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Abstract

In this paper we introduce a new concept for almost double lacunary ∆m -
sequence spaces defined by Orlicz function and give inclusion relations.The re-
sults here in proved are analogous to those by Ayhan Esi [General Mathematics
(2009),2(17) 53-66].
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1 Introduction

Let l∞, c and c0 be the spaces of bounded, convergent and null sequences
x = (xk), with complex terms, respectively, normed by ‖x‖∞ = sup

k
|xk|, where

k ∈ N.
A sequence x = (xk) ∈ l∞ is said to be almost convergent[15] if all Banach
limits of x = (xk) coincide. in [15], it was shown that

ĉ =

{
x = (xk) : lim

n→∞

1

n

n∑
k=1

xk+s exists, uniformly in s

}
.
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In [16,17], Maddox defined a sequence x = (xk) to be strongly convergent to a
number L if

lim
n→∞

1

n

n∑
k=1

|xk − L| = 0, uniformly in s

By a lacunary sequence θ = (kr), r=0,1,2,... where ko = 0, we mean an in-
creasing sequence of non negative integers hr = (kr − kr−1) → ∞(r → ∞).
The intervals determined by θ are denoted by Ir = (kr−1, kr] and ratio kr

kr−1

will be denoted by qr.
The space of lacunary strongly convergent sequence Nθ was defined by Freed-
man et al.[3] as follows

Nθ =

{
x = (xk) : lim

r→∞

1

hr

∑
k∈Ir

|xk − L| = 0, for some L

}
.

The double lacunary sequence was defined by E.Savas and R.F.Patterson[20]
as follows:
The double sequence θr,s = {(kr, ls)} is called double lacunary if there exist
two increasing sequence of integers such that

k0 = 0, hr = kr − kr−1 →∞ as r →∞

and

l0 = 0, h−s = ls − ls−1 →∞ as s→∞.

The following intervals are determined by θ.

Ir = {(kr) : kr−1 < k < kr}, Is = {(l) : ls−1 < l < ls}

Ir,s = {(k, l) : kr−1 < k < kr and ls−1 < l < ls},

qr = kr
kr−1

, q−s = ls
ls−1

and qr,s = qrq
−
s . We will denote the set of all lacunary

sequences by Nθr,s .
Let x = (xkl) be a double sequence that is a double infinite array of elements

xkl. The space of double lacunary strongly convergent sequence is defined as
follows:

Nθr,s =

{
x = (xkl) : lim

r,s

1

hr,s

∑
(k,l)∈Ir,s

|xkl − L| = 0 for some L

}
(see[20]).
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Double sequences have been studied by V.A.Khan[8,9,10,11], Moricz and
Rhoades[19] and many others.

In [12], Kizmaz defined the sequence spaces
Z(∆) = {x = (xk) : (∆xk) ∈ Z} for Z = l∞, c, c0, where ∆x = (∆xk) =
(xk−xk+1). After Et. and Colak [1] generalized the difference sequence spaces
to the sequence spaces Z(∆m) = {x = (xk) : (∆mxk) ∈ Z} for Z = l∞, c, c0,
where m ∈ N,∆0x = (xk),
∆x = (xk − xk+1),∆mx = (∆mxk) = (∆m−1xk −∆m−1xk+1), and so that

∆mxk =
m∑
v=0

(−1)v
(
m
v

)
.

An Orlicz Function is a function M : [0,∞)→ [0,∞) which is continuous,
nondecreasing and convex with M(0) = 0, M(x) > 0 for x > 0 and M(x) →
∞, as x→∞.

An Orlicz function M satisfies the ∆2 − condition (M ∈ ∆2 for short ) if
there exist constant k ≥ 2 and u0 > 0 such that

M(2u) ≤ KM(u)

whenever |u| ≤ u0.

An Orlicz function M can always be represented (see[13])in the integral
form

M(x) =
x∫
0

q(t)dt, where q known as the kernel of M, is right differentiable for

t ≥ 0, q(t) > 0 for t > 0, q is non-decreasing and q(t)→∞ as t→∞.

