

Gen. Math. Notes, Vol. 23, No. 1, July 2014, pp. 59-67 ISSN 2219-7184; Copyright © ICSRS Publication, 2014 www.i-csrs.org Available free online at http://www.geman.in

Intuitionistic Fuzzy ω-Extremally Disconnected Spaces

S. Venkatesan¹ and D. Amsaveni²

 ¹Department of Mathematics, K.S.R. College of Engineering Tiruchengode – 637 215, Tamilnadu, India E-mail: rajasrivenkii@rediffmail.com
 ²Department of Mathematics, Sri Sarada College for Women Salem 636016, Tamilnadu, India E-mail: d amsaveni@rediffmail.com

(Received: 12-2-14 / Accepted: 3-5-14)

Abstract

In this paper, a new class of intuitionistic fuzzy topological spaces called intuitionistic fuzzy ω extremally disconnected spaces is introduced and several other properties are discussed.

Keywords: Intuitionistic fuzzy ω extremally disconnected spaces, lower (resp.upper) intuitionistic fuzzy ω continuous functions.

1 Introduction

After the introduction of the concept of fuzzy sets by Zadeh [13], several researches were conducted on the generalizations of the notion of fuzzy set. The concept of "Intuitionistic fuzzy sets" was first published by Atanassov [2] and many works by the same author and his colleagues appeared in the literature [3-5]. Later this concept was generalized to "Intuitionistic L-fuzzy sets" by Atanassov and stoeva [6]. An introduction to intuitionistic fuzzy topological space was

introduced by Dogan Coker [8]. Several types of fuzzy connectedness in intuitionistic fuzzy topological spaces defined by Coker (1997). The construction is based on the idea of intuitionistic fuzzy set developed by Atanassov (1983, 1986; Atanassov and Stoeva, 1983). The concept of fuzzy extremally disconnected spaces was studied in [7]. In this paper a new class of intuitionistic fuzzy topological spaces namely, intuitionistic fuzzy ω extremally disconnected spaces is introduced by using the notions introduced in [7, 11, 12], The concept of fuzzy ω -extremally disconnected spaces has been discussed as in [1]. Some interesting properties and characterizations are studied.

2 **Preliminaries**

Definition 2.1[4]: Let X be a non empty fixed set. An intuitionistic fuzzy set (IFS for short) A is an object having the form $A = \{\langle x, \mu_A(x), \gamma_A(x) \rangle : x \in X\}$ where the functions $\mu_A : X \to I$ and $\gamma_A : X \to I$ denote the degree of membership (namely $\mu_A(x)$) and the degree of non membership (namely $\gamma_A(x)$) of each element $x \in X$ to the set A, respectively, and $0 \le \mu_A(x) + \gamma_A(x) \le 1$ for each $x \in X$.

Remark 2.1[8]: For the sake of simplicity, we shall use the symbol $A = \langle x, \mu_A, \gamma_A \rangle$.

Definition 2.2[4]: Let X be a non empty set and the IFSs A and B be in the form $A = \{ \langle x, \mu_A(x), \gamma_A(x) \rangle : x \in X \}, B = \{ \langle x, \mu_B(x), \gamma_B(x) \rangle : x \in X \}$. Then

(a)
$$A \subseteq B$$
 iff $\mu_A(x) \le \mu_B(x)$ and $\gamma_A(x) \ge \gamma_B(x)$ for all $x \in X$;
(b) $A = B$ iff $A \subseteq B$ and $B \subseteq A$;
(c) $\overline{A} = \left\{ \langle x, \gamma_A(x), \mu_A(x) \rangle : x \in X \right\};$
(d) $A \cap B = \left\{ \langle x, \mu_A(x) \land \mu_B(x), \gamma_A(x) \lor \gamma_B(x) \rangle : x \in X \right\};$
(e) $A \cup B = \left\{ \langle x, \mu_A(x) \lor \mu_B(x), \gamma_A(x) \land \gamma_B(x) \rangle : x \in X \right\};$
(f) $[]A = \left\{ \langle x, \mu_A(x), 1 - \mu_A(x) \rangle : x \in X \right\};$
(g) $\langle \rangle A = \left\{ \langle x, 1 - \gamma_A(x), \gamma_A(x) \rangle : x \in X \right\}.$

Definition 2.3[8]: Let X be a non empty set and let $\{A_i : i \in J\}$ be an arbitrary family of IFSs in X. Then

(a)
$$\cap A_i = \left\{ \left\langle x, \wedge \mu_{A_i}(x), \vee \gamma_{A_i}(x) \right\rangle : x \in X \right\};$$

(b) $\bigcup A_i = \left\{ \left\langle x, \vee \mu_{A_i}(x), \wedge \gamma_{A_i}(x) \right\rangle : x \in X \right\}.$

Definition 2.4[8]: Let X be a non empty fixed set. Then, $0_{-} = \{ \langle x, 0, 1 \rangle : x \in X \}$ and $1_{-} = \{ \langle x, 1, 0 \rangle : x \in X \}$.

