Gen. Math. Notes, Vol. 18, No. 1, September, 2013, pp. 94-98
ISSN 2219-7184; Copyright © ICSRS Publication, 2013
www.i-csrs.org
Available free online at http://www.geman.in

Some Properties of \boldsymbol{N}-Quasinormal Operators

Valdete Rexhëbeqaj Hamiti
Faculty of Electrical and Computer Engineering
University of Prishtina "Hasan Prishtina"
Prishtinë, 10000, Kosova
E-mail: valdete_r@hotmail.com

(Received: 8-6-13 / Accepted: 15-7-13)

Abstract

In this article we will give some properties of N-quasinormal operators in Hilbert spaces. The object of this paper is to study conditions on T which imply N quasinormality. If T_{1} and T_{2} are N-quasinormal operators, we shall obtain conditions under which their sum is N-quasinormal and if T_{1} is N-quasinormal operator and T_{2} quasinormal operators, we shall obtain conditions under which their product is N-quasinormal.

Keywords: Quasinormal operators, N-quasinormal operators.

1 Introduction

Let us denote by H the complex Hilbert space and with $B(H)$ the space of all bounded linear operators defined in Hilbert space H. Let T be an operator in $B(H)$. The operator T is called quasinormal if: $T\left(T^{*} T\right)=\left(T^{*} T\right) T$. The operator T is called N - quasinormal operator, if $T\left(T^{*} T\right)=N\left(\left(T^{*} T\right) T\right)$.

Let $T \in B(H), T=U+i V$ where $U=\operatorname{Re} T=\frac{T+T^{*}}{2}$ and $V=\operatorname{Im} T=\frac{T-T^{*}}{2 i}$ are the real and imaginary parts of T. We shall write $B^{2}=T T^{*}$ and $C^{2}=T * T$ where B and C are non-negative definite.

In this paper we will study some properties of N - quasinormal operators. Exactly we will give conditions under which an operator T is N-quasinormal. Also, we shall that if T_{1} and T_{2} are N-quasinormal operators, we shall obtain conditions under which their sum is N-quasinormal and if T_{1} is N-quasinormal operator and T_{2} quasinormal operators, we shall obtain conditions under which their product is N -quasinormal.

$2 \quad N$ - Quasinormal Operators

In this section we will show some properties of N -quasinormal operators in Hilbert space.

Theorem 2.1: If T is an operator such that
(i) B commutes with U and V
(ii) $T B^{2}=N\left(C^{2} T\right)$.

Then T is N-quasinormal operator.
Proof: Since $B U=U B, B V=V B$ we have $B^{2} U=U B^{2}, B^{2} V=V B^{2}$ then

$$
\begin{aligned}
& B^{2} T+B^{2} T^{*}=T B^{2}+T^{*} B^{2} \\
& B^{2} T-B^{2} T^{*}=T B^{2}-T^{*} B^{2}
\end{aligned}
$$

This gives $B^{2} T=T B^{2}=N\left(C^{2} T\right) \Rightarrow T T^{*} T=N\left(T^{*} T T\right)$.
Hence T is N-quasinormal operator.
Theorem 2.2: Let T be N-quasinormal operator and $T B^{2}=N\left(C^{2} T\right)$. Then B commutes with U and V.

Proof: Since $T B^{2}=N\left(C^{2} T\right)$ we have $T\left(T T^{*}\right)=N\left(\left(T^{*} T\right) T\right)$.
Hence $\left(T T^{*}\right) T^{*}=N\left(T^{*}\left(T^{*} T\right)\right)$.
Since T is N-quasinormal operator we have

$$
\begin{aligned}
B^{2} U= & T T * \frac{T+T^{*}}{2}=\frac{T T^{*} T+T T^{*} T^{*}}{2}= \\
& \frac{N\left(\left(T^{*} T\right) T\right)+N\left(T^{*}\left(T^{*} T\right)\right)}{2}= \\
& \frac{N\left(\left(T^{*} T\right) T+T^{*}\left(T^{*} T\right)\right)}{2}= \\
& \frac{N\left(\frac{1}{N}\left(T\left(T T^{*}\right)\right)+\frac{1}{N}\left(\left(T^{*} T\right) T^{*}\right)\right)}{2}= \\
& \frac{T^{2} T^{*}+T^{*} T T^{*}}{2}=\frac{T+T^{*}}{2} T T^{*}=U B^{2},
\end{aligned}
$$

Since B is non-negative definite, it follows that $B U=U B$. Similarly $B V=V B$.
Theorem 2.3: If T is an operator such that $C^{2} U=\frac{1}{N} U C^{2}, C^{2} V=\frac{1}{N} V C^{2}$. Then T is N-quasinormal operator.

Proof: Since $C^{2} U=\frac{1}{N} U C^{2}, C^{2} V=\frac{1}{N} V C^{2}$ then we have
$C^{2}(U+i V)=\frac{1}{N}(U+i V) C^{2}$ and we have $C^{2} T=\frac{1}{N} T C^{2}$ therefore
$\left(T^{*} T\right) T=\frac{1}{N} T\left(T^{*} T\right) \Rightarrow T\left(T^{*} T\right)=N\left(T^{*} T\right) T$.
Theorem 2.4: Let T be N-quasinormal operato and $B^{2} T=\frac{1}{N}\left(C^{2} T\right)$. Then:
(i) $C^{2} U=\frac{1}{N} U C^{2}$,
(ii) $C^{2} V=\frac{1}{N} V C^{2}$.