Note that an Orlicz function satisfies the inequality

M(λx) ≤ λM(x) for all λ with 0 < λ < 1,

since M is convex and M(0) = 0.
Lindesstrauss and Tzafriri [14] used the idea of Orlicz sequence space;

lM :=

{
x ∈ w :

∞∑
k=1

M

(
|xk|
ρ

)
<∞, for some ρ > 0

}
which is Banach space with the norm the norm

‖x‖M = inf

{
ρ > 0 :

∞∑
k=1

M

(
|xk|
ρ

)
≤ 1

}
.
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The space lM is closely related to the space lp, which is an Orlicz sequence
space with M(x) = xp for 1 ≤ p < ∞. Orlicz function has been studied by
V.A.Khan[4,5,6,7] and many others.

The purpose of this paper is to introduce and study a concept of lacunary
almost generalized ∆m−convergence function and to examine these new se-
quence spaces which also generalize the well known Orlicz sequence space lM
and strongly summable sequence [C, 1, p], [C, 1, P ]0 and [C, 1, p]∞(see[18]).

Let M be an Orlicz function and p = (pk) be any bounded sequence of strictly
positive real numbers. Ayhan Esi[2] defined the following sequence spaces:

[ĉ,M, p](∆m) =

{
x = (xk) : lim

n→∞

1

n

∞∑
k=1

[
M

(
|∆mxk+m − L|

ρ

)]pk
= 0,

uniformly in m for some ρ > 0 and L > 0

}
.

[ĉ,M, p]0(∆m) =

{
x = (xk) : lim

n→∞

n∑
k=1

[
M

(
|∆mxk+m|

ρ

)]pk
= 0,

uniformly in m, for some ρ > 0

}
.

[ĉ,M, p]∞(∆m) =

{
x = (xk) : sup

n,m

1

n

∑
k=1

n

[
M

(
|∆mxk+m|

ρ

)]pk
<∞, for some ρ > 0

}
.

If x = (xk) ∈ [ĉ,M, p](∆m), we say that x = (xk) is lacunary almost ∆m-
convergent to L with respect an Orlicz function M.

The folowing inequality will be used throughout the paper

|xkl + ykl|pkl ≤ K(|xkl|pkl + |ykl|pkl) [1.1]

where xkl and ykl are complex numbers, K = max(1, 2H−1) and H = sup
k,l

pkl <

∞.
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2 Main Results

In the following paper we introduce and examine the following spaces defined
by Orlicz function.

Definition 2.1. Let M be an Orlicz function and p = (pkl) be any bounded
sequence of strictly positive real numbers. We have

[ĉ2,M, p]θ(∆m) =

{
x = (xkl) : lim

r,s

1

hr,s

∑
(k,l)∈Ir,s

[
M

(
|∆mxk+m,l+n − L|

ρ

)]pkl
= 0,

uniformly in m and n, for some ρ > 0 and L > 0

}
.

[ĉ2,M, p]θ0(∆m) =

{
x = (xkl) : lim

r,s

1

hr,s

∑
(k,l)∈Ir,s

[
M

(
|∆mxk+m,l+n|

ρ

)]pkl
= 0,

uniformly in m and n, for some ρ > 0

}
.

[ĉ2,M, p]θ∞(∆m) =

{
x = (xkl) : sup

r,s,m,n

1

hr,s

∑
(k,l)∈Ir,s

[
M

(
|∆mxk+m,l+n|

ρ

)]pkl
<∞, for some ρ > 0

}
.

where

∆mx = (∆mxkl) = (∆m−1xkl −∆m−1xk,l+1 −∆m−1xk+1,l + ∆m−1xk+1,l+1),

(∆1xkl) = (∆xkl) = (xkl − xk,l+1 − xk+1,l + xk+1,l+1),

∆0x = (xk,l), for all k, l ∈ N,

and also this generalized difference double notion has the following binomial
representation:

∆mxkl =
m∑
i=0

m∑
j=0

(−1)i+j
(
m
i

)(
m
j

)
xk+i,l+j

.

