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Abstract
In this paper we give ky fans approximate best proximity theorem and

Picard-Lindeloffs approximate best proximity theorem, then illustrate a few ap-
plications where we derive results in fixed point theory, approximation theory,
boundary value problems theorem.
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1 Introduction

If f is an operator of a normed space X into itself, x0 ∈ X is called a ap-
proximate fixed point of f if for some ε > 0, d(f(x0), x0) < ε. Theorems
concerning the existence and properties of fixed points and are known as fixed
points theorems. Such theorems are the most important tools for proving
existence of the solutions to various mathematical models (differential, inte-
gral and partial differential equations, etc.) Fixed point theorems of ordered
Bananch spaces provide us exact or approximate solutions of boundary-value
problems.for details, one can refer to, Amann, [1] Collatz, [2] franklin, [3]. We
also Theorems concerning the existence and properties of approximate best
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proximity are known as approximate best proximity theorems [4]. We show
that Approximate best proximity theorems provide us approximate solutions
of boundary-value problems, and also such theorems are the most important
tools for proving existence of the approximate solutions to various mathemat-
ical models (differential, integral and ordinary differential equations, etc.)

Definition 1.1. [5] Let f : X → X be a map, where X is a normed space.
Then f is said to be contraction if

∃α ∈ (0, 1) such that ‖fx− fy‖ ≤ α‖x− y‖,

for all x, y ∈ X.

Definition 1.2. Let f(x, y) is a continuous and bounded function of two
variables in a rectangle A = {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d}. Then we define
norm‖f‖∞,

‖f‖∞ = sup
(x,y)∈A

(|f(x, y)|).

2 Application

In this section we obtain approximate for Picard theorem.

Theorem 2.1. Let f(x, y) be a continuous function of two variables in a
rectangle A = {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d} and satisfy the contraction
condition in the second variable y. Further, let (x0, y0) be an interior point of
A and ε > 0. Then the following boundary value problems for some ε > 0.

|dy/dx− f(x, y)| < ε

(∗)
g(x0) = y0

has solution y = g(x).

Proof. Since f(x, y) is a continuous function of two variables in a rectangle,
then there exists a M > 0 such that

‖f‖∞ ≤M.

If y = g(x) satisfies (*) for some 0 < ε < M, then integrating (*) from x0 to
x, we get∫ x

x0

|dy
dx
− f(x, y)|dx = |g(x)− y0 −

∫ x

x0

f(t, g(t))dt| < ε(x− x0).
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Thus we have

|g(x)− y0| ≤ |
∫ x

x0

f(t, g(t))dt|+ ε(x− x0)

≤ M(x− x0) + ε(x− x0)
≤ M(x− x0) +M(x− x0)

If −δ + x0 < x < δ + x0 for δ > 0 then |g(x) − y0| ≤ 2Mδ. Now we consider
the following set:

X = {g ∈ C[−δ + x0, x0 + δ] : g : [−δ + x0, x0 + δ]→ R , |g(x)− y0| < 2Mδ},

Then (X, ‖.‖∞) is normed space. Let T : X → X be defined as Tg = h, where

h(x) = y0 +
∫ x

x0

f(t, g(t))dt.

Since

|h(x)− y0| = |
∫ x

x0

f(t, g(t))dt|

≤ M(x− x0)
≤ Mδ

≤ 2Mδ.

Thus h(x) ∈ X and T is well defined. For g, g1 ∈ X

‖Tg − Tg1‖∞ = ‖h− h1‖∞ = Sup|
∫ x

x0

[f(t, g(t))− f(t, g1(t)]dt|

≤ Sup
∫ x

x0

|[f(t, g(t))− f(t, g1(t)]|dt

≤ qSup
∫ x

x0

|g(t))− g1(t)]|dt

≤ qδ‖g − g1‖∞.

So
‖Tg − Tg1‖∞ ≤ k‖g − g1‖∞

where 0 ≤ k = qδ < 1. Hence T is a contraction mapping of X into itself. By
Theorem 2.2, of [4] if A = B = X then d(A,B) = 0 and there exists a ε > 0
such that

‖g∗ − Tg∗‖∞ < ε,

that is
‖g∗(x)− y0 −

∫ x

x0

f(t, g∗(t))dt‖∞ < ε.
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Thus boundary value problem (*) has has solution y = g(x). �

Theorem 2.2. Let the function k(x, y) be defined and measurable in the
region

A = {(x, y) : 0 ≤ x, y ≤ b}.
Further, let ∫ b

a

∫ b

a
|k(x, y)|2dxdy <∞

and g(x) ∈ L2(a, b). for scaler µ where |µ| ≤ 1

(
∫ b

a

∫ b

a
|k(x,y)|2dxdy)

1
2
, then there

exists a solution f(x) ∈ L2(a, b) and a ε > 0 s.t.

|f(x)− g(x)− µ
∫ b

a
k(x, y)f(y)dy| < ε.

