Gen. Math. Notes, Vol. 24, No. 2, October 2014, pp.70-77
ISSN 2219-7184; Copyright © ICSRS Publication, 2014
www.i-csrs.org
Available free online at http://www.geman.in

Strongly Regular Graphs Arising From Balanced Incomplete Block Design With $\lambda=1$

F. Raei Barandagh ${ }^{1}$, A. Rahnamai Barghi ${ }^{2}$, B. Pejman ${ }^{3}$ and M. Rajabi Parsa ${ }^{4}$
${ }^{1,2,3,4}$ Department of Mathematics, K.N. Toosi University of Technology
P.O. Box: 16315-1618, Tehran, Iran
${ }^{1}$ E-mail: f.raei@dena.kntu.ac.ir
${ }^{2}$ E-mail: rahnama@kntu.ac.ir; rahnama@math.carleton.ca
${ }^{3}$ E-mail: batoolpejman@yahoo.com
${ }^{4}$ E-mail: minaparsa64@yahoo.com

(Received: 30-5-14 / Accepted: 12-7-14)

Abstract

In [M. Klin, A. Munemusa, M. Muzychuk, P.-H. Zieschang Directed strongly regular graphs obtained from coherent algebras. Linear Algebra and its Applications 337, (2004) 83-109] the flag algebra of a given balanced incomplete block design with parameters (ν, b, r, k, λ) where $\lambda=1$, has been constructed. In this paper, we consider the association scheme which is related to this flag algebra. By quotient scheme of this association scheme, we construct a strongly regular graph which its parameters are related to the parameters of given balanced incomplete block design. The parameters of this strongly regular graph are $$
\left(\frac{k r^{2}-r^{2}+r}{k}, k(r-1), r-2+(k-1)^{2}, k^{2}\right) .
$$

Keywords: Association scheme, strongly regular graph, balanced incomplete block design.

1 Introduction

A balanced incomplete block design [6] with parameter (ν, b, r, k, λ) denoted by $(\nu, b, r, k, \lambda)-\mathrm{BIBD}$ is an incidence structure $S=(\mathcal{P}, \mathcal{B})$, where \mathcal{P} and \mathcal{B} are
called the set of points and blocks, respectively, with the following properties: $|\mathcal{P}|=\nu$ and $|\mathcal{B}|=b$; each block contains exactly k points; every pair of distinct points is contained in exactly λ blocks. It is well known that in a (ν, b, r, k, λ) BIBD every point occurs in exactly $r=\lambda(\nu-1) /(k-1)$ blocks and it has exactly $b=\nu r / k=\lambda\left(\nu^{2}-\nu\right) /\left(k^{2}-k\right)$ blocks.

Let $S=(\mathcal{P}, \mathcal{B})$ be a (ν, b, r, k, λ)-BIBD with $\lambda=1$. Set $x=k-1, y=r-1$. A straightforward computation shows that

$$
\begin{cases}\nu=1+x+x y, & b=\frac{(1+x+x y)(y+1)}{x+1} \tag{1}\\ r=y+1, & k=x+1\end{cases}
$$

A strongly regular graph [1] with parameters (n, m, a, c) is a m-regular graph with n vertices in which two adjacent vertices have a common neighbours, and two non-adjacent vertices have c common neighbours. This graph is denoted by $\operatorname{srg}(n, m, a, c)$. The parameters of a strongly regular graph satisfy the equation

$$
\begin{equation*}
m(m-a-1)=(n-m-1) c . \tag{2}
\end{equation*}
$$

A complete characterization of the parameter sets of strongly regular graphs is not known. Note that the complement of a strongly regular graph is also a strongly regular graph.

1.1 Association Scheme

We prepare some notation and results in association schemes which will be used through the paper and we refer the reader to $[4,7]$ for more details.

