Gen. Math. Notes, Vol. 23, No. 2, August 2014, pp.63-70
ISSN 2219-7184; Copyright © ICSRS Publication, 2014
www.i-csrs.org
Available free online at http://www.geman.in

New Theorems for Absolute Matrix Summability Factors

Hikmet Seyhan Özarslan ${ }^{1}$ and Enes Yavuz ${ }^{2}$
${ }^{1}$ Department of Mathematics, Erciyes University, Kayseri, Turkey
E-mail: seyhan@erciyes.edu.tr
${ }^{2}$ Department of Mathematics, Celal Bayar University, Manisa, Turkey
E-mail: enes.yavuz@cbu.edu.tr

(Received: 26-3-14 / Accepted: 21-5-14)

Abstract

In this paper, we have given two theorems for $\left|A, p_{n} ; \delta\right|_{k}$ summability which generalize recent theorems on $\left|A, p_{n}\right|_{k}$ summability. Study also reveals many factor theorems for other summability methods.

Keywords: Absolute matrix summability, quasi power increasing sequences, infinite series.

1 Introduction

A positive sequence $\left(\gamma_{n}\right)$ is said to be quasi β-power increasing sequence if there exists a constant $K=K(\beta, \gamma) \geq 1$ such that $K n^{\beta} \gamma_{n} \geq m^{\beta} \gamma_{m}$ holds for all $n \geq m \geq 1$ (see [4]). A sequence $\left(\lambda_{n}\right)$ is said to be of bounded variation, denote by $\left(\lambda_{n}\right) \in \mathcal{B} \mathcal{V}$, if $\sum_{n=1}^{\infty}\left|\Delta \lambda_{n}\right|=\sum_{n=1}^{\infty}\left|\lambda_{n}-\lambda_{n+1}\right|<\infty$.
Let $\sum a_{n}$ be a given infinite series with the partial sums $\left(s_{n}\right)$ and let $A=\left(a_{n v}\right)$ be a normal matrix, i.e., a lower triangular matrix of nonzero diagonal entries. Then A defines the sequence-to-sequence transformation, mapping the sequence $s=\left(s_{n}\right)$ to $A s=\left(A_{n}(s)\right)$, where

$$
\begin{equation*}
A_{n}(s)=\sum_{v=0}^{n} a_{n v} s_{v}, \quad n=0,1, \ldots \tag{1}
\end{equation*}
$$

The series $\sum a_{n}$ is said to be summable $|A|_{k}, k \geq 1$, if (see [9])

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|\bar{\Delta} A_{n}(s)\right|^{k}<\infty \tag{2}
\end{equation*}
$$

where

$$
\bar{\Delta} A_{n}(s)=A_{n}(s)-A_{n-1}(s)
$$

Let $\left(p_{n}\right)$ be a sequence of positive numbers such that

$$
\begin{equation*}
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty \quad \text { as } \quad n \rightarrow \infty, \quad\left(P_{-i}=p_{-i}=0, i \geq 1\right) \tag{3}
\end{equation*}
$$

The series $\sum a_{n}$ is said to be summable $\left|A, p_{n}\right|_{k}, k \geq 1$, if (see [8])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|\bar{\Delta} A_{n}(s)\right|^{k}<\infty \tag{4}
\end{equation*}
$$

The series $\sum a_{n}$ is said to be summable $|A, \delta|_{k}, k \geq 1$, if (see [7])

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{\delta k+k-1}\left|\bar{\Delta} A_{n}(s)\right|^{k}<\infty \tag{5}
\end{equation*}
$$

and it is said to be summable $\left|A, p_{n} ; \delta\right|_{k}, k \geq 1$ and $\delta \geq 0$, if (see [5])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|\bar{\Delta} A_{n}(s)\right|^{k}<\infty \tag{6}
\end{equation*}
$$

In the special case when $p_{n}=1,\left|A, p_{n} ; \delta\right|_{k}$ summability is the same as $|A, \delta|_{k}$ summability. Also if we take $\delta=0$, then $\left|A, p_{n} ; \delta\right|_{k}$ summability is the same as $\left|A, p_{n}\right|_{k}$ summability. Finally, when $a_{n v}=\frac{p_{v}}{P_{n}}$ the method reduces to $\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability method (see [3]) and when $a_{n v}=\frac{p_{v}}{P_{n}}, \quad \delta=0$ it reduces to $\left|\bar{N}, p_{n}\right|_{k}^{k}$ summability method (see [1]).

