) 100 ,,,, ηη =′′=′==′′′ ayayyayyxfy     (1) 
 
However, only a limited number of numerical methods are available for solving 
(1) directly without reducing to a first order system of initial value problems. 
Some authors have proposed solution to second order initial value problems of 
ordinary differential equations using different approaches (see Awoyemi [1], 
Awoyemi and Idowu [2], Fatunla [3], Lambert [4] and Adee et al. [5]) ; in 
particular Awoyemi and Idowu [2]. Awoyemi [1] derived a p-stable linear 
multistep method for general second order initial value problems of ordinary 
differential equations which is to be used in form of predictor-corrector forms and 
like most linear multistep methods, they require starting values from Runge-Kutta 
methods or any other one-step methods. The predictors are also developed in the 
same way as correctors. Moreover, the block methods in Fatunla [3] are discrete 
and are proposed for non-stiff special second order ordinary differential equations 
in form of a predictor- corrector integration process. Also like other linear 
multistep methods they are usually applied to the initial value problems as a single 
formula but they are not self-starting; and they advance the numerical integration 
of the ordinary differential equations in one-step at a time, which leads to 
overlapping of the piecewise polynomials solution Model. There is the need to 
develop a method which is self-starting, eliminating the use of predictors with 
better accuracy and efficiency. Recently, several researches (Jator [6,7], Jator and 
Li [8], Mohammed et al.[9] and Mohammed [10]) proposed LMMs for the direct 
solution of the general second order IVPs, which were showed to be zero stable 
and were implemented without the need for either predictors or starting values 
from other methods. Jator [11] used the LMMs developed for IVPs and additional 
methods obtained from the same continuous k-step LMM to solve second order 
BVPs with Dirichlet and Neumann boundary conditions and also Olabode and 
Yusuph [12] developed a linear multistep method for the direct solution of initial 
value problems of ordinary differential equations for special third order initial 
value problem. This study, therefore propose a block hybrid multistep method for 
the direct solution of third order initial value problems of ordinary differential 
equations. 
 
The paper is organized as follows. In Section 2, we derive a continuous 
approximation Y (x) for the exact solution y(x). Section 3 is devoted to the 
specification of the methods and how the MFDMs are obtained.  Analysis, 
stability region and implementation of MFDM are discussed in section 4. 
Numerical examples are given in Section 5 to show the efficiency of the MFDMs. 
Finally, the conclusion of the paper is discussed in Section 6. 
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2 Development of Methods 
 
In this section, our objective is to derive Hybrid Linear Multi-step Method 
(HLMM) of the form 
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where jα , jβ  and vβ  are unknown constants and jv  is not an integer. We note 

that kα =1, 0≠jβ , 0α  and 0β  do not both vanish. In order to obtain (2), we 

proceed by seeking to approximate the exact solution y(x) of the form 
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Where [ ] jlbax ,,∈ are unknown coefficients to be determined and kr <≤1 , 

0>S are the number of interpolation and collocation points respectively. We then 
construct our continuous approximation by imposing the following conditions. 
  

( ) 1,......,2.1,0, −== ++ rjyxY jnjn

     (4) 

( ) µµ ++ =′′′ nn fxY        (5) 

 
Equation (4) and (5) lead to a system of (r+s) equations which is solved by 
Cramer’s rule to obtain jl . Our continuous approximation is constructed by 

substituting the values of jl  into equation (3). After some manipulation, the 

continuous method is expressed as 
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where ( )xjα , ( )xjβ  and ( )xvβ  are continuous coefficients. We note that since 

equation (1) involves first and second derivatives, the first and second derivative 
formula 
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Equation (7) is easily obtained from (6) and is then used to provide the first and 
second derivatives for the methods by imposing the condition 
 

( ) ( ) ( ) ( )xxYxxY γδ =′′=′ ,        
 (8) 

( ) ( ) 00 , γδ =′′=′ aYaY       (9) 
 

3 Specification of the Methods 
 
To derive these methods, we use Eq.(6)  to obtained a continuous 3-step HLM 
method with the following specification: 

r=3,s=5,k=3, ( ) 7,...,1,0,,
3

8 === ixxv i
iγ . We also express ( ) ( )xx jj βα ,  and 

( )xvβ  as a functions of t, where 
h

xx
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=  to obtain the continuous form as 

follows:  
 

( ) 






 +−= 2
0 2

1

2

3
1 ttxα , ( )2

1 2 tt −=α , 






 +−= 2
2 2

1

2

1
ttα  

( ) ( )765432
0 6915671855336031571170

20160

1
tttttttx +−+−+−=β

 
( ) ( )76542

1 12161812168038152798
8400

1
ttttttx −+−+−=β

 
( ) ( )76542

2 670287420427230
1680

1
ttttttx +−+−+−=β

 
( ) ( )76542

3

8 545672079283528351566
11200

1
ttttttx −+−+−=β  

( ) ( )76542
3 12119420560553306

5040

1
ttttttx +−+−+−=β

   
          (10) 

