

Gen. Math. Notes, Vol. 17, No. 2, August, 2013, pp. 76-80 ISSN 2219-7184; Copyright © ICSRS Publication, 2013 www.i-csrs.org Available free online at http://www.geman.in

# **On Some Ideals of Fuzzy Points Semigroups**

#### E.H. Hamouda

Department of Basic Sciences, Faculty of Industrial Education Beni-Suef University, Beni-Suef, Egypt E-mail: ehamouda70@gmail.com

(Received: 20-5-13 / Accepted: 30-6-13)

#### Abstract

Kim [Int. J. Math. & Math. Sc. **26:11** (2001), 707-712.] Considered the semigroup  $\underline{S}$  of the fuzzy points of a semigroup S. In this paper, we discuss the relation between some ideals A of S and the subset  $C_A$  of  $\underline{S}$ .

Keywords: Fuzzy set; Semigroup; Fuzzy point; Minimal ideal.

# **1** Introduction

Zadeh [9] introduced the concept of a fuzzy set for the first time and this concept was applied by Rosenfeld [8] to define fuzzy subgroups and fuzzy ideals. Based on this crucial work, Kuroki [3, 4, 5, 6] defined a fuzzy semigroup and various kinds of fuzzy ideals in semigroups and characterized them. Authors in [1] investigated the existence of a fuzzy kernel and minimal fuzzy ideals in semigroups. They showed that a subset A of a semigroup S is minimal ideal if and only if the characteristic function of A,  $C_A$ , is minimal fuzzy ideal of S. In [2], Kim considered the semigroup <u>S</u> of the fuzzy points of a semigroup S, and discussed the relation between the fuzzy interior ideals and the subsets of <u>S</u>. In this paper, we discuss the relation between some ideals A of S and the subset <u> $C_A$ </u> of <u>S</u>.

## **2 Basic Definitions and Results**

Let *S* be a semigroup. A nonempty subset *A* of *S* is called a *left (resp., right) ideal* of *S* if  $SA \subseteq A(resp., AS \subseteq A)$ , and *a two-sided ideal* (or simply *ideal*) of *S* if *A* is both a left and a right ideal of *S*. A nonempty subset *A* of *S* is called an interior ideal of *S* if  $SAS \subseteq A$ . An ideal *A* of *S* is called *minimal* ideal of *S* if *A* does not properly contains any other ideal of *S*. If the intersection *K* of all the ideals of a semigroup *S* is nonempty then we shall call *K* the kernel of *S*. A subsemigroup *A* of *S* is called a bi-ideal of *S* if  $ASA \subseteq A$  [7]. A function *f* from *S* to the closed interval [0, 1] is called a *fuzzy set* in *S*. The semigroup *S* itself is a fuzzy set in *S* such that S(x) = 1 for all  $x \in S$ , denoted also by *S*. Let *A* and *B* be two fuzzy sets in *S*. Then the inclusion relation  $A \subseteq B$  is defined  $A(x) \leq B(x)$  for all  $x \in S$ .  $A \cap B$  and  $A \cup B$  are fuzzy sets in *S* defined by  $(A \cap B)(x) = min \{A(x), B(x)\}$ ,  $(A \cup B)(x) = max \{A(x), B(x)\}$ , for all  $x \in S$ . For any  $\alpha \in (0, 1]$  and  $x \in S$ , a fuzzy set  $x_{\alpha}$  in *S* is called a *fuzzy point* in *S* if

$$x_{\alpha}(y) = \begin{cases} \alpha & \text{if } x = y, \\ 0 & \text{otherwise,} \end{cases}$$

for all  $x \in S[9]$ . The fuzzy point  $x_{\alpha}$  is said to be contained in a fuzzy set A, denoted by  $x_{\alpha} \in A$ , iff  $\alpha \leq A(x)$ . The characteristic mapping of a subset A of a semigroup S is

$$C_{A}(x) = \begin{cases} 1 & if \ x \in A, \\ 0 & otherwise, \end{cases}$$

for all  $x \in S$ .

