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Abstract

A graph G = (V,E) is Complementary Distance Pattern Uniform if there
exists M ⊂ V (G) such that fM(u) = {d(u, v) : v ∈M}, for every u ∈ V (G)−
M , is independent of the choice of u ∈ V (G)−M and the set M is called the
Complementary Distance Pattern Uniform Set (CDPU set). In this paper, we
initiate a study on the CDPU sets of trees.
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1 Introduction

For all terminology and notation in graph theory, not defined specifically in
this paper, we refer the reader to F. Harary [2]. Unless mentioned otherwise,
all the graphs considered in this paper are simple, self-loop-free and finite.

B.D.Acharya define the M - distance pattern of a vertex as follows :

Definition 1.1. [3] Given an arbitrary non-empty subset M of vertices
in a graph G = (V,E), each vertex u ∈ G is associated with the set fM(u) =
{d(u, v) : v ∈M}, where d(u, v) denotes the usual distance between the vertices
u and v in G, is called the M- vertex distance pattern of u.
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Definition 1.2. [1] If fM(u) is independent of the choice of u ∈ V −M ,
then G is called a Complementary Distance Pattern Uniform (CDPU) Graph.
The set M is called the CDPU set. The least cardinality of CDPU set in G is
called the CDPU number of G, denoted by σ(G).

Theorem 1.3. [1] Every connected graph has a CDPU set.

Theorem 1.4. [1] A graph G has σ(G) = 1 if and only if G has atleast
one vertex of full degree.

Theorem 1.5. [1] For any integer n, σ(Pn) = n− 2.

Theorem 1.6. Let G be a graph with n vertices and CDPU set M. Then
the vertices in V −M possess same eccentricity.

Proof. Let M = {v1, v2, . . . , vj} be the CDPU set of G. Let V −M =
{z1, z2, . . . , zl}. Then fM(z1) = fM(z2) = · · · = fM(zl).
{d(z1,M)} = {d(z2,M)} = · · · = {d(zl,M)}.
Thus z1, z2, . . . , zl have same eccentricities.

But the converse need not be true. That is if there exists a set of ver-
tices which possess same eccentricity, then the remaining set of vertices need
not be a CDPU set. In Figure 1, {v2, v6, v7} have same eccentricities, but
{v1, v3, v4, v5, v8} is not a CDPU set.

Figure 1:

Proposition 1.7. Let G be a non-self centered graph with vertex set V .
Then V − {antipodal vertices} and V − {central vertices} are CDPU sets.

Proof. Let {vi1, vi2, . . . , vik} be the antipodal vertices. Then fM(vij) =
{1, 2, . . . , d− 1},∀j = 1, 2, . . . , k.

Also let M = {u, v} be the central vertices of G. Then fM(u) = fM(v) =
{1, 2, . . . , r}.

Theorem 1.8. Let G be a non-self centered graph having no full degree
vertex. Then σ(G) = 2 if and only if G has exactly two different eccentricities
ei < ej and exactly two vertices corresponds to atleast one of the eccentricities.
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Proof. Let the vertices correspond to ei be {vi1, vi2} and the vertices
correspond to ej be {vj1, vj2, . . . , vjq}. Take M = {vi1, vi2}. Then fM(vj1) =
fM(vj2) = · · · = fM(vjq) = {1, 2}. Hence σ(G) = 2.

Conversely suppose that σ(G) = 2. Then there exists an M with |M | = 2
such that the vertices in V −M should have the same eccentricity. since G
is not self centered and |M | = 2, then the vertices in M also should have the
same eccentricity. Hence G has two different eccentricities.

If G has more than two eccentricities, then |M | > 2, which is not possible.

Remark 1.9. Let G be a graph with no full degree vertices and exactly two
different eccentricities. Then there are two CDPU sets M1 and M2 such that
M1 ∩M2 = ∅.

2 CDPU Trees

In this section, we are characterizing the trees with σ(T ) = 1, σ(T ) = 2 and σ(T ) =
3. Also through out this paper, in all the figures, the CDPU sets are repre-
sented by white circles.

Proposition 2.1. Let T be a tree. Then σ(T ) = 1 if and only if T ≈ K1,n.

Proof. Suppose T ≈ K1,n. Then clearly σ(T ) = 1. Conversely assume
that σ(T ) = 1. That is there exists a tree with atleast one full degree vertex.
The only tree with a full degree vertex is K1,n.

Proposition 2.2. σ(B(m,n)) = 2.

Proof. Let T ≈ B(m,n). Let u and v be the central vertices of T, u1, u2, . . . , um
be the vertices attached to u and v1, v2, . . . , vn be the vertices attached to v.
Take M = {u, v}. Then fM(ui) = {1, 2},∀ i = 1, 2, . . . ,m and fM(vj) =
{1, 2},∀ j = 1, 2, . . . , n. Hence |M | ≤ 2. From Proposition 1, |M | = 1 is not
possible for T . Hence σ(B(m,n)) = 2.

Theorem 2.3. σ(T ) = 2 if and only if T ≈ B(m,n).