If x = (xkl) ∈ [ĉ2,M, p]θ(∆m), we say that x = (xkl) is double lacunary
almost ∆m-convergent to L with respect an Orlicz function M.
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In this section we prove some results involving the double sequence spaces
[ĉ2,M, p]θ(∆m), [ĉ2,M, p]θ0(∆m) and [ĉ2,M, p]θ∞(∆m).

Theorem 2.1. Let M be an Orlicz function and p = (pkl) be a bounded se-
quence of strictly real numbers. Then [ĉ2,M, p]θ(∆m), [ĉ2,M, p]θ0(∆m) and [ĉ2,M, p]θ∞(∆m)
are linear spaces over the set of complex numbers C.

Proof. Let x = (xkl), y = (ykl) ∈ [ĉ2,M, p]θ0(∆m) and α, β ∈ C. Then there
exists positive ρ1 and ρ2 such that

lim
r,s

1

hr,s

∑
(k,l)∈Ir,s

[
M

(
|∆mxk+m,l+n|

ρ1

)]pkl
= 0, uniformly in m and n

and

lim
r,s

1

hr,s

∑
(k,l)∈Ir,s

[
M

(
|∆myk+m,l+n|

ρ2

)]pkl
= 0, uniformly in m and n

Let ρ3 = max(2|α|ρ1, 2|β|ρ2). Since M is non decreasing convex function, by
using equation [1.1], we have

1
hr,s

∑
(k,l)∈Ir,s

[
M

(
|∆mαxk+m,l+n+βyk+m,l+n|

ρ3

)]pkl
=

1

hr,s

∑
(k,l)∈Ir,s

[
M

(
|∆mαxk+m,l+n|

ρ3

+
|β∆m(yk+m,l+n)|

ρ3

)]pkl
≤ K

1

hrs

∑
(k,l)∈Ir,s

1

2pkl

[
M

(
|∆mxk+m,l+n|

ρ1

]
+K

1

hrs

∑
(k,l)∈Ir,s

1

2pkl

[
M

(
|∆m(yk+m,l+n)|

ρ2

)]pkl
≤ K

1

hrs

∑
(k,l)∈Ir,s

[
M

(
|∆mxk+m,l+n|

ρ1

)]
+K

1

hrs

∑
(k,l)∈Ir,s

[
M

(
|∆m(yk+m,l+n)|

ρ2

)]pkl
→ 0 as r, s→∞ uniformly in m and n.

So αx+ βy ∈ [ĉ2,M, p]θ0(∆m). Hence [ĉ2,M, p]θ0(∆m) is a linear space.
The proof for the cases [ĉ2,M, p]θ(∆m) and [ĉ2,M, p]θ∞(∆m) are similar to the
above proof.

Theorem 2.2. For any Orlicz function M on a bounded double sequence
p = (pkl) of strictly positive real numbers, [ĉ2,M, p]θ0(∆m) is a topological lin-
ear space paranormed by

h(xkl) = sup
k
|xk1|+sup

l
|x1l|+inf

{
ρ
pkl
H :

(
1

hr,s

∑
(k,l)∈Ir,s

[
M

(
|∆mxk+m,l+n|

ρ

)]pkl) 1
H

≤ 1

}
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where H = max(1, sup
k,l

pkl) ≤ ∞.