Given a finite and non-empty set V, a d-class association scheme (briefly d-class scheme) on V is a pair $\mathcal{C}=(V, \mathcal{R})$, where $\mathcal{R}=\left\{R_{0}, R_{1}, \ldots, R_{d}\right\}$ is a set of non-empty binary relations on V, which satisfies the following conditions.
(1) $\mathcal{R}=\left\{R_{0}, R_{1}, \ldots, R_{d}\right\}$ is a partition of $V \times V$;
(2) The subset $1_{V}=\{(v, v): v \in V\}$ is an element of \mathcal{R}, say R_{0};
(3) For each $R_{i} \in \mathcal{R}$, the set $R_{i}^{\mathrm{t}}:=\{(v, u):(u, v) \in R\}$ is in \mathcal{R}, denote R_{i}^{t} by $R_{i^{\prime}}$;
(4) For each triple $R_{i}, R_{j}, R_{k} \in \mathcal{R}$ there exists an intersection number $p_{i j}^{k}$ such that $p_{i j}^{k}=\left|R_{i}(u) \cap R_{j^{\prime}}(v)\right|$ for all $(u, v) \in R_{k}$, where $R(u)$ is the set of all elements $v \in V$ with $(u, v) \in R$ for each $R \in \mathcal{R}$.

The elements of V are called points and those of \mathcal{R} are called basis relations of \mathcal{C}. The numbers $|V|$ and $|\mathcal{R}|$ are called the degree and the rank of \mathcal{C}, and are denoted by $\operatorname{deg}(\mathcal{C})$ and $\operatorname{rk}(\mathcal{C})$, respectively.

Let $\mathcal{C}=(V, \mathcal{R})$ be a scheme. An equivalence relation E on V is called an equivalence of \mathcal{C} if E is a union of some basis relations of \mathcal{C}. Denote by $\mathcal{E}(\mathcal{C})$ the set of all equivalences of \mathcal{C}. For each $E \in \mathcal{E}(\mathcal{C})$ we define degree of $E, d(E)$, the sum of valency of all basis relations of \mathcal{C} which lie in E.

Let X be a non-empty subset of V and let $E \in \mathcal{E}(\mathcal{C})$. Denote by X / E the set of classes of the equivalence relation $E \cap(X \times X)$, and $R_{X / E}$ the set of pairs (Y, Z) in $(X / E) \times(X / E)$ such that $R_{Y, Z} \neq \emptyset$, where $R_{Y, Z}=R \cap(Y \times Z)$. Also denote by $\mathcal{R}_{X / E}$ the set of all non-empty relations $R_{X / E}$ on X / E where $R \in \mathcal{R}$. Then the pair

$$
\mathcal{C}_{X / E}=\left(X / E, \mathcal{R}_{X / E}\right)
$$

is a scheme, called the quotient scheme. If $X \in V / E$, then the pair $\mathcal{C}_{X}=$ $\left(X, \mathcal{R}_{X}\right)$ is a scheme.

In fact any 2-class association scheme is equivalent to a pair of complementary strongly regular graphs. The relation between association scheme and block design have been studied in $[2,3,5]$.

1.2 The Flag Algebra of BIBD with $\lambda=1$

In [3] the flag algebra of a BIBD with $\lambda=1$ has been studied. Equivalently a 5-class association scheme constructed from a given BIBD.

For a $\operatorname{BIBD}, S=(\mathcal{P}, \mathcal{B})$ with $\lambda=1, \nu$ and b can be computed from k and r. As defined in [3], let \mathcal{F} denote the set of incident point-block pairs. The elements of \mathcal{F} are called flags. Set $n=|\mathcal{F}|$. Then

$$
\begin{equation*}
n=(1+x+x y)(1+y) \tag{3}
\end{equation*}
$$

Let Consider the following binary relations on \mathcal{F},

$$
\begin{align*}
& R_{0}=\{(f, f): f \in \mathcal{F}\}, \\
& R_{1}=\{(f, g): p \neq q, C=D\}, \\
& R_{2}=\{(f, g): p=q, C \neq D\}, \\
& R_{3}=\{(f, g): p \neq q, C \neq D,(q, C) \in \mathcal{F}\}, \tag{4}\\
& R_{4}=\{(f, g): p \neq q, C \neq D,(p, D) \in \mathcal{F}\}, \\
& R_{5}=\{(f, g): p \neq q, C \neq D,(q, C) \notin \mathcal{F},(p, D) \notin \mathcal{F}, C \cap D \neq \emptyset\}, \\
& R_{6}=\{(f, g): p \neq q, C \neq D,(q, C) \notin \mathcal{F},(p, D) \notin \mathcal{F}, C \cap D=\emptyset\} .
\end{align*}
$$

Where $f=(p, C)$ and $g=(q, D)$.