**Lemma 2.1 (see [1, Lemma 3.]):** For any nonempty subsets A and B of a semigroup S, we have  $A \subseteq B$  if and only if  $C_A \subseteq C_B$ .

**Lemma 2.2 (see [1, Lemma 4.]):** Let A be a nonempty subset of a semigroup S, then A is an ideal of S if and only if C<sub>A</sub> is a fuzzy ideal of S.

Let  $\mathcal{F}(S)$  be the set of all fuzzy sets in a semigroup *S*. For each  $A, B \in \mathcal{F}(S)$ , the product of *A* and *B* is a fuzzy set  $A \circ B$  defined as follows:

$$(A \circ B)(x) = \begin{cases} \sup_{x=ab} A(a) \land B(b) & \text{if } ab = x \\ 0 & \text{otherwise.} \end{cases}$$

for each  $x \in S$ . If *S* is a semigroup, then  $\mathcal{F}(S)$  is a semigroup with the product " $\circ$ "[2]. Let <u>*S*</u> be the set of all fuzzy points in a semigroup *S*. Then  $x_{\alpha} \circ y_{\beta} = (xy)_{\alpha\beta} \in \underline{S}$  for  $x_{\alpha}, y_{\beta} \in \underline{S}$  [2]. For any  $A \in \mathcal{F}(S), \underline{A}$  denotes the set of all fuzzy points contained in *A*, that is,  $\underline{A} = \{x_{\alpha} \in \underline{S}: A(x) \ge \alpha\}$ . for any  $A, B \subseteq \underline{S}$ , we define the product of *A* and *B* as  $A \circ B = \{x_{\alpha} \circ y_{\beta}: x_{\alpha} \in A, y_{\beta} \in B\}$ .

**Lemma 2.3 (see [2, Lemma 3.2]):** Let A and B be two fuzzy subsets of a semigroup S, then

- 1)  $\underline{A \cup B} = \underline{A} \cup \underline{B}$ . 2)  $\overline{A \cap B} = \overline{A} \cap \overline{B}$ .
- 3)  $\overline{A \circ B} \subseteq \overline{A \circ B}$ .

**Lemma 2.4:** Let A be nonempty subset of a semigroup S, we have  $x_{\alpha} \in \underline{C}_{A}$  if and only if  $x \in A$ .

**Proof:** Suppose that  $x_{\alpha} \in \underline{C}_{A}$  for any  $x \in S$ , then  $C_{A}(x) \ge \alpha$ . Hence  $C_{A}(x) = 1$  for any  $\alpha > 0$ , which implies that  $x \in A$ . Conversely, Let  $x \in A$ , then  $C_{A}(x) = 1 \ge \alpha$  for any  $\alpha > 0$ . This means that  $x_{\alpha} \in C_{A}$ .

Lemma 2.5: For any nonempty subsets A and B of a semigroup S, we have

- 1)  $A \subseteq B$  if and only if  $C_A \subseteq C_B$ .
- 2)  $C_A \subseteq C_B$  if and only if  $C_A \subseteq C_B$ .

**Proof:** (1) Assume that  $A \subseteq B$ , and let  $x_{\alpha} \in \underline{C}_A$ . By lemma 2.4,  $x \in A \subseteq B$  and  $x_{\alpha} \in \underline{C}_B$ , this implies that  $\underline{C}_A \subseteq \underline{C}_B$ . Conversely, suppose that  $\underline{C}_A \subseteq \underline{C}_B$ . Let  $x \in A$ , then by lemma 2.4,  $x_{\alpha} \in \underline{C}_A$  for any  $\alpha > 0$ ,  $x_{\alpha} \in \underline{C}_B$  and hence  $x \in B$ . (2) Let  $x_{\alpha} \in \underline{C}_A \subseteq \underline{C}_B$ , then lemma 2.5 implies that  $A \subseteq B$  and from lemma 2.1, we have  $C_A \subseteq \overline{C}_B$ . This completes the proof.

### **3** Main Results

**Lemma 3.1:** Let A be a nonempty subset of a semigroup S. Then A is an ideal of S if and only if  $C_A$  is an ideal of <u>S</u>.