Proof. Suppose T ≈ B(m,n), Then from Proposition 2.2, σ(T ) = 2.
Conversely suppose that σ(T ) = 2. Then there are two vertices in M with

same eccentricity or with different eccentricity.
Case 1: If the two vertices in M are of the different eccentricity, then there
are three different eccentricities for T , since all the vertices in V −M possess
same eccentricity. Hence σ(T ) > 2.
Case 2: If the two vertices in M are of same eccentricity and since all other
vertices in T are of same eccentricity, T ≈ B(m,n).
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Remark 2.4. Since stars and bistars have CDPU number 1 and 2 respec-
tively, for all trees with p vertices, there exist trees with σ(K1,p−1) = 1 and
σ(B(m,n)) = 2.

Then naturally a question arises: when does the vertices in M possess same
eccentricity for a tree?

Theorem 2.5. Vertices in M have same eccentricity if and only if T
have atmost two different eccentricities.

Proof. Suppose the vertices in M have the same eccentricity. Since the
vertices in V −M possess same eccentricity, fM(vj) is same for every j ∈ V −M .
Since the vertices in M is having the same eccentricity,
if |M | = 1, then G ≈ K1,n

if |M | = 2, then G ≈ B(m,n)
if |M | = 3, then G ≈ B(1, 2)
if |M | = 4, then G ≈ B(2, 2) orB(1, 3)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
if |M | = s, then G ≈ B(m,n), where m+ n = s.

Proceeding like this we get that either T should be isomorphic to a star or
a bistar. Hence T has atmost two different eccentricities.

Conversely suppose that T has atmost two different eccentricities. Then
T ≈ K1,n or G ≈ B(m,n). Then from Proposition 2.1 and Proposition 2.2, we
get M should have the same eccentricity.

Theorem 2.6. Let T be a tree with p ≤ 8 vertices. Then there exists
trees with σ(T ) = 1, 2, . . . , p− 2, for every p.

Figure 2: Trees with 2 and 3 vertices and σ(T ) = 1

Proof. Case 1: When p = 2, then T ≈ K1,1. Clearly σ(T ) = 1.
Case 2: p = 3, then T ≈ K1,2. In this case σ(T ) = 1.
Case 3: p = 4, then T ≈ K1,3 or P4.

Subcase 3.1: When T ≈ K1,3, then σ(T ) = 1.
Subcase 3.2: When T ≈ P4, then σ(T ) = 2.

Case 4: p = 5, then T ≈ K1,4 or P5 or B(1, 2).
Subcase 4.1: When T ≈ K1,4, clearly σ(T ) = 1.
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Figure 3: Trees on 4 vertices with σ(T ) = 1 and 2

Figure 4: Trees on 5 vertices with σ(T ) = 1, 2 and 3

Subcase 4.2: When T ≈ P5, then σ(P5) = 3.
Subcase 4.3: When T ≈ B(1, 2), then σ(B(1, 2)) = 2.

Case 5: p = 6

Figure 5: Trees on 6 vertices with σ(T ) = 1, 2, 3 and 4

Subcase 5.1: T ≈ P6, then σ(P6) = 4.
Subcase 5.2: T ≈ K1,5, then σ(T ) = 1.
Subcase 5.3: T ≈ B(2, 2) or B(1, 3). In both cases σ(T ) = 2.
Subcase 5.4: T is isomorphic to a tree with one vertex is attached to

a pendant vertex of P3 and two vertices are attached to the other pendant
vertex of P3.
Let {v1, v2, v3} are the vertices of P3 and u1 be the vertex attached to v1
and {u2, u3} be the vertices attached to v3. Take M = {v1, v2, v3}. Then
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fM(ui) = {1, 2, 3}, ∀i = 1, 2, 3. Hence σ(T ) = 3.
Case 6: p = 7

Figure 6: Trees on 7 vertices with σ(T ) = 1, 2, 3, 4 and 5

Subcase 6.1: T ≈ P7, then σ(T ) = 5.
Subcase 6.2: T ≈ K1,6, then clearly σ(T ) = 1.
Subcase 6.3: T ≈ B(2, 3) or B(1, 4), then σ(T ) = 2.
Subcase 6.4: T is isomorphic to a tree with two vertices are attached to a

pendant vertex of P3 and two vertices are attached to the other pendant vertex
of P3.
Let {v1, v2, v3} are the vertices of P3 and {u1, u2} be the vertices attached to
v1 and {u3, u4} be the vertices attached to v3. Take M = {v1, v2, v3}. Then
fM(ui) = {1, 2, 3},∀i = 1, 2, 3, 4. Hence σ(T ) = 3.