Lemma 1.1 [3] Assume that S is a BIBD with $\lambda=1$. Then, for each $0 \leq i \leq 6, R_{i}$ defines a regular graph $\Gamma_{i}=\left(\mathcal{F}, R_{i}\right)$. Moreover, the valencies n_{i} of Γ_{i} are as follows:

$$
\begin{align*}
& n_{0}=1, \quad n_{1}=x, \quad n_{2}=y, \quad n_{3}=n_{4}=x y \\
& n_{5}=x^{2} y, \quad n_{6}=x y(y-x) \tag{5}
\end{align*}
$$

The relations R_{1}, R_{2}, R_{5}, and R_{6} are symmetric relations and the relations R_{3} and R_{4} are paired antisymmetric.

Theorem 1.2 [3] Let $\mathcal{R}=\left\{R_{0}, \ldots, R_{6}\right\}$ as defined in (4), then $\mathcal{C}=(\mathcal{F}, \mathcal{R})$ is an association scheme.

In this paper we consider an equivalence of this scheme, and show that its quotient scheme is a 2-class association scheme. As a result we construct a strongly regular graph whose parameters are related to BIBD's parameters.

For example, it is well-known that the existence of $\operatorname{srg}(69,48,32,36)$ and $\operatorname{srg}(85,54,33,36)$ are unknown. By our results, the existence of $(46,69,9,6,1)$ BIBD and $(51,85,10,6,1)$-BIBD imply the existence of $\operatorname{srg}(69,48,32,36)$ and $\operatorname{srg}(85,54,33,36)$, respectively.

2 Main Results

In this section we suppose that $\mathcal{C}=(\mathcal{F}, \mathcal{R})$ is the scheme which defined in Theorem 1.2 from a $(\nu, b, r, k, 1)$-BIBD.

Lemma 2.1 Let $E=R_{0} \cup R_{1}$, then $E \in \mathcal{E}(\mathcal{C})$ and $d(E)=k$.
Proof. From the definition of R_{0} and R_{1} in (4), it is easy to see that $E \in \mathcal{E}(\mathcal{C})$. The degree of E is the sum of valency of its basis relations, and by Lemma 1.1, we have $n_{0}=1$ and $n_{1}=x$ where $x=k-1$. Thus, $d(E)=k$.

Proposition 2.2 Let $X, Y \in \mathcal{F} / E$ such that $(X, Y) \in\left(R_{2}\right)_{\mathcal{F} / E}$, where $E=R_{0} \cup R_{1}$. Then there is a unique $f \in X$ and a unique $g \in Y$, such that $(f, g) \in R_{2}$.

Proof. By Lemma 2.1, $E \in \mathcal{E}(\mathcal{C})$ and $d(E)=k$, so each of its classes have the same size k. Suppose that $X=\left\{f_{1}, \ldots, f_{k}\right\}$ and $Y=\left\{g_{1}, \ldots, g_{k}\right\}$, where $f_{i}=\left(p_{i}, C_{i}\right)$ and $g_{i}=\left(q_{i}, D_{i}\right)$ for each $1 \leq i \leq k$. Since $(X, Y) \in\left(R_{2}\right)_{\mathcal{F} / E}$, hence there exist $1 \leq t, t^{\prime} \leq k$ such that $\left(f_{t}, g_{t^{\prime}}\right) \in R_{2}$.