**Proof:** By lemma 2.2, *A* is an ideal of *S* if and only if  $C_A$  is a fuzzy ideal of *S*, and from lemma 3.1[2],  $C_A$  is a fuzzy ideal of *S* if and only if  $\underline{C_A}$  is an ideal of  $\underline{S}$ .

**Theorem 3.2:** Let A be a nonempty subset of a semigroupS. Then A is a minimal ideal of S if and only if  $C_A$  is a minimal ideal of <u>S</u>.

**Proof:** By theorem 7[1], *A* is a minimal ideal of *S* if and only if  $C_A$  is a fuzzy minimal ideal of *S*. We only need to prove that,  $C_A$  is a minimal fuzzy ideal of *S* if and only if  $\underline{C}_A$  is a minimal ideal of  $\underline{S}$ . Let  $C_A$  be a minimal fuzzy ideal of *S*, then by lemma 3.1[2],  $\underline{C}_A$  is an ideal of  $\underline{S}$ . Suppose that  $\underline{C}_A$  is not minimal, then there exists some ideals  $C_B$  of  $\underline{S}$  such that  $C_B \subseteq C_A$ . Hence by lemma 2.5,

 $C_B \subseteq \underline{C}_A$ , where  $C_B$  is a fuzzy ideal of *S*. This is a contradiction to  $C_A$  is a minimal fuzzy ideal of *S*. Thus  $\underline{C}_A$  is a minimal ideal of  $\underline{S}$ . Conversely, assume that  $\underline{C}_A$  is a minimal ideal of  $\underline{S}$  and that  $C_A$  is not a minimal fuzzy ideal of *S*. Then there exists a fuzzy ideal  $C_B$  of *S* such that  $\underline{C}_B \subseteq \underline{C}_A$ . Now, lemma 2.5 implies that  $\underline{C}_B \subseteq \underline{C}_A$ , where  $\underline{C}_B$  is an ideal of  $\underline{S}$ . This contradicts that  $\underline{C}_A$  is a minimal ideal of  $\underline{S}$ . This completes the proof of the theorem.

**Theorem 3.3:** Let A be a nonempty subset of a semigroup S. Then A is the kernel of S if and only if  $C_A$  is the kernel of <u>S</u>.

**Proof:** Suppose that *A* is the kernel of *S*, then  $A = \bigcap_i I_i$ , where  $I_i$  is an ideal of *S*. Let  $\underline{C}_B$  be an ideal of  $\underline{S}$ , then by lemma 3.1, *B* is an ideal of *S*. Now we need to show that,  $\underline{C}_A \subseteq \underline{C}_B$ . Let  $x_\alpha \in \underline{C}_A$ , by lemma 2.4,  $x \in A$  and also  $x \in B$  since *A* is the kernel of *S*. This implies that  $x_\alpha \in \underline{C}_B$  and hence,  $\underline{C}_A$  is the kernel of  $\underline{S}$ . Conversely, Let  $\underline{C}_A$  be the kernel of  $\underline{S}$ , then  $\underline{C}_A \subseteq \underline{C}_B$ , for every ideal  $\underline{C}_B$  of  $\underline{S}$ . Thus  $A \subseteq B$ , that is, *A* is the kernel of *S*.

The following lemma weakens the condition of theorem 3.3.

**Lemma 3.4:** Let A be a minimal ideal of a semigroupS, then  $\underline{C_A}$  is the kernel of <u>S</u>.

**Proof:** Since *A* be a minimal ideal of *S*, then  $C_A$  is a minimal fuzzy ideal of *S* [1, theorem 7]. Also theorem 8 in [1] implies that  $C_A$  is the fuzzy kernel of *S*. Now, let  $C_B$  be a fuzzy ideal of *S*, then we have  $C_A \subseteq C_B$ . By lemma 2.5,  $\underline{C_A} \subseteq \underline{C_B}$ , so  $\underline{C_A}$  is a minimal ideal contained in every ideal of *S*. Thus  $\underline{C_A}$  is the kernel of *S*.

