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Abstract 

     The nullity (degree of singularity) η(G) of a graph G is the multiplicity of zero 
as an eigenvalue in its spectrum. It is proved that, the nullity of a graph is the 
number of non-zero independent variables in any of its high zero-sum weightings. 
Let u and v be nonadjacent coneighbor vertices of a connected graph G, then 
η(G) = η(G−u) + 1 = η(G−v) + 1. If G is a graph with a pendant vertex (a vertex 
with degree one), and if H is the subgraph of G obtained by deleting this vertex 
together with the vertex adjacent to it, then  η(G) = η(H). Let H be a graph of 
order n and G1, G2,…, Gn be given vertex disjoint graphs, then the expanded 
graph i

n

G
H  is a graph obtained from the graph H by replacing each vertex vi of H 

by a graph Gi with extra sets of edges Si,j for each edge vivj of H in which Si,j = 
{uw: u∈V(Gi), w∈V(Gj)}. In this research, we evaluate the nullity of expanded 
graphs, for some special ones, such as null graphs, complete bipartite graphs, 
star graphs, complete graphs, nut graphs, paths, and cycles.  

     Keywords: Graph Theory, Graph Spectra, Nullity of a Graph.      

 
I  Introduction 
 
A graph G is said to be a singular graph provided that its adjacency matrix A(G) 
is a singular matrix. The eigenvalues λ1, λ2, …λp of A(G) are said to be the 
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eigenvalues of the graph G, which form the spectrum of G. The occurrence of 
zero as an eigenvalue in the spectrum of the graph G is called its nullity (degree 
of singularity) and is denoted by η(G). See [1] and [3]. 
 
Definition 1.1[2, 5, 7] A graph G is said to be η -singular or the nullity of G isη , 
abbreviated η(G) or η if, the multiplicity of zero (as an eigenvalue) in Sp(G) is η .  
 
Definition 1.2[2] A vertex weighting of a graph G is a function f: V(G) →R 
where R is the set of real numbers, which assigns a real number (weight) to each 
vertex. 
       
A weighting of G is said to be non-trivial if there is at least one vertex  v∈V(G) 
for which f(v) ≠ 0. 
 
Definition 1.3[2] A non-trivial vertex weighting of a graph G is called a zero-sum 
weighting provided that for each v∈V(G), ( )∑ f u = 0, where the summation  is 

taken over all u∈NG(v).  
  

Clearly, the following weighting for G is a non-trivial zero-sum weighting, where 
x and y are weights and (x, y) ≠ (0, 0),  as indicated in Fig.1.1. 

 

. 
          
 
                                                                              

 
Figure 1.1: A non-trivial zero-sum weighting of a graph 

 
Definition 1.4[5] Out of all zero-sum weightings of a graph G, a high zero-sum 
weighting of G is one that uses maximum number of non-zero independent 
variables, Mv(G) . 
 
An important relation between the singularity of a graph, and existence of a zero-
sum weighting is, that a graph is singular iff it possesses a non trivial zero-som 
weighting.[2] 
 
Proposition 1.5[5] In any graph G, the maximum number of non-zero 
independent variables in a high zero-sum weighting equals the number of zeros as 
an eigenvalues of the adjacency matrix of G. 
 
In Fig. 1.1, the weighting for the graph G is a high zero-sum weighting that uses 2 
independent variables, hence, η(G) = 2. 
        
Let r(A(G)) be the rank of A(G). Clearly, η(G) = p – r(A(G)). The rank r(G) of a 
graph G is the rank of its adjacency matrix A(G). Then, each of η(G) and r(G) 
determines the other. 

x x 

y y -y 

-x -x 
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The nullity of some known graphs such as cycle Cn , path Pn,  complete Kp and 
complete bipartite  Kr,s graphs are given in the next lemma. 
 
Lemma 1.6[5, 6, 7]  
 
i) The eigenvalues of the cycle Cn are of the form: 
 

 2cos
2π r

n
, r = 0, 1, …, n-1. According to this,  

                           n

2, if n =0(mod 4),
η(C )=

0, otherwise.





 

 
ii) The eigenvalues of the path Pn are of the form: 
 

 2cos
π r

n +1
, r =1,2, … n.    And thus, 

                           n

1, if n is odd,
η(P )=

0, if n is even.





 

 
iii) The nullity of the complete graph Kp, is: 
 

                         




>
=

=
.1,0

,1,1
)(

pif

pif
K pη  

 
iv) The nullity of the complete bipartite graph Kr,s , is: 
                     

                       r,s

                     if r = s = 1,

           ot

0
η(K )

herwi
=

r +s se- 2 .

 



  

        
Definition 1.7: Two vertices of a graph G are said to be of the same type 
(coneighbors) if they are not adjacent and have the same set of neighbors. Thus, 
the two vertices vi, vj of the same type have the same row vectors  Ri = Rj 

describing them, where Ri and Rj are the thi  and thj  row vector of A(G), 

corresponding to the vertices ji vandv , i, j = 1, 2, …, p. Each pair of such (same 

type) vertices results in two dependent (coincide) rows which yield a zero in 
spectra of the graph G. It is clear that the occurrence of m equal rows contributes 
(m-1) to the nullity. 
 