Proof. Clearly h(xkl) ≥ 0, for all x = (xkl) ∈ [ĉ,M, p]θ0(∆m)
Since M(0) = 0, we get h(0) = 0
h(−(xkl)) = h(xkl).
Let (xkl), (ykl) ∈ [ĉ2,M, p]θ0(∆m). Then there exist ρ1 > 0 and ρ2 > 0 such that(

1

hr,s

∑
(k,l)∈Ir,s

[
M

(
|∆mxk+m,l+n|

ρ

)]pkl) 1
H

≤ 1

and (
1

hr,s

∑
(k,l)∈Ir,s

[
M

(
|∆myk+m,l+n|

ρ

)]pkl) 1
H

≤ 1

for each r, s,m and n.
Let ρ = ρ1 + ρ2. Then we have,(

1
hr,s

∑
(k,l)∈Ir,s

[
M

(
|∆mxk+m,l+n+yk+m,l+n|

ρ

)]pkl) 1
H

≤
(

1

hr,s

∑
(k,l)∈Ir,s

[
M

(
|∆mxk+m,l+n|+ |∆myk+m,l+n|

ρ1 + ρ2

)]pkl) 1
H

≤
(

1

hr,s

∑
(k,l)∈Ir,s

[
ρ1

ρ1 + ρ2

M

(
|∆mxk+m,l+n|

ρ1

)

+
ρ2

ρ1 + ρ2

M

(
|∆myk+m,l+n|

ρ2

)]pkl) 1
H

By Minkowski’s Inequality

≤
(

ρ1

ρ1 + ρ2

)(
1

hr,s

∑
(k,l)∈Ir,s

[
M

(
|∆mxk+m,l+n|

ρ1

)]pkl) 1
H

+

(
ρ1

ρ1 + ρ2

)(
1

hr,s

∑
(k,l)∈Ir,s

[
M

(
|∆myk+m,l+n|

ρ2

)]pkl) 1
H

≤ 1

Since ρ1 and ρ2 are non negative, so we have

h(xkl+ykl) = sup
k
|xk1+yk1|+sup

l
|x1l+yy1l|+inf

{
ρ
pkl
H :

(
1

hr,s

∑
(k,l)∈Ir,s

[
M

(
|∆mxkl + ykl|

ρ

)]pkl) 1
H

≤ 1

}
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≤ sup
k
|xk1|+ sup

l
|x1l|+ inf

{
ρ1

pkl
H :

(
1

hr,s

∑
(k,l)∈Ir,s

[
M

(
|∆mxkl|
ρ1

)]pkl) 1
H

≤ 1

}

+ sup
k
|yk1|+ sup

l
|y1l|+ inf

{
ρ2

pkl
H :

(
1

hr,s

∑
(k,l)∈Ir,s

[
M

(
|∆mykl|
ρ2

)]pkl) 1
H

≤ 1

}
= h(xkl) + y(kl)

This implies that

h(xkl + ykl) ≤ h(xkl) + y(kl).
Finally, we prove that the scalar multiplication is continuous. Let λ be any

complex number. By definition

h(λ(xkl)) = sup
k
|λ(xk1)|+sup

l
|λ(x1l)|+inf

{
ρ
pkl
H :

(
1

hr,s

∑
(k,l)∈Ir,s

[
M

(
|∆mλxk+m,l+n|

ρ

)]pkl) 1
H

≤ 1

}

= |λ| sup
k
|xk1|+|λ| sup

l
|x1l|+inf

{
(|λ|t)

pkl
H :

(
1

hr,s

∑
(k,l)∈Ir,s

[
M

(
|∆mxk+m,l+n|

ρ

)]pkl) 1
H

≤ 1

}
where t = ρ

|λ|
This complets the proof of the theorem.

Theorem 2.3. Let M be an Orlicz function. If sup
k,l

[M(x)]pkl <∞ for all fixed

x > 0 then

[ĉ2,M, p]θ0(∆m) ⊂ [ĉ2,M, p]θ∞(∆m).

