Gen. Math. Notes, Vol. 4, No. 1, May 2011, pp.90-98
ISSN 2219-7184; Copyright (C)ICSRS Publication, 2011
www.i-csrs.org
Available free online at http://www.geman.in

New Perspectives on CDPU Graphs

Beena Koshy ${ }^{1}$ and Germina K.A. ${ }^{2}$
${ }^{1}$ Research Center and PG Department of Mathematics, Mary Matha Arts \& Science College, Vemom P.O., Mananthavady - 670645, India
E-mail: beenakoshy1@yahoo.co.in
${ }^{2}$ Research Center and PG Department of Mathematics, Mary Matha Arts \& Science College, Vemom P.O., Mananthavady - 670645, India E-mail: srgerminaka@gmail.com

(Received: 24-2-11/Accepted: 6-4-11)

Abstract

A graph $G=(V, E)$ is Complementary Distance Pattern Uniform if there exists $M \subset V(G)$ such that $f_{M}(u)=\{d(u, v): v \in M\}$, for every $u \in V(G)-$ M, is independent of the choice of $u \in V(G)-M$ and the set M is called the Complementary Distance Pattern Uniform Set (CDPU set). In this paper, we initiate a study on the CDPU sets of trees.

Keywords: Complementary Distance Pattern Uniform.

1 Introduction

For all terminology and notation in graph theory, not defined specifically in this paper, we refer the reader to F. Harary [2]. Unless mentioned otherwise, all the graphs considered in this paper are simple, self-loop-free and finite.
B.D.Acharya define the M - distance pattern of a vertex as follows :

Definition 1.1. [3] Given an arbitrary non-empty subset M of vertices in a graph $G=(V, E)$, each vertex $u \in G$ is associated with the set $f_{M}(u)=$ $\{d(u, v): v \in M\}$, where $d(u, v)$ denotes the usual distance between the vertices u and v in G, is called the M-vertex distance pattern of u.

Definition 1.2. [1] If $f_{M}(u)$ is independent of the choice of $u \in V-M$, then G is called a Complementary Distance Pattern Uniform (CDPU) Graph. The set M is called the CDPU set. The least cardinality of $C D P U$ set in G is called the CDPU number of G, denoted by $\sigma(G)$.

Theorem 1.3. [1] Every connected graph has a CDPU set.
Theorem 1.4. [1] A graph G has $\sigma(G)=1$ if and only if G has atleast one vertex of full degree.

Theorem 1.5. [1] For any integer $n, \sigma\left(P_{n}\right)=n-2$.
Theorem 1.6. Let G be a graph with n vertices and CDPU set M. Then the vertices in $V-M$ possess same eccentricity.

Proof. Let $M=\left\{v_{1}, v_{2}, \ldots, v_{j}\right\}$ be the CDPU set of G. Let $V-M=$ $\left\{z_{1}, z_{2}, \ldots, z_{l}\right\}$. Then $f_{M}\left(z_{1}\right)=f_{M}\left(z_{2}\right)=\cdots=f_{M}\left(z_{l}\right)$.
$\left\{d\left(z_{1}, M\right)\right\}=\left\{d\left(z_{2}, M\right)\right\}=\cdots=\left\{d\left(z_{l}, M\right)\right\}$.
Thus $z_{1}, z_{2}, \ldots, z_{l}$ have same eccentricities.
But the converse need not be true. That is if there exists a set of vertices which possess same eccentricity, then the remaining set of vertices need not be a CDPU set. In Figure $1,\left\{v_{2}, v_{6}, v_{7}\right\}$ have same eccentricities, but $\left\{v_{1}, v_{3}, v_{4}, v_{5}, v_{8}\right\}$ is not a CDPU set.

Figure 1:

Proposition 1.7. Let G be a non-self centered graph with vertex set V. Then $V-\{$ antipodal vertices $\}$ and $V-\{$ central vertices $\}$ are CDPU sets.