We now prove uniqueness. By definition,

$$
\begin{equation*}
R_{2}=\{(f, g): p=q, C \neq D\} \tag{6}
\end{equation*}
$$

thus $p_{t}=q_{t^{\prime}}$ and $C_{t} \neq D_{t^{\prime}}$. It follows that

$$
\begin{equation*}
p_{t} \in C_{t} \cap D_{t^{\prime}} \tag{7}
\end{equation*}
$$

Moreover, for each $i \neq t$, we have $\left(f_{t}, f_{i}\right) \in X^{2}$. Thus by definition of E, $\left(f_{t}, f_{i}\right) \in R_{1}$. Since

$$
R_{1}=\{(f, g): p \neq q, C=D\}
$$

we have $p_{i} \neq p_{t}$ and $C_{i}=C_{t}$ for each $i \neq t$. In the same way, $q_{i} \neq q_{t^{\prime}}$ and $D_{i}=D_{t^{\prime}}$ for each $i \neq t^{\prime}$. It follows that $p_{t} \neq q_{i}$ and $C_{t} \neq D_{i}$ for each $i \neq t^{\prime}$, and so by (6), we have

$$
\left(f_{t}, g_{i}\right) \notin R_{2} \quad \text { for } \quad i \neq t^{\prime} .
$$

Also we see that $q_{t^{\prime}} \neq p_{i}$ and $D_{t^{\prime}} \neq C_{i}$ for each $i \neq t$, and so by (6), we have

$$
\left(f_{i}, g_{t^{\prime}}\right) \notin R_{2} \quad \text { for } \quad i \neq t
$$

It is sufficient to show that $\left(f_{i}, g_{j}\right) \notin R_{2}$ for $1 \leq i, j \leq k, i \neq t$ and $j \neq t^{\prime}$. It is easy to see that $C_{i} \neq D_{j}$, thus by (6), it is equivalent to show that $p_{i} \neq q_{j}$.

Assume, on the contrary, that $p_{i}=q_{j}$. It follows that $p_{i} \in C_{i} \cap D_{j}$. Moreover, we have $C_{i}=C_{t}$ and $D_{j}=D_{t^{\prime}}$, thus $p_{i} \in C_{t} \cap D_{t^{\prime}}$. On the other hand, by (7) we have $p_{t}, p_{i} \in C_{t} \cap D_{t^{\prime}}$, which contradicts $\lambda=1$ in BIBD, and the proof is completed.

Theorem 2.3 Let $E=R_{0} \cup R_{1}$, then $\mathcal{C}_{\mathcal{F} / E}=\left(\mathcal{F} / E, \mathcal{R}_{\mathcal{F} / E}\right)$ is a 2-class association scheme.

Proof. Since $E=R_{0} \cup R_{1}$, we have

$$
\left(R_{0}\right)_{\mathcal{F} / E}=\left(R_{1}\right)_{\mathcal{F} / E}=1_{\mathcal{F} / E}
$$

First, we show that

$$
\begin{equation*}
\left(R_{2}\right)_{\mathcal{F} / E}=\left(R_{3}\right)_{\mathcal{F} / E}=\left(R_{4}\right)_{\mathcal{F} / E}=\left(R_{5}\right)_{\mathcal{F} / E}, \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(R_{2}\right)_{\mathcal{F} / E} \neq\left(R_{6}\right)_{\mathcal{F} / E} \tag{9}
\end{equation*}
$$

Let $(X, Y) \in\left(R_{2}\right)_{\mathcal{F} / E}$. Now suppose that $X=\left\{f_{1}, \ldots, f_{k}\right\}$ and $Y=\left\{g_{1}, \ldots, g_{k}\right\}$ where $f_{i}=\left(p_{i}, C_{i}\right)$ and $g_{i}=\left(q_{i}, D_{i}\right)$ for each $1 \leq i \leq k$.

Then by Proposition 2.2 there exist a unique $f_{t} \in X$ and a unique $g_{t^{\prime}} \in Y$, $1 \leq t, t^{\prime} \leq k$, such that $\left(f_{t}, g_{t^{\prime}}\right) \in R_{2}$. The definition of R_{2} shows that $p_{t}=q_{t^{\prime}}$ and $C_{t} \neq D_{t^{\prime}}$.