Definition 2.5[8]: Let X and Y be two non empty fixed sets and $f : X \to Y$ be a function. Then

(a) If $B = \{ \langle y, \mu_B(y), \gamma_B(y) \rangle : y \in Y \}$ is an IFS in Y, then the pre image of B under f, denoted by $f^{-1}(B)$, is the IFS in X defined by $f^{-1}(B) = \{ \langle x, f^{-1}(\mu_B)(x), f^{-1}(\gamma_B)(x) \rangle : x \in X \}.$

(b) If $A = \{ \langle x, \lambda_A(x), v_A(x) \rangle : x \in X \}$ is an IFS in X, then the image of A under f, denoted by f(A), is the IFS in Y defined by

$$f(A) = \left\{ \left\langle y, f(\lambda_A)(y), (1 - f(1 - \nu_A))(y) \right\rangle : y \in Y \right\} \text{ where,}$$

$$f(\lambda_A)(y) = \begin{cases} \sup_{x \in f^{-1}(y)} \lambda_A(x) & \text{if} \quad f^{-1}(y) \neq 0\\ 0, & \text{otherwise,} \end{cases}$$
$$(1 - f(1 - \nu_A))(y) = \begin{cases} \inf_{x \in f^{-1}(y)} \nu_A(x) & \text{if} \quad f^{-1}(y) \neq 0\\ 1, & \text{otherwise.} \end{cases}$$
$$FS \quad A = \{ \langle x \mid \mu_A(x) \mid \chi_A(x) \rangle : x \in X \}$$

for the IFS $A = \{ \langle x, \mu_A(x), \gamma_A(x) \rangle : x \in X \}.$

Definition 2.6[8]: Let X be a non empty set. An intuitionistic fuzzy topology (IFT for short) on a non empty set X is a family τ of intuitionistic fuzzy sets (IFSs for short) in X satisfying the following axioms: $(T_1) \quad 0_{\sim}, 1_{\sim} \in \tau$, $(T_2) \quad G_1 \cap G_2 \in \tau$ for any $G_1, G_2 \in \tau$,

$$(T_3) \bigcup_{i \in \mathcal{T}} G_i \in \tau \text{ for any arbitrary family } \{G_i : i \in J\}.$$

In this case the pair (X,τ) is called an intuitionistic fuzzy topological space (IFTS for short) and any IFS in τ is known as an intuitionistic fuzzy open set (IFOS for short) in X.

Definition 2.7[8]: Let X be a non empty set. The complement \overline{A} of an IFOS A in an IFTS (X, τ) is called an intuitionistic fuzzy closed set (IFCS for short) in X.

Definition 2.8[8]: Let (X, τ) be an IFTS and $A = \langle x, \mu_A, \gamma_A \rangle$ be an IFS in X. Then the fuzzy interior and fuzzy closure of A are defined by

 $cl(A) = \bigcap \{ K : K \text{ is an } IFCS \text{ in } X \text{ and } A \subseteq K \},$ int(A) = $\bigcup \{ G : G \text{ is an } IFOS \text{ in } X \text{ and } G \subseteq A \}.$

Remark 2.2[8]: Let (X, τ) be an *IFTS*. cl(A) is an *IFCS* and int(A) is an *IFOS* in X, and (a) A is an *IFCS* in X iff cl(A) = A; (b) A is an *IFOS* in X iff int(A) = A

Proposition 2.1[8]: Let (X, τ) be an IFTS. For any IFS A in (X, τ) , we have (a) $cl(\overline{A}) = \overline{int(A)}$, (b) $int(\overline{A}) = \overline{cl(A)}$.

Definition 2.9[8]: Let (X,τ) and (Y,φ) be two IFTSs and let $f: X \to Y$ be a function. Then f is said to be fuzzy continuous iff the pre image of each IFS in ϕ is an IFS in τ .

Definition 2.10[8]: Let (X, τ) and (Y, ϕ) be two IFTSs and let $f : X \to Y$ be a function. Then f is said to be fuzzy open(resp.closed) iff the image of each IFS in τ (resp. $(1 - \tau)$) is an IFS in ϕ (resp. $(1 - \phi)$).