The MFDMs are obtained by evaluating (10) at 
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In particular, to start the initial value problem for n = 0, we obtain the following 
equations from (9): 
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It is worth noting that the derivatives are provided by 
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4 Analysis and Implementation of the Method 
 
Following Fatunla [13] and Lambert [4] we define the local truncation error 
associated with the conventional form of (2) to be the linear difference operator 
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Assuming that y(x) is sufficiently differentiable, we can expand the terms in (15) 
as a Taylor series about the point x to obtain the expression 
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where the constant coefficients
,...1,0, =qCq   are given as follows: 
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According to Henrici [14],  method (5) has order p if 
 

0,0... 2110 ≠===== ++ PPP CCCCC  
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Our calculations reveal that the methods (11) to (14) have order p = 5 and error 

constants given by the vector
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In order to analyze the methods for zero-stability, we normalize (11) to (14) and 
write them as a block method given by the matrix difference equation 
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and matrices A0 and A1 are defined as follows:  
 
A0 is an identity matrix of dimension four and 
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It is worth noting that zero-stability is concerned with the stability of the 

difference system in the limit as h tends to zero. Thus, as 0→h , the method (17) 
tends to the difference system 
 

01
1

0 =−+ µµ YAYA whose first characteristic polynomial ( )Rρ  is given by 

 

 ( ) ( ) ( )1det 310 −=−= RRARARρ      (18) 
 
Following Fatunla [13], the block method (17) is zero-stable, since from (18), 

( ) 0=Rρ satisfy kjRj ...,11 =≤  and for those roots with jR =1, the 

multiplicity does not exceed 2. The block method (17) is consistent as it has 
order 1>P . According to Henrici [14], we can safely assert the convergence of 
the block method (17). 
 
It is vital to note that the main method given by (10) can be used as a numerical 
integrator directly and singly in the conventional way on non-overlapping sub-
intervals. However, our method is implemented more efficiently by combining 
methods (11) to (14), each of order five with relatively small error constants, as 
simultaneous integrators for IVPs without looking for any other methods to 
provide the starting values. We proceed by explicitly obtaining initial conditions 
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at 5,...,3,0,3 −=+ Nnxn  using the computed 

values ( ) ( ) ( ) 333333 , ++++++ === nnnnnn xandxyxy λλδδ over sub-

intervals[ ] [ ]Nn xxxx ,...,, 330 −  which do not overlap (see [10]). For instance, for 

( )Tyyyn 321 ,,,0=  are simultaneously obtained over the sub-interval[ ]30 , xx  as y0 

is known from the IVP; for ( )Tyyyn 654 ,,,3=   are simultaneously obtained over 

the sub-interval[ ]63, xx , as y3 is known from the previous block, and so on. Hence, 

the sub-intervals do not over-lap and the solutions obtained in this manner are 
more accurate that those obtained in the conventional way. 
 
4.1 Region of Absolute Stability 
 
The absolute stability region of the newly constructed hybrid linear multi-step 
methods (8)-(10) is plotted using Chollom [15] by reformulating the methods as 
general linear methods and is shown in Figure 1 below. 

-30 -25 -20 -15 -10 -5 0 5
-6

-4

-2

0

2

4

6

Re(Z)

Im
(z

)

 

Fig. 1: Region of Absolute Stability Region of Hybrid Linear Multi-Step Method 
(HLMM) 

 
4.2 Numerical Examples 
 
We report here a few numerical examples on some problems taken from the 
literature. 
 
 



70                                                                                         U. Mohammed et al.                                                                                                     
 

 
 
Problem 1 (Olabode and Yusuph [12]) 
 

xey =′′′  
5)0(,1)0(,3)0( =′′=′= yyy  

 

Exact Solution is 
xexxy ++= 222)(  

 
Table 1: Error of methods for problem 1 

 

X Exact 
Solution 

Numerical 
Solution 

Error in 
Proposed 
Method 

Olabode and 
Yusuph  [12] 