To prove (8), fix $j \neq t, 1 \leq j \leq k$, then by definition of R_{1} we have $p_{j} \neq p_{t}$ and $C_{j}=C_{t}$. It follows that $p_{j} \neq q_{t^{\prime}}$ and $C_{j} \neq D_{t^{\prime}}$. Moreover, $q_{t^{\prime}}=p_{t} \in C_{t}$
and $C_{t}=C_{j}$, so $q_{t^{\prime}} \in C_{j}$. Thus by definition of R_{3} we have $\left(f_{j}, g_{t^{\prime}}\right) \in R_{3}$. Therefore, $(X, Y) \in\left(R_{3}\right)_{\mathcal{F} / E}$ and so $\left(R_{2}\right)_{\mathcal{F} / E}=\left(R_{3}\right)_{\mathcal{F} / E}$. In the same way we prove that $\left(R_{2}\right)_{\mathcal{F} / E}=\left(R_{4}\right)_{\mathcal{F} / E}$ and also $\left(R_{2}\right)_{\mathcal{F} / E}=\left(R_{5}\right)_{\mathcal{F} / E}$. The proof of (8) is completed.

Now, to prove (9) it is sufficient to show that $(X \times Y) \cap R_{6}$ is an empty set. Equivalently it is sufficient to show that for each $1 \leq i, j \leq k$, we have $C_{i} \cap D_{j} \neq \emptyset$.

Since $f_{i} \in X$ by definition of R_{1} we have

$$
\begin{equation*}
C_{i}=C_{j} \quad \text { and } \quad D_{i}=D_{j}, \quad \text { for each } \quad 1 \leq i, j \leq k \tag{10}
\end{equation*}
$$

On the other hand, $\left(f_{t}, g_{t^{\prime}}\right) \in R_{2}$ follows that $p_{t}=q_{t^{\prime}}$ belongs to the set $C_{t} \cap D_{t^{\prime}}$. Thus $C_{t} \cap D_{t^{\prime}} \neq \emptyset$ and so from (10) we have $C_{i} \cap D_{j} \neq \emptyset$.

Now, since $\left(R_{0}\right)_{\mathcal{F} / E},\left(R_{2}\right)_{\mathcal{F} / E}$ and $\left(R_{6}\right)_{\mathcal{F} / E}$ are distinct. Thus $\mathcal{C}_{\mathcal{F} / E}$ is a 2-class association scheme and the proof is completed.

It is straightforward to check that any 2-class association scheme is corresponding to a strongly regular graph. Using notation of Theorem 2.3 we have the following theorem:

Theorem 2.4 The graph $\Gamma=\left(\mathcal{F} / E,\left(R_{2}\right)_{\mathcal{F} / E}\right)$ is a strongly regular graph with parameters

$$
\left(\frac{k r^{2}-r^{2}+r}{k}, k(r-1), r-2+(k-1)^{2}, k^{2}\right)
$$

Proof. By Theorem 2.3, $\mathcal{C}_{\mathcal{F} / E}=\left(\mathcal{F} / E, \mathcal{R}_{\mathcal{F} / E}\right)$ is a 2-class association scheme. Thus the graph $\Gamma=\left(\mathcal{F} / E,\left(R_{2}\right)_{\mathcal{F} / E}\right)$ is a strongly regular graph.

Now, we compute the parameters of this strongly regular graph. By Lemma 2.1, $d(E)=k$. Thus using (3) we have

$$
|\mathcal{F} / E|=\frac{k r^{2}-r^{2}+r}{k}
$$

Since, $d\left(R_{2}\right)=r-1$ and by Proposition 2.2 the relation R_{2} contains one element in each class of equivalence E and we know that $d(E)=k$, thus

$$
d\left(\left(R_{2}\right)_{\mathcal{F} / E}\right)=k(r-1)
$$

Therefore, Γ is $k(r-1)$-regular graph with $\frac{k r^{2}-r^{2}+r}{k}$ vertices. Now, for this strongly regular graph we compute the number of common neighbors of two adjacent vertices and two non-adjacent vertices, a_{Γ} and c_{Γ}, respectively.