Proof: (i) Since

$$
B^{2} T=\frac{1}{N}\left(C^{2} T\right) \Rightarrow\left(T T^{*}\right) T=\frac{1}{N}\left(\left(T^{*} T\right) T\right) \Rightarrow T^{*}\left(T T^{*}\right)=\frac{1}{N}\left(T^{*}\left(T^{*} T\right)\right)
$$

Since T is N-quasinormal operator we have
$C^{2} U=T * T \cdot\left(\frac{T+T^{*}}{2}\right)=\frac{T^{*} T^{2}+T^{*} T T^{*}}{2}=$

$$
=\frac{\frac{1}{N} T T^{*} T+\frac{1}{N} T^{* 2} T}{2}=\frac{1}{N}\left(\frac{T+T^{*}}{2}\right) \cdot T^{*} T=\frac{1}{N} U C^{2} .
$$

(ii) Similary

$$
C^{2} V=\frac{1}{N} V C^{2}
$$

Theorem 2.5: Let T_{1} and T_{2} be two N-quasinormal operators such that $T_{1} T_{2}=T_{2} T_{1}=T_{1} * T_{2}=T_{2} * T_{1}=0$. Then their sum $T_{1}+T_{2}$ is N-quasinormal operator.

Proof:

$$
\begin{aligned}
& \left(T_{1}+T_{2}\right)\left[\left(T_{1}+T_{2}\right) *\left(T_{1}+T_{2}\right)\right]= \\
& \left(T_{1}+T_{2}\right)\left[\left(T_{1} *+T_{2} *\right)\left(T_{1}+T_{2}\right)\right]= \\
& \left(T_{1}+T_{2}\right)\left(T_{1} * T_{1}+T_{1} * T_{2}+T_{2} * T_{1}+T_{2} * T_{2}\right)= \\
& \left(T_{1}+T_{2}\right)\left(T_{1} * T_{1}+T_{2} * T_{2}\right) \\
& T_{1} T_{1} * T_{1}+T_{1} T_{2} * T_{2}+T_{2} T_{1} * T_{1}+T_{2} T_{2} * T_{2}= \\
& T_{1} T_{1} * T_{1}+T_{2} T_{2} * T_{2}= \\
& N\left(\left(T_{1} * T_{1}\right) T_{1}\right)+N\left(\left(T_{2} * T_{2}\right) T_{2}\right)= \\
& N\left(\left(T_{1} * T_{1}\right) T_{1}+\left(T_{2} * T_{2}\right) T_{2}\right)= \\
& N\left(\left(T_{1}+T_{2}\right) *\left(T_{1}+T_{2}\right)^{2}\right)
\end{aligned}
$$

Hence $T_{1}+T_{2}$ is N-quasinormal operator.
Theorem 2.6: Let T_{1} be N-quasinormal operator and T_{2} quasinormal operator. Then their product $T_{1} T_{2}$ is N-quasinormal operator if the following conditions are satisfied
(i) $\quad T_{1} T_{2}=T_{2} T_{1}$
(ii) $\quad T_{1} T_{2}{ }^{*}=T_{2} * T_{1}$

Proof:

$$
\begin{aligned}
& \left(T_{1} T_{2}\right)\left(T_{1} T_{2}\right) *\left(T_{1} T_{2}\right)= \\
& \left(T_{1} T_{2}\right)\left(T_{2} * T_{1} *\right)\left(T_{1} T_{2}\right)= \\
& \left(T_{1} T_{2}\right)\left(T_{1} * T_{2} *\right)\left(T_{1} T_{2}\right)= \\
& T_{1}\left(T_{2} T_{1} *\right)\left(T_{2} * T_{1}\right) T_{2}= \\
& T_{1}\left(T_{1} * T_{2}\right)\left(T_{1} T_{2} *\right) T_{2}= \\
& T_{1} T_{1} *\left(T_{2} T_{1}\right)\left(T_{2} * T_{2}\right)= \\
& T_{1} T_{1} *\left(T_{1} T_{2}\right)\left(T_{2} * T_{2}\right)= \\
& N\left(T_{1} * T_{1}^{2}\right)\left(T_{2} * T_{2}^{2}\right)= \\
& N T_{1} *\left(T_{1}^{2} T_{2} *\right) T_{2}^{2}= \\
& N\left(T_{1} * T_{2} *\right)\left(T_{1}^{2} T_{2}^{2}\right)= \\
& N\left(T_{1} * T_{2} *\right)\left(T_{1} T_{2}\right)^{2}= \\
& N\left(T_{2} * T_{1} *\right)\left(T_{1} T_{2}\right)^{2}= \\
& N\left(T_{1} T_{2}\right) *\left(T_{1} T_{2}\right)^{2}
\end{aligned}
$$

Hence $T_{1} T_{2}$ is N-quasinormal operator.

References

[1] Sh. Lohaj, Quasinormal operators, Int. Journal of Math. Analysis, 4(47) (2010), 2311-2320.
[2] S. Panayappan and N. Sivamani, A-quasi normal operators in semi Hilbertian spaces, Gen. Math. Notes, 10(2) (2012), 30-35.
[3] A. Bala, A note on quasinormal operators, Indian J. Pure App. Math., 8(1977), 463-465.
[4] Ch. S. Ryoo, Some class of operators, Math. J. Toyama Univ., 21(1998), 147-152.
[5] P.R. Halmos, A Hilbert Space Problem Book, Van Nostrand, Princeton, (1967).