Now, we will introduce some further notations necessary for our main theorems.
Given a normal matrix $A=\left(a_{n v}\right)$, we associate two lower semimatrices $\bar{A}=$ $\left(\bar{a}_{n v}\right)$ and $\hat{A}=\left(\hat{a}_{n v}\right)$ as follows:

$$
\begin{equation*}
\bar{a}_{n v}=\sum_{i=v}^{n} a_{n i}, \quad n, v=0,1, \ldots \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{a}_{00}=\bar{a}_{00}=a_{00}, \quad \hat{a}_{n v}=\bar{a}_{n v}-\bar{a}_{n-1, v}, \quad n=1,2, \ldots \tag{8}
\end{equation*}
$$

It may be noted that \bar{A} and \hat{A} are the well-known matrices of series-to-sequence and series-to-series transformations, respectively. Then, we have

$$
\begin{equation*}
A_{n}(s)=\sum_{v=0}^{n} a_{n v} s_{v}=\sum_{v=0}^{n} \bar{a}_{n v} a_{v} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\Delta} A_{n}(s)=\sum_{v=0}^{n} \hat{a}_{n v} a_{v} \tag{10}
\end{equation*}
$$

2 Main Result

In [6], Özarslan and Yavuz have proved two theorems for $\left|A, p_{n}\right|_{k}$ summability method by using quasi β-power increasing sequences. The aim of this paper is to generalize their theorems to $\left|A, p_{n} ; \delta\right|_{k}$ summability. Now, we state our main theorems.

Theorem 2.1 Let $A=\left(a_{n v}\right)$ be a positive normal matrix such that

$$
\begin{gather*}
\bar{a}_{n 0}=1, \quad n=0,1, \ldots \tag{11}\\
a_{n-1, v} \geq a_{n v}, \quad \text { for } \quad n \geq v+1 \tag{12}\\
a_{n n}=O\left(\frac{p_{n}}{P_{n}}\right), \tag{13}\\
\sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k}\left|\Delta_{v} \hat{a}_{n v}\right|=O\left\{\left(\frac{P_{v}}{p_{v}}\right)^{\delta k-1}\right\}, \tag{14}\\
\sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k}\left|\hat{a}_{n, v+1}\right|=O\left\{\left(\frac{P_{v}}{p_{v}}\right)^{\delta k}\right\} \tag{15}
\end{gather*}
$$

and let there be sequences $\left(\beta_{n}\right)$ and $\left(\lambda_{n}\right)$ such that

$$
\begin{array}{r}
\left(\lambda_{n}\right) \in \mathcal{B V}, \\
\left|\Delta \lambda_{n}\right| \leq \beta_{n}, \\
\beta_{n} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty, \tag{18}
\end{array}
$$

$$
\begin{gather*}
\sum_{n=1}^{\infty} n\left|\Delta \beta_{n}\right| X_{n}<\infty \tag{19}\\
\left|\lambda_{n}\right| X_{n}=O(1) \quad \text { as } \quad n \rightarrow \infty \tag{20}
\end{gather*}
$$

where $\left(X_{n}\right)$ is a quasi β-power increasing sequence for some $0<\beta<1$. If

$$
\begin{gather*}
\sum_{v=1}^{n}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} \frac{\left|s_{v}\right|^{k}}{v}=O\left(X_{n}\right), \tag{21}\\
\sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1}\left|s_{n}\right|^{k}=O\left(X_{m}\right), \quad m \rightarrow \infty \tag{22}
\end{gather*}
$$