**Lemma 3.5:** Let A be a nonempty subset of a semigroup S. Then A is an interior ideal of S if and only if  $C_A$  is an interior ideal of <u>S</u>.

**Proof:** Let *A* be an interior ideal of *S*, and let  $y_{\beta}, z_{\gamma} \in \underline{S}$  and  $x_{\alpha} \in \underline{C}_{A}$ . Since  $x \in A$ , hence  $y_{\beta} \circ x_{\alpha} \circ z_{\gamma} = (yxz)_{\beta \land \alpha \land \gamma} \in \underline{C}_{A}$ . This implies that  $\underline{S} \circ \underline{C}_{A} \circ \underline{S} \subseteq \underline{C}_{A}$ , thus  $\underline{C}_{A}$  is an interior ideal of  $\underline{S}$ . Conversely, suppose that  $\underline{C}_{A}$  is an interior ideal of  $\underline{S}$ . Let  $y, z \in S$  and  $x \in A$ , then  $x_{\alpha} \in \underline{C}_{A}$ . Assume that,  $y_{\alpha} \circ x_{\alpha} \circ z_{\alpha} = (yxz)_{\alpha} \in \underline{S} \circ \underline{C}_{A} \circ \underline{S} \subseteq \underline{C}_{A}$ , then  $yxz \in A$ . This implies that  $SAS \subseteq A$ , and hence A is an interior ideal of S.

**Lemma 3.6:** Let A be a nonempty subset of a semigroup S. Then A is a bi- ideal of S if and only if  $C_A$  is a bi- ideal of <u>S</u>.

**Proof:** Let *A* be a bi- ideal of *S*, and let  $y_{\beta}, z_{\gamma} \in \underline{C}_A$  and  $x_{\alpha} \in \underline{S}$ . Since  $y, z \in A$  and  $yxz \in A$  then  $y_{\beta} \circ x_{\alpha} \circ z_{\gamma} = (yxz)_{\beta \land \alpha \land \gamma} \in \underline{C}_A$ . This implies that  $\underline{C}_A \circ \underline{S} \circ \underline{C}_A \subseteq \underline{C}_A$ , thus  $\underline{C}_A$  is a bi-ideal of  $\underline{S}$ . Conversely, suppose that  $\underline{C}_A$  is a bi-ideal of  $\underline{S}$ . Let  $y, z \in A$  and  $x \in S$ , then by lemma 2.4,  $y_{\alpha}, z_{\alpha} \in \underline{C}_A$ . Assume that,  $y_{\alpha} \circ x_{\alpha} \circ z_{\alpha} = (yxz)_{\alpha} \in \underline{C}_A \circ \underline{S} \circ \underline{C}_A \subseteq \underline{C}_A$ , then  $yxz \in A$ . This implies that  $ASA \subseteq A$ , and hence *A* is a bi- ideal of *S*.

# References

- [1] M. Khan, F. Feng and M. Nouman, On minimal fuzzy ideals of semigroups, *J. of Mathematics*, Article ID 475190(2013), 1-5.
- [2] K.H. Kim, On fuzzy points in semigroups, Int. J. Math. & Math. Sc., 26(11) (2001), 707-712.
- [3] N. Kuroki, Fuzzy bi-ideals in semigroups, *Comment. Math. Univ. St. Pauli*, 28(1979), 17-21.
- [4] N. Kuroki, On fuzzy ideals and bi-ideals in semigroups, *Fuzzy Sets and Systems*, 5(1981), 203-215.
- [5] N. Kuroki, Fuzzy semiprime ideals in semigroups, *Fuzzy Sets and Systems*, 8(1982), 71-79.
- [6] N. Kuroki, On fuzzy semigroups, *Inform. Sci.*, 53(1991), 203-236.
- [7] S. Lajos, Notes on generalized bi-ideals in semigroups, *Soochow J. of Math.*, 10(1984), 55-59.
- [8] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35(1971), 512-517.
- [9] L.A. Zadeh, Fuzzy sets, *Inform. & Control*, 8(1965), 338-353.