Proof. Let $\left\{v_{i 1}, v_{i 2}, \ldots, v_{i k}\right\}$ be the antipodal vertices. Then $f_{M}\left(v_{i j}\right)=$ $\{1,2, \ldots, d-1\}, \forall j=1,2, \ldots, k$.

Also let $M=\{u, v\}$ be the central vertices of G. Then $f_{M}(u)=f_{M}(v)=$ $\{1,2, \ldots, r\}$.

Theorem 1.8. Let G be a non-self centered graph having no full degree vertex. Then $\sigma(G)=2$ if and only if G has exactly two different eccentricities $e_{i}<e_{j}$ and exactly two vertices corresponds to atleast one of the eccentricities.

Proof. Let the vertices correspond to e_{i} be $\left\{v_{i 1}, v_{i 2}\right\}$ and the vertices correspond to e_{j} be $\left\{v_{j 1}, v_{j 2}, \ldots, v_{j q}\right\}$. Take $M=\left\{v_{i 1}, v_{i 2}\right\}$. Then $f_{M}\left(v_{j 1}\right)=$ $f_{M}\left(v_{j 2}\right)=\cdots=f_{M}\left(v_{j q}\right)=\{1,2\}$. Hence $\sigma(G)=2$.

Conversely suppose that $\sigma(G)=2$. Then there exists an M with $|M|=2$ such that the vertices in $V-M$ should have the same eccentricity. since G is not self centered and $|M|=2$, then the vertices in M also should have the same eccentricity. Hence G has two different eccentricities.

If G has more than two eccentricities, then $|M|>2$, which is not possible.
Remark 1.9. Let G be a graph with no full degree vertices and exactly two different eccentricities. Then there are two CDPU sets M_{1} and M_{2} such that $M_{1} \cap M_{2}=\emptyset$.

2 CDPU Trees

In this section, we are characterizing the trees with $\sigma(T)=1, \sigma(T)=2$ and $\sigma(T)=$ 3. Also through out this paper, in all the figures, the CDPU sets are represented by white circles.

Proposition 2.1. Let T be a tree. Then $\sigma(T)=1$ if and only if $T \approx K_{1, n}$.
Proof. Suppose $T \approx K_{1, n}$. Then clearly $\sigma(T)=1$. Conversely assume that $\sigma(T)=1$. That is there exists a tree with atleast one full degree vertex. The only tree with a full degree vertex is $K_{1, n}$.

Proposition 2.2. $\quad \sigma(B(m, n))=2$.
Proof. Let $T \approx B(m, n)$. Let u and v be the central vertices of $T, u_{1}, u_{2}, \ldots, u_{m}$ be the vertices attached to u and $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices attached to v. Take $M=\{u, v\}$. Then $f_{M}\left(u_{i}\right)=\{1,2\}, \forall i=1,2, \ldots, m$ and $f_{M}\left(v_{j}\right)=$ $\{1,2\}, \forall j=1,2, \ldots, n$. Hence $|M| \leq 2$. From Proposition $1,|M|=1$ is not possible for T. Hence $\sigma(B(m, n))=2$.

Theorem 2.3. $\quad \sigma(T)=2$ if and only if $T \approx B(m, n)$.
Proof. Suppose $T \approx B(m, n)$, Then from Proposition 2.2, $\sigma(T)=2$.
Conversely suppose that $\sigma(T)=2$. Then there are two vertices in M with same eccentricity or with different eccentricity.
Case 1: If the two vertices in M are of the different eccentricity, then there are three different eccentricities for T, since all the vertices in $V-M$ possess same eccentricity. Hence $\sigma(T)>2$.
Case 2: If the two vertices in M are of same eccentricity and since all other vertices in T are of same eccentricity, $T \approx B(m, n)$.

Remark 2.4. Since stars and bistars have CDPU number 1 and 2 respectively, for all trees with p vertices, there exist trees with $\sigma\left(K_{1, p-1}\right)=1$ and $\sigma(B(m, n))=2$.

Then naturally a question arises: when does the vertices in M possess same eccentricity for a tree?