Subcase 6.5: T is isomorphic to a tree with one vertex is attached to
a pendant vertex of P4 and two vertices are attached to the other pendant
vertex of P4.
Let {v1, v2, v3, v4} be the vertices of P4 and u1 be the vertex attached to v1
and {u2, u3} be the vertices attached to v4. Take M = {v1, v2, v3, v4}. Then
fM(ui) = {1, 2, 3, 4},∀i = 1, 2, 3. Hence σ(T ) = 4.
Case 7: p = 8

Subcase 7.1: T ≈ K1,7, then σ(T ) = 1.
Subcase 7.2: T ≈ P8, then σ(T ) = 6.
Subcase 7.3: T ≈ B(3, 3), then σ(T ) = 2.
Subcase 7.4: T is isomorphic to a tree with two vertices are attached to

a pendant vertex of P3 and three vertices are attached to the other pendant
vertex of P3.
Let {v1, v2, v3} are the vertices of P3 and {u1, u2} be the vertices attached to
v1 and {u3, u4, u5} be the vertices attached to v3. Take M = {v1, v2, v3}. Then
fM(ui) = {1, 2, 3},∀i = 1, 2, 3, 4, 5. Hence σ(T ) = 3.

Subcase 7.5: T is isomorphic to a tree with two vertices are attached to a
pendant vertex of P4 and two vertices are attached to the other pendant vertex
of P4.
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Figure 7: Trees on 8 vertices with σ(T ) = 1, 2, 3, 4, 5 and 6

Let {v1, v2, v3, v4} be the vertices of P4 and {u1, u2} be the vertices attached
to v1 and {u3, u4} be the vertices attached to v4. Take M = {v1, v2, v3, v4}.
Then fM(ui) = {1, 2, 3, 4},∀i = 1, 2, 3, 4. Hence σ(T ) = 4.

Subcase 7.6: T is isomorphic to a tree with one vertex is attached to a pen-
dant vertex of P5 and two vertices are attached to the other pendant vertex of
P5.
Let {v1, v2, v3, v4, v5} be the vertices of P5 and {u1} be the vertex attached to
v1 and {u2, u3} be the vertices attached to v5. Take M = {v1, v2, v3, v4, v5}.
Then fM(ui) = {1, 2, 3, 4, 5},∀i = 1, 2, 3. Hence σ(T ) = 5.

Theorem 2.7. For every trees on p vertices, there exists trees with σ(G) =
1, 2, . . . , p− 2.

Remark 2.8. For a tree T with p < 5 vertices, either σ(T ) = 1 or 2.

Theorem 2.9. σ(T ) = 3 if and only if T is one among the following
forms:
(a). T ≈ P5

(b). To a path with vertex set {v1, v2, v3, v4, v5}, pendant vertices should be
attached to v2 or v4 or both
(c). To a path with vertex set {v1, v2, v3, v4, v5}, pendant vertices should be
attached to v3.

Proof. (a). From Theorem 1.5, σ(P5) = 3.
(b). From Theorem 2.6, Case 6, subcase 6.4, σ(T ) = 3.
(c). Let the vertex attach to v3 be v6. Take M = {v1, v3, v5}. Then fM(vi) =
{1, 2}, ∀ i = 2, 4, 6. Hence σ(T ) = 3.

Next we have to show that σ(T ) > 3 for all other cases.
Case 1: P5 with vertices attached to v2, v3 and v4.
Let the vertices attached to v2, v3 and v4 be v6, v7 and v8 respectively. Take
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M = {v2, v3, v4, v7} giving fM(vi) = {1, 2, 3},∀ i = 1, 5, 6, 8. Hence σ(T ) = 4.
Case 2: P5 with a path of length 2 is attached to the central vertex of P5.
Let u1 and u2 be the vertices of P2 attached to v3. Take M = {v2, v3, v4, u1}
which implies fM(v1) = fM(v5) = fM(u2) = {1, 2, 3}. Hence σ(T ) = 4.
Case 3: P5 with a path of length 2 is attached to the vertex v4 of P5.
Let u1 and u2 be the vertices of P2 attached to v4. Take M = {v2, v3, v4, v5, u1}
which implies fM(v1) = fM(u2) = {1, 2, 3, 4}. Hence σ(T ) = 5.

For all other cases eccentricities should be greater than 5 and hence σ(T ) >
4. Hence the proof.

Definition 2.10. Olive tree Tk is a rooted tree consisting of k branches,
the ith branch is a path with a length k.

Theorem 2.11. Olive tree Tk, k ≥ 5 has CDPU number k2−k+2
2

.

Figure 8: Olive Tree T6 with σ(T6) = 16 and fM(vi1) = {1, 2, 3, 4, 5, 6, 7}

Proof. Let the vertices of the ith branch of Tk be {u, vi1, vi2, . . . , vii} and u
be the central vertex. Take V −M = {v11, v21, v31, . . . , vk2}. Take all other ver-
tices inside M . Then fM(vi1) = fM(vk2) = {1, 2, . . . , k+1},∀i = 1, 2, . . . , k−1.
Hence
σ(Tk) = (k − 1) + (k − 2) + (k − 3) + · · ·+ (k − (k − 1)) + 1
= (k − 1)k + (1 + 2 + · · ·+ k − 1) + 1

= k(k − 1) + (k−1)k
2

+ 1

= k(k−1)+2
2

= k2−k+2
2

.
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