Corollary 1.8[4] (End Vertex Corollary): If G is a graph with a pendant vertex, 
and H is the subgraph of G obtained by deleting this vertex together with the 
vertex adjacent to it, then  η(G) = η(H). 
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Applying Corollary 1.8, several times, deleting v1 and v3 respectively is illustrated 
in the next figure. 
 
    
      η(                                                 )  
 
 
 
 
 
   
     = η(   ●       )         
 
 
 
     =   η(●   ●    ●) =3 
 

Figure 1.2: Illustration of Corollary 1.8 
 
So (End Vertex Corollary) is a strong tool to determine the nullity of trees. 
 
Operations on Graphs 
     
Many interesting graphs are obtained from combining pairs (or more) of graphs or 
operating on a single graph in some way. We now discuss a number of operations 
which are used to combine graphs to produce new ones. 
 
Lemma 1.9[1, 3] Let G = G1∪G2∪…∪Gt, where G1, G2, …, Gt are connected 

components of G, then 
1

( ) ( )
t

i
i

G Gη η
=

=∑  

 
Definition 1.10[1, 3] The join G1+G2 of two graphs G1 and G2 is a graph whose 
vertex set, V(G1+G2) = V(G1)∪V(G2), and edge set E(G) = E(G1)∪E(G2) ∪{uv: 
for all u∈G1 and all v∈G2}. 
 
Definition 1.11[1] The sequential join G1+G2+ … +Gn of n disjoint graphs 
G1,G2,…,Gn is the graph (G1+G2)∪(G2+G3)∪…∪(Gn-1+Gn) and denoted by 
 

1

n

i
i

G
=
∑ , for i=1,2,…,n and 

 
defined by 
 

V(
1

n

i
i

G
=
∑ ) = 

1

  ( ) 
n

i
i

V G
=
U , E(

1

n

i
i

G
=
∑ )={

1

  ( ) 
n

i
i

E G
=
U } ∪ 

 

{uv: for all u∈Gi and all v∈ Gi+1, i=1,2,…,n-1}. 

v1 

v5 

v2 v3

v4 v6 v7 

v5 

v3

v4 
v6 v7 
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As depicted in Fig.1.3. 
 

 
 
 
 

 … 
   

                                             G1            G2              Gn-1          Gn 
 

Figure 1.3: The sequential join graph 
1

n

i
i

G
=
∑  

     

It is clear that, p(
1

n

i
i

G
=
∑ ) = 

1

n

i
i

p
=
∑ , q(

1

n

i
i

G
=
∑ ) = 

1

1
1 1

−

+
= =

+∑ ∑
n n

i i i
i i

q p p ,  

 
In which  pi = p(Gi) and qi = q(Gi). 
 
Definition 1.12[4] Let Pn be a path with vertex {v1, v2,…,vp}. Replacing each 
vertex vi by an empty graph 

ipN of order pi, for i=1,2,…,p and joining edges 

between each vertex of 
ipN  and each vertex of 

1ipN
+

 for i=1,2,…,n–1, we get a 

graph order p1+p2+…+pn, denoted by 
1=
∑ i

n

i
pN . Such graph is called a sequential 

join. 
 
Definition 1.13[1] The strong product graph G1⊠G2 of G1 and G2, is the union 
of the Cartesian product graph G1×G2  and the Kronecker product graph G1⨂G2. 
 
Clearly, p(G1⊠G2) = p(G1)p(G2)  and q(G1×G2) = p(G1)q(G2)+ p(G2) q(G1) + 2 
q(G1) q(G2).  
 
It is apparent that Km ⊠ Kn =Kmn. 
 
Results, relating the nullity of the graphs G1 and G2 and their strong product 
G1⊠G2, are not studied widely. 
 
We conclude that, if both G1 and G2 are singular graphs, then so is G1⊠G2. 
 
Definition 1.14[1] The corona G = 1 2G Ge   of two disjoint graphs 1G  and 2G  

is defined as the graph obtained from taking one copy of 1G  and 1p  copies of 

2G , and then joining the i th vertex of 1G  to every vertex in the i th copy of 2G .   
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As illustrated in Figure 1.8, where the copies of 2G are denoted by 1G′ , 2G′ , …, 

1
′pG , 

11 1 1 2( ) { , ,..., }pV V G v v v= = ,
2

( ) ( ) ( ) ( )
1 2( ) { , ,..., }i i i i

i pU V G u u u′= = , for 

11, 2,...,i p= , , and 
1

( )
1

1
( )

p
i

i
V G V U

=
= U  

 

                      1G′                   2G′                       
1pG′  

          

 

  

 

                     
 
 
 

Figure 1.4: The corona 1 2G Ge  

 
From the definition of the corona, it is clear that 1 2G Ge is connected iff G1 is 

connected. Also if G2 contains at least one edge, then 1 2G Ge is not bipartite 

graph.   
 