Theorem 2.5. Vertices in M have same eccentricity if and only if T have atmost two different eccentricities.

Proof. Suppose the vertices in M have the same eccentricity. Since the vertices in $V-M$ possess same eccentricity, $f_{M}\left(v_{j}\right)$ is same for every $j \in V-M$. Since the vertices in M is having the same eccentricity,
if $|M|=1$, then $G \approx K_{1, n}$
if $|M|=2$, then $G \approx B(m, n)$
if $|M|=3$, then $G \approx B(1,2)$
if $|M|=4$, then $G \approx B(2,2)$ or $B(1,3)$
if $|M|=s$, then $G \approx B(m, n)$, where $m+n=s$.
Proceeding like this we get that either T should be isomorphic to a star or a bistar. Hence T has atmost two different eccentricities.

Conversely suppose that T has atmost two different eccentricities. Then $T \approx K_{1, n}$ or $G \approx B(m, n)$. Then from Proposition 2.1 and Proposition 2.2, we get M should have the same eccentricity.

Theorem 2.6. Let T be a tree with $p \leq 8$ vertices. Then there exists trees with $\sigma(T)=1,2, \ldots, p-2$, for every p.

Figure 2: Trees with 2 and 3 vertices and $\sigma(T)=1$

Proof. Case 1: When $p=2$, then $T \approx K_{1,1}$. Clearly $\sigma(T)=1$.
Case 2: $p=3$, then $T \approx K_{1,2}$. In this case $\sigma(T)=1$.
Case 3: $p=4$, then $T \approx K_{1,3}$ or P_{4}.
Subcase 3.1: When $T \approx K_{1,3}$, then $\sigma(T)=1$.
Subcase 3.2: When $T \approx P_{4}$, then $\sigma(T)=2$.
Case 4: $p=5$, then $T \approx K_{1,4}$ or P_{5} or $B(1,2)$.
Subcase 4.1: When $T \approx K_{1,4}$, clearly $\sigma(T)=1$.

Figure 3: Trees on 4 vertices with $\sigma(T)=1$ and 2

Figure 4: Trees on 5 vertices with $\sigma(T)=1,2$ and 3

Subcase 4.2: When $T \approx P_{5}$, then $\sigma\left(P_{5}\right)=3$.
Subcase 4.3: When $T \approx B(1,2)$, then $\sigma(B(1,2))=2$.

Case 5: $p=6$

Figure 5: Trees on 6 vertices with $\sigma(T)=1,2,3$ and 4

Subcase 5.1: $T \approx P_{6}$, then $\sigma\left(P_{6}\right)=4$.
Subcase 5.2: $T \approx K_{1,5}$, then $\sigma(T)=1$.
Subcase 5.3: $T \approx B(2,2)$ or $B(1,3)$. In both cases $\sigma(T)=2$.
Subcase 5.4: T is isomorphic to a tree with one vertex is attached to a pendant vertex of P_{3} and two vertices are attached to the other pendant vertex of P_{3}.
Let $\left\{v_{1}, v_{2}, v_{3}\right\}$ are the vertices of P_{3} and u_{1} be the vertex attached to v_{1} and $\left\{u_{2}, u_{3}\right\}$ be the vertices attached to v_{3}. Take $M=\left\{v_{1}, v_{2}, v_{3}\right\}$. Then
$f_{M}\left(u_{i}\right)=\{1,2,3\}, \forall i=1,2,3$. Hence $\sigma(T)=3$.
Case 6: $p=7$

Figure 6: Trees on 7 vertices with $\sigma(T)=1,2,3,4$ and 5

Subcase 6.1: $T \approx P_{7}$, then $\sigma(T)=5$.
Subcase 6.2: $T \approx K_{1,6}$, then clearly $\sigma(T)=1$.
Subcase 6.3: $T \approx B(2,3)$ or $B(1,4)$, then $\sigma(T)=2$.
Subcase 6.4: T is isomorphic to a tree with two vertices are attached to a pendant vertex of P_{3} and two vertices are attached to the other pendant vertex of P_{3}.
Let $\left\{v_{1}, v_{2}, v_{3}\right\}$ are the vertices of P_{3} and $\left\{u_{1}, u_{2}\right\}$ be the vertices attached to v_{1} and $\left\{u_{3}, u_{4}\right\}$ be the vertices attached to v_{3}. Take $M=\left\{v_{1}, v_{2}, v_{3}\right\}$. Then $f_{M}\left(u_{i}\right)=\{1,2,3\}, \forall i=1,2,3,4$. Hence $\sigma(T)=3$.