Let $X, Y \in \mathcal{F} / E$ such that $(X, Y) \in\left(R_{2}\right)_{\mathcal{F} / E}$. Let $X=\left\{f_{1}, \ldots, f_{k}\right\}$ and $Y=\left\{g_{1}, \ldots, g_{k}\right\}$ where $f_{i}=\left(p_{i}, C_{i}\right)$ and $g_{i}=\left(q_{i}, D_{i}\right)$ for each $1 \leq i \leq k$. Then by Proposition 2.2 there exist a unique $f_{t} \in X$ and a unique $g_{t^{\prime}} \in Y$,
$1 \leq t, t^{\prime} \leq k$, such that $\left(f_{t}, g_{t^{\prime}}\right) \in R_{2}$. Since, $d\left(R_{2}\right)=r-1$ thus there are the flags $h_{j}, 1 \leq j \leq r-2$, such that $\left(f_{t}, h_{j}\right) \in R_{2}$ and each h_{j} is in different class. In this case it is easy to see that $\left(h_{j}, g_{t^{\prime}}\right) \in R_{2}$. Moreover, for each p_{i} and for each $q_{j}, 1 \leq t, t^{\prime} \leq k, i \neq t$ and $j \neq t^{\prime}$, by the definition of BIBD, since $\lambda=1$ there is a unique block $T_{i j} \in \mathcal{B}$ such that p_{i} and q_{j} are points of the block $T_{i j}$. Thus, in this case the flags $\left(p_{i}, T_{i j}\right)$ and $\left(q_{j}, T_{i j}\right)$ are in the same class of the equivalence E. Also by definition of R_{2} we have $\left(f_{i},\left(p_{i}, T_{i j}\right)\right) \in R_{2}$ and $\left(\left(q_{j}, T_{i j}\right), g_{j}\right) \in R_{2}$. It follows that $\left(X, Z_{i j}\right) \in\left(R_{2}\right)_{\mathcal{F} / E}$ and $\left(Z_{i j}, Y\right) \in\left(R_{2}\right)_{\mathcal{F} / E}$, where $Z_{i j}$ is the class of E which contains the flags of the block $T_{i j}$. Therefore, the class $Z_{i j}$ is a common neighbor of X and Y.

On the other hand, if there is a class which is a common neighbor of X and Y then it contains the flags with point p_{t} or it contains flags of a point of block C_{i} and a point of block D_{i}. Thus we have

$$
\begin{gathered}
a_{\Gamma}=\left|\left\{h_{j}: 1 \leq j \leq r-2\right\}\right|+\left|\left\{Z_{i j}: 1 \leq t, t^{\prime} \leq k, i \neq t, j \neq t^{\prime}\right\}\right| \\
=(r-2)+(k-1)^{2} .
\end{gathered}
$$

By using (2), we have $c_{\Gamma}=k^{2}$, as desired.

3 Conclusion

In this paper, we consider the association scheme which is related to the flag algebra of a BIBD, with $\lambda=1$. By finding a suitable equivalence of this scheme, we construct a 2-class association scheme. Moreover, each 2-class association scheme is equivalent to a strongly regular graph. By these results existence of some unknown strongly regular graphs are equivalent to existence of some special BIBDs.

Acknowledgements: The authors are grateful to the reviewer for the valuable comments and suggestions which improved the quality of this paper.

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory, Springer, Berlin, (2008).
[2] R.C. Bose, Strongly regular graphs partial geometries and partially balenced designs, Pacific. J. Math., 13(1963), 389-419.
[3] M. Klin, A. Munemusa, M. Muzychuk and P.H. Zieschang, Directed strongly regular graphs obtained from coherent algebras, Linear Algebra and its Applications, 337(2004), 83-109.
[4] F.R. Barandagh and A.R. Barghi, On the rank of p-schemes, Electron. J. Combin., 20(2) (2013), 30.
[5] H.G. Shekharappa, S.S. Shirkol and M.C. Gudgeri, PBIB designs and association scheme arising from minimum total dominating sets of non square lattice graph, Gen. Math. Notes., 17(2013), 91-102.
[6] D.R. Stinson, Combinatorial Designs: Constructions and Analysis, University of Waterloo, (1956).
[7] P.H. Zieschang, Theory of Association Schemes, Springer, Berlin, Heidelberg, (2005).