Proof. Let x = (xkl) ∈ [ĉ2,M, p]θ0(∆m). Then there exists some positive ρ1

such that

lim
k,l

1

hr,s

∑
(k,l)∈Ir,s

[
M

(
|∆mxk+m,l+n|

ρ1

)]pkl
= 0, uniformly in m and n

Define ρ = 2ρ1. Since M is non decreasing and convex, by using (1) we have

sup
r,s,m,n

1
hr,s

∑
(k,l)∈Ir,s

[
M

(
|∆mxk+m,l+n|

ρ

)]pkl

= sup
r,s,m,n

1

hr,s

∑
(k,l)∈Ir,s

[
M

(
|∆mxk+m,l+n − L+ L|

ρ

)]pkl



88 Vakeel A. Khan et al.

≤ K sup
r,s,m,n

1

hr,s

∑
(k,l)∈Ir,s

[
1

2pkl
M

(
|∆mxk+m,l+n − L|

ρ1

)]pkl

+K sup
r,s,m,n

1

hr,s

∑
(k,l)∈Ir,s

[
1

2pkl
M

(
|L|
ρ1

)]pkl

≤ K sup
r,s,m,n

1

hr,s

∑
(k,l)∈Ir,s

[
M

(
|∆mxk+m,l+n − L|

ρ1

)]pkl

+K sup
r,s,m,n

1

hr,s

∑
(k,l)∈Ir,s

[
M

(
|L|
ρ1

)]pkl
< 1

Hence x = (xkl) ∈ [ĉ2,M, p]θ∞(∆m).
This complets the proof.

Theorem 2.4. Let 0 < inf pk,l = h ≤ pk,l = H ≤ ∞ and M,M1 be Orlicz func-
tions satisfying ∆2-condition, then we have [ĉ2,M1, p]

θ
0(∆m) ⊂ [ĉ2,M0M1, p]

θ
0(∆m), [ĉ2,M1, p]

θ(∆m) ⊂
[ĉ2,M0M1, p]

θ(∆m) and [ĉ2,M1, p]
θ
∞(∆m) ⊂ [ĉ2,M0M1, p]

θ
∞(∆m).

Proof. Let x = (xkl) ∈ [ĉ2,M0M1, p]
θ
0(∆m). Then we have

lim
r,s→∞

1

hr,s

∑
(k,l)∈Ir,s

[
M1

(
|∆mxk+m,l+n|

ρ

)]pkl
= 0, uniformly in m and n.

Let ε > 0 and choose δ with 0 < δ < 1 such that M(t) < ε for 0 ≤ t ≤ δ.

Let yk,l = M1

(
|∆mxk+m,l+n|

ρ

)
for k, l,m, n ∈ N

We can write

1

hr,s

∑
(k,l)∈Ir,s

[M(yk,l)]
pkl =

1

hr,s

∑
(k,l)∈Ir,s,yk,l≤δ

[M(yk,l)]
pkl+

1

hr,s

∑
(k,l)∈Ir,s,yk,l>δ

[M(yk,l)]
pkl

1

hr,s

∑
(k,l)∈Ir,s,yk,l≤δ

[M(yk,l)]
pkl < ε [2.1]

since M is continuous and M(t) < ε for t ≤ δ.
For yk,l > δ we use the fact that

yk,l <
yk,l
δ

< 1 +
yk,l
δ

Since M is non decreasing and convex, it follows that

M(yk,l) < M(1 + δ−1yk,l) = M

(
2

2
+

2

2
δ−1yk,l

)
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<
1

2
M(2) +

1

2
M(2δ−1yk,l)

Since M satisfies ∆2-condition, there is a constant K > 2 such that

M(2δ−1yk,l) ≤
1

2
Kδ−1yk,lM(2)

Hence

1

hr,s

∑
(k,l)∈Ir,s,yk,l>δ

[M(yk,l)]
pkl ≤ max

(
1,

(
KM(2)

δ

))
1

hr,s

∑
(k,l)∈Ir,s,yk,l>δ

[(yk,l)]
pkl

→ 0 as r, s→∞ [2.2]

By [2.1] and [2.2] we have x = (xk,l ∈ [ĉ2,M0M1, p]
θ
0(∆m).