Subcase 6.5: T is isomorphic to a tree with one vertex is attached to a pendant vertex of P_{4} and two vertices are attached to the other pendant vertex of P_{4}.
Let $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ be the vertices of P_{4} and u_{1} be the vertex attached to v_{1} and $\left\{u_{2}, u_{3}\right\}$ be the vertices attached to v_{4}. Take $M=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. Then $f_{M}\left(u_{i}\right)=\{1,2,3,4\}, \forall i=1,2,3$. Hence $\sigma(T)=4$.
Case 7: $p=8$
Subcase 7.1: $T \approx K_{1,7}$, then $\sigma(T)=1$.
Subcase 7.2: $T \approx P_{8}$, then $\sigma(T)=6$.
Subcase 7.3: $T \approx B(3,3)$, then $\sigma(T)=2$.
Subcase 7.4: T is isomorphic to a tree with two vertices are attached to a pendant vertex of P_{3} and three vertices are attached to the other pendant vertex of P_{3}.
Let $\left\{v_{1}, v_{2}, v_{3}\right\}$ are the vertices of P_{3} and $\left\{u_{1}, u_{2}\right\}$ be the vertices attached to v_{1} and $\left\{u_{3}, u_{4}, u_{5}\right\}$ be the vertices attached to v_{3}. Take $M=\left\{v_{1}, v_{2}, v_{3}\right\}$. Then $f_{M}\left(u_{i}\right)=\{1,2,3\}, \forall i=1,2,3,4,5$. Hence $\sigma(T)=3$.

Subcase 7.5: T is isomorphic to a tree with two vertices are attached to a pendant vertex of P_{4} and two vertices are attached to the other pendant vertex of P_{4}.

Figure 7: Trees on 8 vertices with $\sigma(T)=1,2,3,4,5$ and 6

Let $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ be the vertices of P_{4} and $\left\{u_{1}, u_{2}\right\}$ be the vertices attached to v_{1} and $\left\{u_{3}, u_{4}\right\}$ be the vertices attached to v_{4}. Take $M=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. Then $f_{M}\left(u_{i}\right)=\{1,2,3,4\}, \forall i=1,2,3,4$. Hence $\sigma(T)=4$.

Subcase 7.6: T is isomorphic to a tree with one vertex is attached to a pendant vertex of P_{5} and two vertices are attached to the other pendant vertex of P_{5}.
Let $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ be the vertices of P_{5} and $\left\{u_{1}\right\}$ be the vertex attached to v_{1} and $\left\{u_{2}, u_{3}\right\}$ be the vertices attached to v_{5}. Take $M=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$. Then $f_{M}\left(u_{i}\right)=\{1,2,3,4,5\}, \forall i=1,2,3$. Hence $\sigma(T)=5$.

Theorem 2.7. For every trees on p vertices, there exists trees with $\sigma(G)=$ $1,2, \ldots, p-2$.

Remark 2.8. For a tree T with $p<5$ vertices, either $\sigma(T)=1$ or 2 .
Theorem 2.9. $\quad \sigma(T)=3$ if and only if T is one among the following forms:
(a). $T \approx P_{5}$
(b). To a path with vertex set $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$, pendant vertices should be attached to v_{2} or v_{4} or both
(c). To a path with vertex set $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$, pendant vertices should be attached to v_{3}.