then $\sum a_{n} \lambda_{n}$ is summable $\left|A, p_{n} ; \delta\right|_{k}, k \geq 1$ and $0 \leq \delta<1 / k$.
Theorem 2.2 Let conditions (11)-(20) and (22) of Theorem 2.1 be satisfied. If

$$
\begin{gather*}
\sum_{n=1}^{\infty} P_{n}\left|\Delta \beta_{n}\right| X_{n}<\infty \tag{23}\\
\sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k} \frac{\left|s_{n}\right|^{k}}{P_{n}}=O\left(X_{m}\right), \tag{24}
\end{gather*}
$$

then $\sum a_{n} \lambda_{n}$ is summable $\left|A, p_{n} ; \delta\right|_{k}, k \geq 1$ and $0 \leq \delta<1 / k$.
We need following lemmas for the proof of our theorems.
Lemma 2.3 (see [4]). Let $\left(X_{n}\right)$ be a quasi β-power increasing sequence for some $0<\beta<1$. If conditions (18) and (19) are satisfied, then

$$
\begin{gather*}
n X_{n} \beta_{n}=O(1) \quad \text { as } \quad n \rightarrow \infty \tag{25}\\
\sum_{n=1}^{\infty} X_{n} \beta_{n}<\infty \tag{26}
\end{gather*}
$$

Lemma 2.4 Let $\left(X_{n}\right)$ be a quasi β-power increasing sequence for some $0<\beta<1$. If conditions (18) and (23) are satisfied, then

$$
\begin{align*}
& P_{n} \beta_{n} X_{n}=O(1) \tag{27}\\
& \sum_{n=1}^{\infty} p_{n} \beta_{n} X_{n}<\infty \tag{28}
\end{align*}
$$

The proof of Lemma 2.4 is similar to that of Bor in [2] and hence omitted.

3 Proof of Theorem 2.1

Let $\left(T_{n}\right)$ denotes A-transform of the series $\sum a_{n} \lambda_{n}$. Then, by (9), (10) and applying Abel's transformation we have

$$
\begin{aligned}
\bar{\Delta} T_{n} & =\sum_{v=1}^{n} \hat{a}_{n v} a_{v} \lambda_{v} \\
& =\sum_{v=1}^{n-1} \Delta_{v}\left(\hat{a}_{n v} \lambda_{v}\right) \sum_{k=1}^{v} a_{k}+\hat{a}_{n n} \lambda_{n} \sum_{v=1}^{n} a_{v} \\
& =\sum_{v=1}^{n-1}\left(\hat{a}_{n v} \lambda_{v}-\hat{a}_{n, v+1} \lambda_{v+1}\right) s_{v}+a_{n n} \lambda_{n} s_{n} \\
& =\sum_{v=1}^{n-1}\left(\hat{a}_{n v} \lambda_{v}-\hat{a}_{n, v+1} \lambda_{v+1}-\hat{a}_{n, v+1} \lambda_{v}+\hat{a}_{n, v+1} \lambda_{v}\right) s_{v}+a_{n n} \lambda_{n} s_{n} \\
& =\sum_{v=1}^{n-1} \Delta_{v}\left(\hat{a}_{n v}\right) \lambda_{v} s_{v}+\sum_{v=1}^{n-1} \hat{a}_{n, v+1} \Delta \lambda_{v} s_{v}+a_{n n} \lambda_{n} s_{n} \\
& =T_{n, 1}+T_{n, 2}+T_{n, 3} \quad \text { say. }
\end{aligned}
$$