Proof. We define T : L2(a, b)→ L2(a, b) with Tf = h where

h(x) = g(x) + µ
∫ b

a
k(x, y)f(y)dy.

If f ∈ L2(a, b), then h ∈ L2(a, b). Since g ∈ L2(a, b) and µ is scaler , it is
sufficient to show that ∫ b

a
k(x, y)f(y)dy ∈ L2(a, b).

By the Cauchy-Schwarz inequality

|
∫ b

a
k(x, y)f(y)dy| ≤

∫ b

a
|k(x, y)f(y)|dy

≤ (
∫ b

a
|k(x, y)|2dy)

1
2 (
∫ b

a
|f(y)|2dy)

1
2

then

|
∫ b

a
k(x, y)f(y)dy|2 ≤

∫ b

a
|k(x, y)|2dy

∫ b

a
|f(y)|2dy

or ∫ b

a
|
∫ b

a
k(x, y)f(y)dy|2dx ≤

∫ b

a
(
∫ b

a
|k(x, y)|2dy)dx

∫ b

a
(
∫ b

a
|f(y)|2dy)dx,

by the hypotheses ∫ b

a
|
∫ b

a
k(x, y)f(y)dy|2dx <∞.

Thus ∫ b

a
k(x, y)f(y)dy ∈ L2(a, b)⇒ h ∈ L2(a, b).
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Now we show that T is a contraction mapping. We have ‖Tf − Tf1‖∞ =
‖h− h1‖∞ where h(x) = g1(x) + µ

∫ b
a k(x, y)f(y)dy

‖h− h1‖ = |µ
∫ b

a
k(x, y)[f(y)− f1(y)]dy|

= |µ|(
∫ b

a
|[
∫ b

a
|k(x, y)[f(y)− f1(y)]dy]|2dx)

1
2

≤ |µ|(
∫ b

a

∫ b

a
|k(x, y)|2dxdy)

1
2 (
∫ b

a
|f(y)− f1(y)|2dy)

1
2

by definition of the norm in L2, we have

‖f − f1‖ = (
∫ b

a
|f(y)− f1(y)|2dy)

1
2

If

|µ| < 1

(
∫ b
a

∫ b
a |k(x, y)|2dxdy)

1
2

Then
‖Tf − Tf1‖∞ ≤ k‖f − f1‖∞

where

0 ≤ k = |µ|(
∫ b

a

∫ b

a
|k(x, y)|2dxdy)

1
2 < 1.

Thus, T is a contraction. By theorem 2.2 of [4] if A = B = X then d(A,B) = 0
and there exists a ε > 0 such that:

‖f ∗ − Tf ∗‖ < ε,

that is

|f(x)− g(x)− µ
∫ b

a
k(x, y)f(y)dy| < ε.

Then there exists a solution f(x) ∈ L2(a, b) and T has an approximation
fixed point. �

Theorem 2.3. Let C be a subset of a normed space and f : C → C be a
contraction map. Then there is a y ∈ C and ε > 0 such that

‖y − fy‖ < d(fy, C) + ε.

Proof. By Theorem 2.2 of [4] the map f : C → C has an approximate
best proximity pair. That is there is a y ∈ C such that

‖y − f(y)‖ < ε
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Therefore ‖y − fy‖ < d(fy, C) + ε. �

Theorem 2.4. Let C be a subset of a normed space H such that C is
compact. Suppose that the mapping f : C → C is continuous and

‖fx− fy‖ ≤ ‖x− y‖,

where (x, y) ∈ C × C. Then there exists a y ∈ C and ε > 0 such that

‖y − fy‖ < d(fy, C) + ε.

Proof. By Theorem 2.5 of [4] the map f : C → C has an approximate
best proximity pair. That is there is a y ∈ C such that

‖y − f(y)‖ < ε

Therefore ‖y − fy‖ < d(fy, C) + ε. �

y satisfying Theorem 2.4, 2.5 is called ky fan approximate.

Theorem 2.5. consider X = R with ‖x‖ = |x| and [a, b] ⊂ R; f : [a, b]→
[a, b], a differentiable function such that

|f ′(x)| ≤ k < 1.

Then the equation |x− f(x)| < ε, has a solution in [a, b] for some ε > 0.

Proof. By Lagrange s mean-value theorem, for any x, y ∈ [a, b], f(x) −
f(y) = f ′(z)(x− y), where y < z < x. Hence,

|f(x)− f(y)| = |f ′(z)||x− y| ≤ k|x− y|,

where 0 ≤ k < 1. Thus, f is a contraction mapping on [a, b] into itself. By
Theorem 2.5 of [4] the map f : [a, b]→ [a, b] has an approximate best proximity
pair. That is there is a y ∈ [a, b] such that |y − f(y)| < ε. �
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