Similarly we can prove that
[ĉ2,M1, p]

θ(∆m) ⊂ [ĉ2,M0M1, p]
θ(∆m) and [ĉ2,M1, p]

θ
∞(∆m) ⊂ [ĉ2,M0M1, p]

θ
∞(∆m).

This complets the proof.

Taking M1(x) in above theorem we have the following result.

Corollary 2.5. Let 0 < inf pk,l = h ≤ pk,l = H ≤ ∞ and M be Orlicz function
satisfying ∆2-condition, then we have [ĉ2, p]

θ
0(∆m) ⊂ [ĉ2,M, p]θ0(∆m), and [ĉ2, p]

θ
∞(∆m) ⊂

[ĉ2,M, p]θ∞(∆m).

Theorem 2.6. Let M be an Orlicz function. Then the following statements
are euivalent:

(i) [ĉ2, p]
θ
∞(∆m) ⊂ [ĉ2,M, p]θ∞(∆m).

(ii) [ĉ2, p]
θ
0(∆m) ⊂ [ĉ2,M, p]θ∞(∆m).

(iii) sup
r,s

1
hr,s

∑
(k,l)∈Ir,s

[
M

(
t
ρ

)]pkl
<∞ (t, ρ > 0).

Proof. (i)⇒ (ii): It is obvious, since [ĉ2, p]
θ
0(∆m) ⊂ [ĉ2, p]

θ
∞(∆m).

(ii)⇒ (iii): Let [ĉ2, p]
θ
0(∆m) ⊂ [ĉ2,M, p]θ∞(∆m).

Suppose that (iii) doesnot hold. Then for some t, ρ > 0

sup
r,s

1

hr,s

∑
(k,l)∈Ir,s

[
M

(
t

ρ

)]pkl
=∞.
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and therefore we can find a subinterval Ir(i),s(j) of the set of interval Ir,s such
that

1

hr(i),s(j)

∑
(k,l)∈Ir(i),s(j)

[
M

(
(ij)−1

ρ

)]pkl
> ij [2.3]

i = 1, 2, 3, ......, j = 1, 2, 3......

Define the double sequence x = (xkl) by

∆mxk+m,l+n =

{
(ij)−1 (k, l) ∈ Ir(i),s(j)
0 (k, l) /∈ Ir(i),s(j).

for all m,n ∈ N

Then x = (xkl) ∈ [ĉ2, p]
θ
0(∆m) but by equation [2.3] x = (xkl) /∈ [ĉ2,M, p]θ∞(∆m).

Which contradicts (ii). Hence (iii) must hold.

(iii)⇒ (i): Let (iii) hold and x = (xkl) ∈ [ĉ2, p]
θ
∞(∆m).

Suppose that x = (xkl) /∈ [ĉ2,M, p]θ∞(∆m). Then

sup
r,s,m,n

1

hr,s

∑
(k,l)∈Ir,s

[
M

(
∆mxk+m,l+n

ρ

)]pkl
=∞ [2.4]

Let t = |∆mxk+m,l+n| for each k, l and fixed m,n then by equation [2.4]

sup
r,s,m,n

1

hr,s

∑
(k,l)∈Ir,s

[
M

(
t

ρ

)]pkl
=∞

Which contradicts (iii). Hence (i) must hold.

Theorem 2.7. Let 1 ≤ pkl ≤ sup pkl <∞ and M be an Orlicz function. Then
the following statements are equivalent:

(i) [ĉ2,M, p]θ0(∆m) ⊂ [ĉ2, p]
θ
0(∆m).

(ii) [ĉ2,M, p]θ0(∆m) ⊂ [ĉ2, p]
θ
∞(∆m).