And (p 1 2G Ge 1 2) (1 )p p= + , 

 
(q 1 2G Ge 1 1 2 1 2) q p q p p= + + , with a diameter 

 

1 2( )diam G Ge = 1( )diam G +2 . 

 
Note that  1 2 2 1G G G G≠e e  unless 1 2G G≅ . 

 
Studying the nullity of the corona graph 1 2G Ge  is one of the main subjects 

discussed in the present study. 
 

II On the Nullity of the Sequential Join of Some 
Special Graphs 
 
The nullities of the sequential join of some special graphs, Np, Kr,s, Sp, Kp, Pm and 
Cp are determined in this section.  

11 2 pv v v

       

)()(
2

)(
1

1

2

11 p
p

pp uuu)2()2(
2

)2(
1 2puuu)1()1(

2
)1(

1 2puuu
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Definition 2.1: Let the graphs G1, G2, …,Gn be given. An expanded graph 

(expanded join graph) i
n

G
H of a labeled graph H of vertex set{v1, v2,…,  vn}, is a 

graph obtained from H by replacing each vertex vi by the graph Gi, i = 1,2,…,n, 
with extra sets of edges Si,j for each edge vivj of H in which Si,j = {uw: u∈Gi, 
w∈Gj}. We call Gi ̕ s inserting graphs and H the base graph. Thus, the order 

p ( i
n

G
H ) = 

1

n

i
i

p
=
∑ and the size q ( i

n

G
H ) =

1

1
1 1

−

+
= =

+∑ ∑
n n

i i i
i i

q p p , where the last 

summations is taken over all i for which the vertex vi is adjacent with vi+1 in H. 

That is Gj + Gk is an induced subgraph of i
n

G
H  for each pair of adjacent 

vertices vj,vk of H. Moreover, if vj,vk,vi forms a path P3 in H, then (Gj∪ Gi)+Gk is 

an induced subgraph of i
n

G
H . While if vj,vk and vi forms a triangle in H, then (Gj 

+ Gi) + Gk is a subgraph of i
n

G
H .  

 
An illustration for Definition 2.1 is given in the next example. 
 
Example 2.2: Let the graphs G1, G2, G3, G4, G5 and H be given as follows:  
 
G1=P3, G2=K2 , G3=K1, G4:C3, G5=K1 and, 
 
                                 v1                 v2 
 
 
H:          v3                                               
 
 
                                v4          v5 
 
Then the expanded graph of H by inserting the above Gi graphs is indicated in 

Figure 2.1, in which 
5

1

( ) 10
=

= =∑ i
i

p G p  and 

 q (G ) =
5 4

1
1 1

18+
= =

+ =∑ ∑i i i
i i

q p p . 

 
 
 
  
                                                               

 
   

                                                
                                  

Figure 2.1: The expanded graph G = 5
iG

H  

Moreover, if the base graph H is a path Pn, then the expanded graph i
n

G
P   is the 

sequential join of the graphs G1, G2,…, Gn. If H = P5 and Gi ̕s, i = 1,2,3,4, 5 are 
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given as in Example 2.2, then, the sequential join graph 
5

1=
∑ i
i

G is depicted in Fig. 

2.2, with p(G) = 10 and q(G) = 6 + 14 = 20. 
 
 
 
 
                                      ●  ● 
 
 
 
            

Figure 2.2: The sequential join graph 
5

1=
∑ i
i

G  

 
Next, we determine the nullity of the sequential join of some special graphs such 
as Gi ≅ Np, Kr,s, Sp, Kp, Pm, or Cp, for i = 1,2,…,n. 
 

If G =
1=
∑ i

n

i
pN  where 

ipN  = 1N  (the trivial graph) for all i, then the graph G is 

simply a path of order n. 

Proposition 2.3: For an expanded graph 2
1=
∑

n

i

N , we have: 

 

i) If n = 2k, for k = 1,2,…, then  ƞ(
2

2
1=
∑

k

i

N ) is 

 2 + ƞ(
2( 1)

2
1

−

=
∑
k

i

N ) =2k = n. 

 

ii)  If n = 2k+1, for k = 1,2,…, then  ƞ(
2 1

2
1

+

=
∑
k

i

N )  is  

 2 + ƞ(
2 1

2
1

−

=
∑
k

i

N ) = 2k + 2 =   n + 1. 

 
Proof: i) Let w(i,j), i=1,2 and j=1,2,…,2k, be a zero-sum weighting for the vertex  
 

vi,j in the graph 
2

2
1=
∑

k

i

N  (or 
2 1

2
1

+

=
∑
k

i

N ), as indicated in Fig.2.3 
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                            w(1,1)        w(1,2)      w(1,3)        w(1,2k-1)         w(1,2k) 
    
                         
 
          
 
 
 
                            w(2,1)          w(2,2)          w(2,3)         w(2,2k-1)       w(2,2k)                                 
 

Figure 2.3: A weighting of the graph 
2

2
1=
∑

k

i

N  

If k = 1, then using the weights technique it is easy to evaluate that ƞ(
2

2
1=
∑
i

N ) =2  

and ƞ(
3

2
1=
∑
i

N ) = 4 by Lemma 1.6 ii,  Since the vertices v1, 2k and v2, 2k are 

coneighbors as well as v1, 2k–1 and v2,2k–1 hence removing the vertices v1,2k and 

v1,2k–1 from the graph 
2

2
1=
∑

k

i

N , a graph with end vertex (namely v2,2k) is obtained. 