Since

$$
\left|T_{n, 1}+T_{n, 2}+T_{n, 3}\right|^{k} \leq 3^{k}\left(\left|T_{n, 1}\right|^{k}+\left.T_{n, 2}\right|^{k}+\left.T_{n, 3}\right|^{k}\right),
$$

to complete the proof of Theorem 2.1, it is sufficient to show that

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(P_{n} / p_{n}\right)^{\delta k+k-1}\left|T_{n, r}\right|^{k}<\infty, \quad \text { for } \quad r=1,2,3 \tag{29}
\end{equation*}
$$

Firstly, applying Hölder's inequality with indices k and k^{\prime}, where $k>1$ and $\frac{1}{k}+\frac{1}{k^{\prime}}=1$, we get that

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|T_{n, 1}\right|^{k} \leq & \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v} \hat{a}_{n v}\right|\left|\lambda_{v}\right|\left|s_{v}\right|\right)^{k} \\
= & O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v} \hat{a}_{n v}\right|\left|\lambda_{v}\right|^{k}\left|s_{v}\right|^{k}\right) \\
& \times\left(\sum_{v=1}^{n-1}\left|\Delta_{v} \hat{a}_{n v}\right|\right)^{k-1} \\
= & O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k}\left(\sum_{v=1}^{n-1}\left|\Delta_{v} \hat{a}_{n v}\right|\left|\lambda_{v}\right|^{k}\left|s_{v}\right|^{k}\right) \\
= & O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right|^{k}\left|s_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k}\left|\Delta_{v} \hat{a}_{n v}\right|
\end{aligned}
$$

$$
\begin{aligned}
= & O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k-1}\left|\lambda_{v}\right|^{k-1}\left|\lambda_{v}\right|\left|s_{v}\right|^{k} \\
= & O(1) \sum_{v=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1}\left|\lambda_{v}\right|\left|s_{v}\right|^{k} \\
= & O(1) \sum_{v=1}^{m-1} \Delta\left|\lambda_{v}\right| \sum_{r=1}^{v}\left(\frac{P_{r}}{p_{r}}\right)^{\delta k-1}\left|s_{r}\right|^{k} \\
& +O(1)\left|\lambda_{m}\right| \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k-1}\left|s_{v}\right|^{k} \\
= & O(1) \sum_{v=1}^{m-1} \beta_{v} X_{v}+O(1)\left|\lambda_{m}\right| X_{m} \\
= & O(1) \quad a s \quad m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypotheses of Theorem 2.1 and Lemma 2.3. Since $\left(\lambda_{n}\right) \in \mathcal{B} \mathcal{V}$ by (16), applying Hölder's inequality with the same indices above, we have

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|T_{n, 2}\right|^{k} \leq & \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left(\sum_{v=1}^{n-1}\left|\Delta \lambda_{v}\right|\left|\hat{a}_{n, v+1}\right|\left|s_{v}\right|\right)^{k} \\
= & O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left(\sum_{v=1}^{n-1}\left|\Delta \lambda_{v}\right|\left|\hat{a}_{n, v+1}\right|\left|s_{v}\right|^{k}\right) \\
& \times\left(\sum_{v=1}^{n-1}\left|\Delta \lambda_{v}\right|\left|\hat{a}_{n, v+1}\right|\right)^{k-1} \\
= & O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k}\left(\sum_{v=1}^{n-1} \beta_{v}\left|\hat{a}_{n, v+1}\right|\left|s_{v}\right|^{k}\right) \times\left(\sum_{v=1}^{n-1}\left|\Delta \lambda_{v}\right|\right)^{k-1} \\
= & O(1) \sum_{v=1}^{m} \beta_{v}\left|s_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k}\left|\hat{a}_{n, v+1}\right| \\
= & O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k}\left|s_{v}\right|^{k} \beta_{v} \\
= & O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} \frac{\left|s_{v}\right|^{k}}{v}\left(v \beta_{v}\right) \\
= & O(1) \sum_{v=1}^{m-1} \Delta\left(v \beta_{v}\right) \sum_{r=1}^{v}\left(\frac{P_{r}}{p_{r}}\right)^{\delta k} \frac{\left|s_{r}\right|^{k}}{r} \\
& +O(1) m \beta_{m} \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} \frac{\left|s_{v}\right|^{k}}{v} \\
= & O(1) \sum_{v=1}^{m-1} \Delta\left(v \beta_{v}\right) X_{v}+O(1) m \beta_{m} X_{m}
\end{aligned}
$$