(iii) inf
r,s

1
hr,s

∑
(k,l)∈Ir,s

[
M

(
t
ρ

)]pkl
> 0 (t, ρ > 0)

Proof. (i)⇒ (ii): It is obvious.
(ii)⇒ (iii): Let (ii) hold. Suppose (iii) doesnot hold. Then
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inf
r,s

1

hr,s

∑
(k,l)∈Ir,s

[
M

(
t

ρ

)]pkl
= 0 (t, ρ > 0)

So we can find a subinterval Ir(i),s(j) of the set of interval Ir,s such that

1

hr(i),s(j)

∑
(k,l)∈Ir(i),s(j)

[
M

(
ij

ρ

)]pkl
< (ij)−1 [2.5]

i = 1, 2, 3, ......, j = 1, 2, 3, .......

Define the double sequence x = (xkl) by

∆mxk+m,l+n =

{
(ij)−1 (k, l) ∈ Ir(i),s(j)
0 (k, l) /∈ Ir(i),s(j).

for all m,n ∈ N
Thus by equation [2.5], x = (xkl) ∈ [ĉ2,M, p]θ0(∆m) but by equation [2.3]
x = (xkl) /∈ [ĉ2, p]

θ
∞(∆m). Which contradicts (ii). Hence (iii) must hold.

(iii)⇒ (i): Let (iii) hold and suppose that x = (xkl) ∈ [ĉ2,M, p]θ0(∆m), that is

lim
r,s→∞

1

hr,s

∑
(k,l)∈Ir,s

[
M

(
|∆mxk+m,l+n

ρ

)]pkl
= 0 uniformly in m and, for some ρ > 0.

[2.6]
Again suppose that x = (xkl) ∈ [ĉ, p]θ0(∆m). Then for some ε > 0 and a subin-
terval Ir(i),s(j) of the set interval Ir,s, we have |∆mxk+m,l+n| ≥ ε for all k, l ∈ N
and some i ≥ i0, j ≥ j0. Then, from the properties of the Orlicz function, we
can write

M

(
|∆mxk+m,l+n

ρ

)pkl
≥M

(
ε

ρ

)pkl
and cosequently by equation [2.6]

lim
r,s→∞

1

hr(i),s(j)

∑
(k,l)∈Ir(i),s(j)

[
M

(
t

ρ

)]pkl
= 0

Which contradicts (iii). Hence (i) must hold.

Theorem 2.8. Let 0 < pk,l ≤ qk,l for all k, l ∈ N and

(
qk,l
pk,l

)
be bounded.

Then,
[ĉ2,M, q]θ(∆m) ⊂ [ĉ2, p]

θ(∆m).
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Proof. Let x ∈ [ĉ2,M, q]θ(∆m)
Write

tk,l =

[
M

(
∆mxk+m,l+n

ρ

)]pkl
and λk,l =

pk,l
qk,l
.

Since 0 < pk,l ≤ qk,l, therefore 0 < λk,l ≤ 1.
Take 0 < λ ≤ λk,l.
Define

uk,l =

{
tk,l tk,l ≥ 1

0 tk,l < 1.

vk,l =

{
0 tk,l ≥ 1

tk,l tk,l < 1.

So tk,l = uk,l + vk,l and

t
λk,l
k,l = u

λk,l
k,l + v

λk,l
k,l

Now it follows that
u
λk,l
k,l ≤ uk,l ≤ tk,l and v

λk,l
k,l ≤ vλk,l

Therfore

1

hr,s

∑
(k,l)∈Ir,s

t
λk,l
k,l ≤

1

hr,s

∑
(k,l)∈Ir,s

tk,l +

[
1

hr,s

∑
(k,l)∈Ir,s

vk,l

]λ
Hence x ∈ [ĉ2,M, p]θ(∆m).

By using above theorem it is easy to prove the following result.

Corollary 2.9(i). If 0 < inf pk,l ≤ pk,l ≤ 1 for all k, l ∈ N then,

[ĉ2,M, p]θ(∆m) ⊂ [ĉ2, p]
θ(∆m).

. (ii). If 0 ≤ pk,l ≤ sup pk,l ≤ ∞ for all k, l ∈ N then,

[ĉ2,M ]θ(∆m) ⊂ [ĉ2,M, p]θ(∆m).
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