Apply (End Vertex Corollary) to it, we get ƞ(
2

2
1=
∑

k

i

N ) = 2 + ƞ(
2( 1)

2
1

−

=
∑
k

i

N ). 

 
ii) Similar argument holds for the odd case also. ■  
 

Theorem 2.4:  For n ≥ 2, if G =
1=
∑ i

n

i
pN , then 

1

1

                      ,

  

                .

( )

1

=

=

 −
= 
 − +


∑

∑

n

i

n

i

i

i

if n is even

if n is

p n

G

p ddn o

η  

 
Proof: The proof is just an extension to that of Proposition 2.3, and hence it is 
omitted. ■ 

Corollary 2.5: In Theorem 2.4 if pi = p ∀i, then the nullity of G =∑
n

pN is 

       
                  ,

            
           

( 1)
(

 .   

        

)
(

       

1) 1

−
=  − +

if n is even

if n is odd

n p
G

n p
η

■
 

The Sequential Join of Complete Bipartite Graph 
       
A graph G is said to be a bipartite graph if it contains no odd cycles. Thus, the 
sequential join of complete bipartite graphs is also a bipartite graph. Moreover, 
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the sequential join of complete bipartite graphs ,
1=
∑ i i

n

i
r sK has 

1

( )
=

= +∑
n

i i
i

p r s  and 

1

1 1
1 1

( )( )
−

+ +
= =

= + + +∑ ∑
n n

i i i i i i
i i

q r s r s r s   

while, the diameter of ,
1=
∑ i i

n

i
r sK  is n-1, for n ≥ 3. 

 
We define the next term: 
 
Definition 2.6: A singular graph G is said to be a completely non stable if 

 

( 0)   
∈

=∑
Gu

w u  for a high zero-sum weighting of G. It is clear that if the above 

condition holds for only a high zero-sum weighting then it holds for any other 
one. 
 
Thus, complete bipartite graphs with order greater than 2 are completely non 
stable graphs, while P4n+1 is not.  
 
Lemma 2.7 (Coneighbor Lemma): Let u and v be coneighbor vertices of a 
connected graph G, then 
 
η(G) = η(G−u) + 1 = η(G−v) + 1.  
 
Proof: Label the vertices of G by u≡v1, v = v2, v3,…,vp. Let A(G), A(G−u), 
A(G−v) be the adjacency matrices of G, G−u, G−v, respectively. Applying row 
elimination R1 ⟶ R1 – R2 and column elimination C1 ⟶ C1–C2  to the matrix A, 
we get zero in each entry of row one and zero in each entry of column one. 
 
And obtain a new matrix A*, where A* = A(K1∪(G–u)).  
 
Hence,  r(G) = r(G–u)  ⟹  p – η(G) = (p–1) – η(G–u), 
  
∴ η(G) = η(G–u) + 1, similarly η(G) = η(G–v) + 1. ∎ 
 
Definition 2.8: Two adjacent vertices v1 and v2 in a graph G are said to be semi-
coneighbors if  N(v1) = N(v2) in the graph G-e where e =v1v2. 
 
Remark 2.9: Let w be any zero-sum weighting of a graph G. If v1 and v2 are 
semi-coneighbors, then they must be weighted by the same variable (weight), say 
x, because in any zero-sum weighting for G we have: 
 
       

 1 1 
2

( ) ( )

( ) ( ) (  )    0  ,
G G eu N v u N v

w u w v w u
−∈ ∈

= + =∑ ∑                                                            (1) 
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) 2) 2 

1
 (  (

( ) (  .) ( )     0
G eGu N v u N v

w u w v w u
−∈ ∈

= + =∑ ∑                                                                   (2) 

 

Therefore, from (1) and (2), we get w(v1) = w(v2)   

Proposition 2.10: The strong product graph K2⊠Pn= 2∑
n

K   is non-singular. 