$$
\begin{aligned}
= & O(1) \sum_{v=1}^{m-1} v\left|\Delta \beta_{v}\right| X_{v}+O(1) \sum_{v=1}^{m-1} \beta_{v+1} X_{v+1} \\
& +O(1) m \beta_{m} X_{m} \\
= & O(1) \text { as } m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypotheses of Theorem 2.1 and Lemma 2.3.
Finally, by following the similar process as that in $T_{n, 1}$ we have that

$$
\begin{aligned}
\sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|T_{n, 3}\right|^{k} & \leq \sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|a_{n n}\right|^{k}\left|\lambda_{n}\right|^{k}\left|s_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1}\left|\lambda_{n}\right|\left|s_{n}\right|^{k}=O(1) \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

So, we get

$$
\sum_{n=1}^{\infty}\left(P_{n} / p_{n}\right)^{\delta k+k-1}\left|T_{n, r}\right|^{k}<\infty, \quad \text { for } \quad r=1,2,3
$$

This completes the proof of Theorem 2.1.

4 Proof of Theorem 2.2

Using Lemma 2.4 and proceeding as that in the proof of Theorem 2.1, replac$\operatorname{ing} \sum_{v=1}^{m}\left(P_{v} / p_{v}\right)^{\delta k}\left|s_{v}\right|^{k} \beta_{v}$ by $\sum_{v=1}^{m}\left(P_{v} / p_{v}\right)^{\delta k} \frac{\left|s_{v}\right|^{k}}{P_{v}}\left(\beta_{v} P_{v}\right)$ we can easily prove Theorem 2.2.

5 Conclusion

We have proved theorems dealing with $\left|A, p_{n} ; \delta\right|_{k}$ summability factors of infinite series. In these theorems, if we take $p_{n}=1$ then we have two new results dealing with $|A, \delta|_{k}$ summability factors of infinite series. Also, if we take $a_{n v}=\frac{p_{v}}{P_{n}}$, then we have another two new results concerning $\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability. Finally, when $\left(X_{n}\right)$ is taken as almost increasing sequence, new factor theorems for $\left|A, p_{n} ; \delta\right|_{k}$ summability are obtained.

References

[1] H. Bor, On two summability methods, Math. Proc. Cambridge, 97(1985), 147-149.
[2] H. Bor, On absolute summability factors for $\left|\bar{N}, p_{n}\right|_{k}$ summability, Comment. Math. Univ. Carolin., 32(3) (1991), 435-439.
[3] H. Bor, On the local property of $\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability of factored Fourier series, J. Math. Anal. Appl., 179(1993), 646-649.
[4] L. Leindler, A new application of quasi power increasing sequences, Publ. Math-Debrecen, 58(2001), 791-796.
[5] H.S. Özarslan and H.N. Öğdük, Generalizations of two theorems on absolute summability methods, Aust. J. Math. Anal. Appl., 1(2) (2004), 1-7.
[6] H.S. Özarslan and E. Yavuz, A new note on absolute matrix summability, J. Inequal. Appl., 474(2013), 1-7.
[7] H.S. Özarslan, A note on generalized absolute Riesz summability, An. Ştiint. Univ. Al. I. Cuza Iaşi. Mat., 60(1) (2014), 51-56.
[8] W.T. Sulaiman, Inclusion theorems for absolute matrix summability methods of an infinite series (IV), Indian J. Pure Ap. Mat., 34(11) (2003), 1547-1557.
[9] N. Tanović-Miller, On strong summability, Glas. Mat., 34(14) (1979), 8797.