0 3 3 0.000000000E+00 0.000000000E+00 

0.1 3.125170918 3.125170918 0.000000000E+00 -7.5647E-11 

0.2 3.301402758 3.301402758 0.000000000E+00 1.83983E-09 

0.3 3.529858808 3.529858807 1.000000083E-09 4.42400E-09 

0.4 3.811824698 3.811824697 1.000000083E-09 1.03587E-08 

0.5 4.148721271 4.148721270 1.000000083E-09 1.12999E-08 

0.6 4.542118800 4.542118799 1.000000083E-09 1.46095E-08 

0.7 4.993752707 4.993752706 9.999991946E-10 2.05295E-08 

0.8 5.505540928 5.505540927 1.000000083E-09 1.95075E-08 

0.9 6.079603111 6.079603109 2.000000165E-09 1.08431E-08 

1.0 6.718281830 6.718281831 1.000000083E-09 1.54095E-08 

 
Problem 2 (Awoyemi et al [16]) 
 

xyy =′+′′′ 4  
1.0,1)0(,0)0(,0)0( ==′′=′= hyyy  

 

Exact Solution is 16

5
2cos

16

3
)( +−= xxy
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Table 2: Error of methods for problem 2 
 

X Exact Solution Numerical 
Solution 

Error in 
Proposed 
Method 

Error in 
[16] 

0.1 0.004987516700 0.004987517661 9.61000E-10 1.1899E-11 

0.2 0.01980106360 0.01980107010 6.50000E-09 3.0422E-09 

0.3 0.04399957220 0.04399958817 1.59700E-08 7.7796E-08 

0.4 0.07686749200 0.07686750864 1.66400E-08 1.5559E-07 

0.5 0.1174433176 0.1174433379 2.03000E-08 3.0541E-07 

0.6 0.1645579210 0.1645579476 2.66000E-08 4.6102E-07 

0.7 0.2168811607 0.2168811874 2.67000E-08 3.138E-07 

0.8 0.2729749104 0.2729749375 2.71000E-08 7.0374E-07 

0.9 0.3313503928 0.3313504205 2.77000E-08 1.0177E-06 

1.0 0.3905275319 0.3905275591 2.72000E-08 1.6528E-06 

 
Problem 3 (Sagir [17]) 
 

0375 =+′+′′+′′′ yyyy  
1.0,1)0(,0)0(,1)0( =−=′′=′= hyyy  

Exact Solution is 
xx xeexy −− +=)(  

 
Table 3: Error of methods for problem 3 

 

X Exact 
Solution 

Numerical 
Solution 

Error in 
Proposed 
Method 

Error in [17] 

0.1 0.9953211598 0.9953211599 1.00000E-10 6.4300E-08 

0.2 0.9824769037 0.9824769040 3.00000E-10 2.7200E-08 

0.3 0.9630636869 0.9630636876 7.00000E-10 3.0500E-08 

0.4 0.9384480644 0.9384480651 7.00000E-10 8.9800E-08 
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0.5 0.9097959895 0.9097959901 6.00000E-10 4.4260E-07 

0.6 0.8780986178 0.8780986180 2.00000E-10 7.7260E-07 

0.7 0.8441950165 0.8441950174    9.00000E-10 1.9523E-06 

0.8 0.8087921354 0.8087921382 2.80000E-09 1.0274E-06 

0.9 0.7724823534 0.7724823588 5.40000E-09 1.3509E-06 

1.0 0.7357588824 0. 7357588824    3.50000E-09 1.3470E-05 

 
Problem 4 (Badmus and Yahaya [18]) 
 

0=−′+′′−′′′ yyyy  
01.0,1)0(,0)0(,1)0( =−=′′=′= hyyy  

 

Exact Solution is xxy cos)( =  
 

Table 4: Error of methods for problem 4 
 

X Exact 
Solution 

Numerical 
Solution 

Error in 
Proposed 
Method 

Error in [18] 

0.01 0.9999500004 0.9999506724 6.72000E07 1.60168E-05 

0.02 0.9998000067 0.9998013508 1.34410E06 1.100991E-04 

0.03 0.9995500337 0.9995520507 2.01700E06 5.567153E-04 

0.04 0.9992001067 0.9992027951 2.68840E06 1.6332403E-03 

0.05 0.9987502604 0.9987536198 3.35940E06 3.62018361E-03 

  
 

5 Conclusion 
 
We have derived a three-step continuous HLMM from which MFDMs are 
obtained and applied to solve third order ordinary differential equations (ODE) 
without first adapting the ODE to an equivalent first order system. The MFDMs 
are applied as simultaneous numerical integrators over sub-intervals which do not 
overlap and hence they are more accurate than SFDMs which are generally 
applied as single formulas over overlapping intervals. We have shown that the 
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methods are convergent and have large intervals of absolute stability, which make 
them suitable candidates for computing solutions on wider intervals. In addition to 
providing additional methods and derivatives, the continuous HLMM can be used 
to obtain global error estimates. Our future research will be focused on adapting 
the MFDMs to solve third order partial differential equations. 
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