Proof: For n = 2 or 3, it is easy to prove that any zero-sum weighting for K2⊠P2  
and K2⊠P3 is trivial. ∎ 

 
For any zero-sum weighting of the graph K2⊠Pn as indicated in Fig.2.4, we can 
put w(vi,j) = xj , for i = 1,2  and  j = 1,2,…,n. This is possible by Remark 2.9 
 
 
            x1         x2          x3           x4   . . .   xn-1          xn 
 
 
 
           
           x1          x2            x3          x4     . . .   xn-1         xn 
 

 
Figure 2.4: The strong product graph K2⊠Pn 
 
Apply 

( )

( ) 0
∈

=∑
iju N v

w u , for all i,j, we get: 

 
x1 + 2x2 = 0                                                                                                            (1) 
2x1 + x2 + 2x3 = 0                                                   (2) 
2x2 + x3+ 2x4 = 0                                                   (3) 
… 
2xn-2 + xn-1 + 2xn = 0                        (n-1) 
2xn–1 + xn = 0                                                                                                         (n) 
 
Then, from Equation (1), we get: 
 

       x2=-
1

2
x1                                                                     (1') 

 
From Equations (1') and (2), we get: 
 

       x3 = − 
1

2
 [2x1 – 

1

2
x1]= – 

3

4
x1                              (2') 

 
From Equations (2') and (3), we get: 

       x4 =  
1

2
 [x1 + 

3

4
x1]= 

7

8
x1                               (3') 
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And so on, all the values of x2, x3,…,xn are defined in term of x1. 
 
Finally, put the values of xn-1 and xn in Equation (n) to get: 
 
ax1 = 0, for some number a, this implies that x1 = 0 and hence all the remaining 
variables are zeros. 
 
Therefore,  there exist no non trivial zero-sum weighting for the graph K2⊠Pn. 
 
Hence, by Proposition 1.5, η(K2⊠Pn ) = 0.∎ 
 
Since, K2⊠Pn  is singular graph, then λµ + λ + µ must equal to zero for some 
eigenvalue λ of K2 and µ of Pn. This follows from the relations between the 
eigenvalues of the strong product graph and the eigenvalues of its product 
components. See [5].  

But λ = 1 or λ = -1, hence  µ + 1 + µ = 0   ⟹  µ = – 
1

2
 or  – µ –1 + µ = 0  ⟹   – 1 

= 0 which is impossible. 

Thus, we conclude that – 
1

2
, is not an eigenvalue for Pn for any n. This leads that 

2 cos(
1

Π
+

i

n
) ≠ – 

1

2
  for any i, i = 1, 2, …, n, and any n. That is ∃ no such integers 

i and n that satisfies cos(
1

i

n

Π
+

) = –
1

4
.   

The nullity of the expanded graph G, G= ,
1=
∑ i i

n

i
r sK  is determined in the next 

theorem. 

Theorem 2.11:  For n ≥ 2, ƞ( ,
1=
∑ i i

n

i
r sK ) = 

1

( 2)
n

i i
i

r s
=

+ −∑ . 

 
Proof: Apply (Coneighbor Lemma) for each pair of coneighbor vertices u and v 

in ,
1=
∑ i i

n

i
r sK , that is removing a vertex out of each such a pair which are exactly 

1

( 2)
n

i i
i

r s
=

+ −∑ , we obtain  the graph K2⊠Pn. 

 

Then,  ƞ(G) = 
1

( 2)
n

i i
i

r s
=

+ −∑ + η(K2⊠Pn ) . ■ 

 
The Star graph Sp(or S1,p-1) is a complete bipartite graph, with one of its partite 
sets consisting of exactly one vertex. It is a special type of trees, trees with 

diameter 2, with only three distinct eigenvalues, namely, p 1,0, p 1− − − . 
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Moreover, the expanded graph of  n stars 
ipS , i=1, 2, …,n, G = 

1
i

n

i
pS

=
∑   has order, 

p= 
1=
∑

n

i
i

p  and  size q, 

 

  q =
1

1
1 1

−

+
= =

− +∑ ∑
n n

i i i
i i

p n p p , with diameter n–1, n≥3. 

                               

Corollary 2.12:  For n, pi ≥ 2, the nullity of G is 
1

n

i
i

p
=
∑ – 2n. 

 
Proof:  1, 1−≅

i ippS K , hence it is a special case of Theorem 2.3.7. ∎ 

Corollary 2.13: For n ≥ 2, if G = ∑
n

pS , p ≥2. 

 Then,  η(G) = n(p−2). 
 
Proof:  Put ri+si = p in Theorem 2.3.7, then, the prove is immediate. ∎ 
 
The Sequential Join of Complete Graphs 

        
The complete graph Kp, p >2, is a simple graph with neither a cut vertex nor a 

bridge, and has maximum size q, 
( 1)

2

p p
q

−= . While the sequential join 
1=
∑ i

n

i
pK , 

n ≥ 3, is not a complete graph. Its order is p = 
1=
∑

n

i
i

p  

 

and size q  = 
1

n

i
i

q
=
∑ +

1

1
1

−

+
=
∑
n

i i
i

p p = 
1

( 1)

2

n
i i

i

p p

=

−
∑  +

1

1
1

−

+
=
∑
n

i i
i

p p . 

 

The nullity of  
1=
∑ i

n

i
pK is determined in the next theorem. 

Theorem 2.14: If n ≥ 2, and pi ≥ 2 for i=1, 2,…, n, then 
1=
∑ i

n

i
pK  is non-singular. 

Proof: For n = 2, then, the sequential join of Kp1 and Kp2 is   
1 2+p pk which is a 

complete graph, hence by Lemma 1.4.11(iii), ƞ(G) = 0. 
 