Proof. (a). From Theorem 1.5, $\sigma\left(P_{5}\right)=3$.
(b). From Theorem 2.6, Case 6, subcase 6.4, $\sigma(T)=3$.
(c). Let the vertex attach to v_{3} be v_{6}. Take $M=\left\{v_{1}, v_{3}, v_{5}\right\}$. Then $f_{M}\left(v_{i}\right)=$ $\{1,2\}, \forall i=2,4,6$. Hence $\sigma(T)=3$.

Next we have to show that $\sigma(T)>3$ for all other cases.
Case 1: P_{5} with vertices attached to v_{2}, v_{3} and v_{4}.
Let the vertices attached to v_{2}, v_{3} and v_{4} be v_{6}, v_{7} and v_{8} respectively. Take
$M=\left\{v_{2}, v_{3}, v_{4}, v_{7}\right\}$ giving $f_{M}\left(v_{i}\right)=\{1,2,3\}, \forall i=1,5,6,8$. Hence $\sigma(T)=4$. Case 2: P_{5} with a path of length 2 is attached to the central vertex of P_{5}. Let u_{1} and u_{2} be the vertices of P_{2} attached to v_{3}. Take $M=\left\{v_{2}, v_{3}, v_{4}, u_{1}\right\}$ which implies $f_{M}\left(v_{1}\right)=f_{M}\left(v_{5}\right)=f_{M}\left(u_{2}\right)=\{1,2,3\}$. Hence $\sigma(T)=4$.
Case 3: P_{5} with a path of length 2 is attached to the vertex v_{4} of P_{5}.
Let u_{1} and u_{2} be the vertices of P_{2} attached to v_{4}. Take $M=\left\{v_{2}, v_{3}, v_{4}, v_{5}, u_{1}\right\}$ which implies $f_{M}\left(v_{1}\right)=f_{M}\left(u_{2}\right)=\{1,2,3,4\}$. Hence $\sigma(T)=5$.

For all other cases eccentricities should be greater than 5 and hence $\sigma(T)>$ 4. Hence the proof.

Definition 2.10. Olive tree T_{k} is a rooted tree consisting of k branches, the $i^{\text {th }}$ branch is a path with a length k.

Theorem 2.11. Olive tree $T_{k}, k \geq 5$ has CDPU number $\frac{k^{2}-k+2}{2}$.

Figure 8: Olive Tree T_{6} with $\sigma\left(T_{6}\right)=16$ and $f_{M}\left(v_{i 1}\right)=\{1,2,3,4,5,6,7\}$

Proof. Let the vertices of the $i^{\text {th }}$ branch of T_{k} be $\left\{u, v_{i 1}, v_{i 2}, \ldots, v_{i i}\right\}$ and u be the central vertex. Take $V-M=\left\{v_{11}, v_{21}, v_{31}, \ldots, v_{k 2}\right\}$. Take all other vertices inside M. Then $f_{M}\left(v_{i 1}\right)=f_{M}\left(v_{k 2}\right)=\{1,2, \ldots, k+1\}, \forall i=1,2, \ldots, k-1$. Hence

$$
\begin{aligned}
& \sigma\left(T_{k}\right)=(k-1)+(k-2)+(k-3)+\cdots+(k-(k-1))+1 \\
& =(k-1) k+(1+2+\cdots+k-1)+1 \\
& =k(k-1)+\frac{(k-1) k}{2}+1 \\
& =\frac{k(k-1)+2}{2} \\
& =\frac{k^{2}-k+2}{2} .
\end{aligned}
$$

Acknowledgements

The authors are thankful to the Department of Science \& Technology, Government of India for supporting this research under the Project No. SR/S4/MS:277/06.

References

[1] K.A. Germina and K. Beena, Complementary distance pattern uniform graphs, International Journal on Contemporary Mathematical Sciences, 5(55) 2010, 2745-2751.
[2] F. Harary, Graph Theory, Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, (1969).
[3] DST grant-in-aid project No.SR/S4/277/06, Technical Report, Funded by the Department of Science \& Technology (DST), April, (2009).