For n ˃ 2, no non zero-sum weighting for G exists. This holds from the fact 

2∑
n

K  is an induced subgraph of 
1=
∑ i

n

i
pK  and each extra vertex u in 

ipK is semi-
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coneighbor with each vertex v ∈ 
j

pK . By Remark 2.9, the weight of u is the 

same as the weight of each v, which is zero; hence G is a non-singular graph by 
Proposition 1.5. ∎ 
 
The Sequential Join of Paths 
        
Paths are extreme graphs to determine many invariants of the graph such as the 
diameter, and the average distance. Moreover, the sequential join of path graphs, 

1=
∑ i

n

m
i

P , has order p  = 
1

n

i
i

m
=
∑  and size q  = 

1

( 1)
n

i
i

m
=

−∑ + 
1

1
1

−

+
=
∑
n

i i
i

m m , and the 

diameter is n-1, for n ˃ 2, while it is equal to 2, where n=2, and m1 or m2 > 2. 
 
Lemma 2.15: If G1 =  Pm and G2 = Pn , and   G = G1 + G2, then, the nullity of the 
graph G   is given by: 
 

2             4  1      4  1 ,    , ,

  1             4  1      4  1 ,    ,

0          ,  4 1 ,      .

( )

 

if both m k and n t for k t Z

if either m k or n t but not both

if neither m nor n t for any k and any t

Gη

+ = − = − ∈
= = − = −
 = −

          

 
Proof: Label the vertices of G1 by v1,v2,…,vm, with a high zero-sum weighting 
w(1,1),w(1,2),…,w(1,m), and the vertices of G2 by u1,u2,…,un, with a high zero-sum 
weighting w(2,1),w(2,2),...,w(2,n), in G.  
        
By Definition 2.6, if m = 4k – 1 and n = 4t – 1, then both Pm and Pn are 
completely non stable graphs, and the same weighting can be used for the join 
graph, hence the nullity of the join graph is 2 in this case. If either of them is 
completely non stable, say Pm but not Pn, then w(2,1) =  w(2,2) =...= w(2,n) = 0 in any 
high zero-sum weighting of the join. Finally, if both n and m cannot be written as 
4k–1 for any k and any t, then in the join graph w(i,j) = 0  ∀ i,j. Thus, G is non-
singular. ∎ 

Theorem 2.16: If G = ∑
n

mP , then  nullity of the graph G is                

             4  1,    ,
  

0          
(

 4 1 ,   .
)

  

n if m k for k Z

if m k for an
G

y k Z
η

+

+

 = − ∈=
≠ − ∈

 

 
Proof: If m = 3, then the proof follows from Lemma 2.15. Moreover, if m = 4k–1, 
k∈Z+, then the path graph Pm is a completely non stable graph, and each 

component of the compound graph ∑
n

mP  uses exactly one variable, hence there 

exist exactly n variables in any high zero-sum weighting of G, then,  ƞ(G) = n. 
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If m ≠ 4k–1, k∈Z+, then each Pm is not a completely non stable, hence there exists 
no non-trivial zero-sum weighting for G, for n ˃ 1. Thus, by Proposition 1.5, we 
conclude that G is non-singular. ∎                         
 
It is clear that P5 + P5 has no non trivial zero-sum weighting, hence ƞ(G) = 0. 

Observation 2.17:  If G = 
1=
∑ i

n

m
i

P , then η(G) = no. of paths 
imP of order 4ki–1, for 

ki ∈Z+. 
 
Example 2.18: Let G1 = P2, G2 = P3 and G3 = P4, then there is a zero-sum 

weighting of the graph 
3

1=
∑ im
i

P , where mi=2,3,4 as indicated in Fig.2.5.                               

                                                                                                                                 0 
                                                                                  w(1,1)                     
 
                                                                            0                
                                        0  
                                                                               
                                         0  
                                             0                                                                                                    0 

 

 

                                                                                              −w(1,1)                                    0                 
 

Figure 2.5: A zero-sum weighting of the graph3
imP

P  

 
This zero-sum weighting uses exactly one independent variables, namely w(1,1) , 

hence  ƞ(
3

1=
∑ im
i

P ) = 1. 

 

III The Sequential Join of Cycles 
        
Cycles are 2-regular, critical 2-connected graphs, odd cycles are critical 3-

colarable graphs. The nullity of the sequential join of n cycles, 
1=
∑ i

n

p
i

C ,  is our 

goal in the next. 
 
Proposition 3.1: If G = Cn + Cm , then the nullity of the graph G is given by:  
 

 

4        4     4 ,    , ,

  2      4      4      ,

0               0(mod4).

( )

 n m

if bothn k and m t for k t Z

if n k orm t but not theboth

if neithertheorderof C nor of C is

Gη

+ = = ∈
= = =



 

 
Proof: The proof is similar to that of Theorem 2.16. ■   
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Theorem 3.2: For n ≥ 2, if G = 
1=
∑ j

n

j
pC , pj ˃ 2, j=1,2,…,n,  the nullity of  G is 

 

       
2            4 , 1     , 1,2,... ,

  
0            

(
         (mod

)
 4). 

≡ ≥ ==


j j j

jp

n if p k k for each j j n

if no order of C is equal to zero
Gη  

 
Proof: It is known that ƞ(C4k) = 2, and using weights, it is easy to show that 
ƞ(

1 24 4k kC C+ ) = 2+2 = 4. 

 
If w (1,j) , w'(1,j) , –w(1,j), –w'(1,j) …, are weights of  jpC 's, pj =4kj, then from the 

condition ( , )
( , )

0
∀ ∈

=∑ i j
v N i j

w , there is no relation between w(1,j) and w'(1,j), ∀j, 

j=1,2,…,n, if j=1  
 
Hence, if j=n where pj =4kj, then ƞ(G) = 2n. For n subgraphs of G, if no non 
trivial zero-sum weighting exists (that is order of non of them is zero mod 4), then 
no non trivial zero-sum weighting for G exists, hence by Proposition 1.5, ƞ(G) = 
0. ∎ 

Observation 3.3: If G = 
1=
∑ i

n

p
i

C  , then the nullity of the graph G is 2j, if j orders 

of the cycles Cpi's are of form pi ≡ 4kj. 
 

IV Nullity of the Corona of a Path with other Special 
Graphs 
 
In this section, we study the nullity of the corona of two graphs. 
 
In Definition 1.12, we choose G1 = Pn and G2 is a known graph, such as Nm, K2, 
Pm, C4, Kr,s or Kp. 
 
Proposition 4.1: Let G1 = Pn and G2 = Nm, then the nullity of the corona graph 
ƞ(G) , G = Pn ʘ Nm is  n(m -1). 
 
Proof: Follows from applying (End Vertex Corollary) n-times namely to the 
vertices u1j, j=1, 2, …, m, as illustrated in Fig.4.1. 
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u11 u12        u1m             u21   u22     u2m          un1    un2        unm  
      .                
 
 
 
ƞ(                                   )  
      0                       0                    0                   0 
 = ƞ(nNm-1) = n(m-1) 
 
Figure 4.1: The corona graph Pn ʘ Nm 
 
Proposition 4.2: The nullity of the graph G = Pn ʘ K2 is zero. 
 
Proof: Let w(i,j) be a weighting of the corona graph Pn ʘ K2. From the condition 

( , )
( , )

0
∀ ∈

=∑ i j
v N i j

w  for all v in Pn ʘ K2, the graph Pn ʘ K2 can be weighted as 

indicated in Fig.4.2.  
 
Where, w(1,1) =  y 
 
             -y    -y     -2y   -2y   -3y   -3y              -ny   -ny 

               
 
                   y             2y             3y       (n-1)y      ny        

 
Figure 4.2: The corona graph Pn ʘ K2 
       
Now, the sum of the weights over the neighborhood of the vertex weighted nw(1,1) 
is (n-1)w(1,1) - nw(1,1) - nw(1,1) = 0    ⟹    w(1,1) = 0.   
 
The graph Pn ʘ K2 has no non trivial zero-sum weighting. Hence it is non-
singular. ■ 
 
Proposition 4.3: For the corona graph G = Pn ʘ Km, is non singular. 
 
Proof: Is similar to that of Lemma 4.2, hence ƞ(G) = 0. ■ 
 
Proposition 4.4: Let G1 = Pn and G2 = C4, then the nullity of G = Pn ʘ C4  is ƞ(G) 
= 2n. 
 
Proof: Follows from the fact that there exists exactly 2n pairs of coneighbors 
vertices in G and after removing a vertex out of each such a pair, we obtain the 
graph indicated in Figure 4.2. 
 
∴  ƞ(Pn ʘ C4  ) = 2n + ƞ(Pn ʘ K2 ) 
                        = 2n. ■ 
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Proposition 4.5: For any complete bipartite graph Kr,s , the nullity of G = Pn ʘ 
Kr,s is given by 
 
 ƞ(G) = n(r + s – 2). 
 
Proof: Follows by applying Coneighbor Lemma, hence it is omitted. ■ 
 
Proposition 4.6: Let G^ be the graph K1+Pn, then, 
 

^            4 1,    ,

        

1
( )

  .0

+≡ − ∈
= 


if n k for k Z
G

otherwise
η  

 
Proof:  Let w(2,1) and w(1,j), j=1,2,…,n be a zero-sum weighting for the graph G^, 
as indicated in Fig.4.3.                                                   
                                                   w(2,1) 
                                                       ● 
 
 
        w(1,1)         w(1,2)    w(1,3)                           w(1,n-1)     w(1,n)   

 
 
Figure 4.3: The cone graph G^  of the path Pn.

 

From the condition ( , )
( , )

0
∀ ∈

=∑ i j
v N i j

w , for all v in G^ 

 

 w(1,2) + w(2,1) = 0     ⟹    w(1,2) = – w(2,1)                                                               (1) 
 
w(1,j) + w(1,j+2) + w(2,1)  = 0,    j=1,2,…,n–2                                                             (2) 
 
       w(1,n–1) + w(2,1) = 0      
 
From Equation (2) we get: 
 
w(1,j+2) = – w(1,j) – w(2,1) , for j = 1,2,..,n–2                                                             (3) 
 
Thus, w(1,3) = – w(1,1) – w(2,1)                                                  (4) 
 
w(1,4) = – w(1,2) – w(2,1)                                                  (5) 
 
∴      w(1,4) = 0 
                
 
This gives that w(1,4k) = 0 , for k∈Z+, and w(1,2k–1) = – w(1,1) + w(1,2). Assume that 
w(1,2) ≠ 0, then the sum of the weights over the neighborhood of the vertex 

weighted w(2,1) is (1, )
1=
∑

n

j
j

w ≠ 0, which is a contradiction from which we assumed 
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w(1,2) = 0. Now if n ≠ 4k–1, then we get w(1,1) = 0 and hence, no non-trivial zero-
sum weighting exists. Thus, any high zero-sum weighting of G^ will use only one 
non-zero variable say w(1,1) where n = 4k–1, and hence the prove is complete. ∎ 

 

If G^^ is a cone over the cone G^ then η(G^^) = η(G^), and moreover if this process 
is continued any t times, then η(G^t) = η(G^), because of the fact that the second 
vertex of G^^ which is added and joined to all vertices of G^ is semi-coneighbor 
with the first vertex of G^ which is added and joined to all vertices of G. Hence, 
both must be zero weighted and hence, the result follows for any t.        
  
Proposition 4.7: Let G1 = Pn and G2 = Pm , then the nullity of G = Pn ʘ Pm is 
 

       ƞ(G) = 
           4 1,  1,2...,

0          .

= −



=


if m k k

otherwise

n
  

 
Proof: If m = 3, then the graph G is Pn ʘ P3, as indicated in Fig.4.4. 
 
 
x1    0   – x1      x2    0   – x2        x3    0    – x3      xn    0     – xn 
 
 
                     
       0                       0                       0                             0 
 
Figure 4.4: The graph Pn ʘ P3 

     
Applying (Coneighbour Lemma), we have n-pairs of coneighbors. After removing 
a vertex out of each such a pair, we obtain the graph Pn ʘ K2 thus, ƞ(Pn ʘ P3)= 
n+ƞ(Pn ʘ K2). But,  ƞ(Pn ʘ K2) = 0. Hence, ƞ(Pn ʘ P3) = n. 
 
If m>3, then we have n induced subgraphs of the graph PnʘPm and each of them is 
a cone of a path Pm . But the nullity of a cone of a path Pm , m = 4k–1 is one , and 
we have n such a cones.  
 

         ∴   ƞ(G) = 
           4 1,  1,2...

0          .       

if m k k

ot

n

herwise

= − =

 ■

  

 
Open Problem:  Evaluate ƞ(G1ʘ G2) in terms of invariants of G1 and G2?. 
 
Nullity of  the Semi-Corona of a Path with other Special Graphs 
        
In the following section we are going to define the semi-corona. 
 
Definition 4.8: Let Hn be a graph, whose vertices labeled h1,h2,…,hn and 
G1,G2,…,Gn  be distinct graphs with orders p1,p2,…,pn and their vertices labeled  

by 
j

iu 1≤ i≤ n ,1≤ j ≤ pi. 
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We define the semi-corona graph G = Hnʘ
1

n

i
i

G
=

∏ , to be the graph whose vertex 

set is V(G) = V(Hn
1

n

i
i

G
=
U ) and edge set E(G)=E(Hn) U E(

1

n

i
i

G
=
U ) 

1

n

i =
U {h i 

j

iu for 

each j,1≤j≤ pi}. 
 

That is the vertex h1 is adjacent with 
1

1u , 
2

1u , …, 1

1

p

u , h2 is adjacent with  
1

2u , 
2

2u ,…, 2

2

p

u   and hn is adjacent with  
1

nu , 
2

nu , …, np

nu , as illustrated in Fig.4.5, 

where G1 = P2, G2 = P3, G3 = C3, G4 = C4 and H = C4 
 
                               
 
 
 
                                                    h1 
                                             
                                                                         h3     
                                                    h2  
                                   h4  
 
 
 
 
 

Figure 4.5: The semi-corona graph G = C4ʘ
1

n

i
i

G
=

∏  

Proposition 4.9: 
 

1)  η(Pn ʘ 
1

i

n

m
i

N
=

∏ ) = 
1

( 1)
=

−∑
n

i
i

m . 

 

2) η(Pn ʘ 
1

i

n

p
i

K
=

∏ ) = 0. 

 

3) η( Pn ʘ ,
1

i i

n

r s
i

K
=

∏ ) = 
1

( 2)
=

+ −∑
n

i i
i

r s . 

 
Proof: The proof is a generalization for that of Propositions 4.1, 4.2 and 4.5, 
respectively. ∎ 
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