Definition 2.11[9]: A subset A of an IFTS (X, τ) is called an IF semi-open set if $A \subseteq IFcl(IF \operatorname{int}(A))$ and an IF semi-closed set if $IF \operatorname{int}(IFcl(A)) \subseteq A$.

Definition 2.12[10]: A subset of a topological space (X,T) is called ω -closed in (X,T) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X,T). A subset A is called ω -open if A^c is ω -closed.

An *IFTS* (X,T) represent intuitionistic fuzzy topological spaces and for a subset A of a space (X,T), *IFcl*(A), *IF*int(A) and \overline{A} denote an intuitionistic fuzzy closure of A, an intuitionistic fuzzy interior of A and the complement of A in X respectively.

Notation 2.1[1]: Let X be any non-empty set and $A \in \zeta^X$. Then for $x \in X$, $\langle \mu_A(x), \gamma_A(x) \rangle$ is denoted by A^\sim .

Definition 2.13[1]: An intuitionistic fuzzy real line $\mathbb{R}_{\mathbb{I}}(I)$ is the set of all monotone decreasing intuitionistic fuzzy set $A \in \zeta^R$ satisfying $\bigcup \{A(t):t \in R\} = 1^{\sim}$ and $\cap \{A(t):t \in R\} = 0^{\sim}$ after the identification of an intuitionistic fuzzy sets

$$A, B \in \mathbb{R}_{\mathbb{I}}(I) \text{ if and only if } A(t-) = B(t-) \text{ and } A(t+) = B(t+) \text{ for all } t \in \mathbb{R}$$

where $A(t-) = \bigcap \{ A(s): s < t \} \text{ and } A(t+) = \bigcup \{ A(s): s > t \}.$

The intuitionistic fuzzy unit interval $\mathbb{I}_{\mathbb{I}}(I)$ is a subset of $\mathbb{R}_{\mathbb{I}}(I)$ such that $[A] \in \mathbb{I}_{\mathbb{I}}(I)$ if the membership and non-membership of A are defined by

$$\mu_A(t) = \begin{cases} 1 & t < 0 \\ 0 & t > 1 \end{cases} \text{ and } \gamma_A(t) = \begin{cases} 1 & t < 0 \\ 0 & t > 1 \end{cases} \text{ respectively.}$$

The intuitionistic fuzzy topology on $\mathbb{R}_{\mathbb{I}}(I)$ is generated from the subbasis $\left\{L_{t}^{\mathbb{I}}, R_{t}^{\mathbb{I}}, t \in \mathbb{R}\right\}$ where $L_{t}^{\mathbb{I}}, R_{t}^{\mathbb{I}} : \mathbb{R}_{\mathbb{I}}(I) \to \mathbb{I}_{\mathbb{I}}(I)$ are given by $L_{t}^{\mathbb{I}}(A) = \overline{A(t-)}$ and $R_{t}^{\mathbb{I}}(A) = A(t+)$ respectively.

Definition 2.14[1]: Let (X,T) be an intuitionistic fuzzy topological space. The characteristic function of intuitionistic fuzzy set A in X is the function $\psi_A : X \to \mathbb{I}_{\mathbb{I}}(I)$ defined by $\psi_A(x) = A^{\tilde{}}$, for each $x \in X$.

Notation 2.2[1]: Let (X,T) be intuitionistic fuzzy topological space and let $A \subset X$. Then an intuitionistic fuzzy χ_A^* is of the form $\langle x, \chi_A(x), 1-\chi_A(x) \rangle$.

3 Intuitionistic Fuzzy ω-Extremally Disconnected Spaces

In this section, the concept of ω extremally disconnectedness in intuitionistic fuzzy topological space is introduced besides proving several other propositions.

Definition 3.1: A subset A of an IFTS (X,T) is called intuitionistic fuzzy ω closed(IF ω closed for short) if IFcl(A) \subseteq U whenever A \subseteq U and U is IF semiopen in (X,T).

Definition 3.2: A subset A of an IFTS (X,T) is called intuitionistic fuzzy ω open (IF ω open for short) if \overline{A} is IF ω closed.

Definition 3.3: Let (X,T) be an intuitionistic fuzzy topological space and A be an intuitionistic fuzzy set in X. Then the intuitionistic fuzzy ω closure of A $(IF\omega cl(A) \quad for \quad short)$ and intuitionistic $fuzzy \quad \omega$ interior of A $(IF\omega int(A) for \quad short)$ are defined by

 $IF\omega \ cl(A) = \bigcap \{K: K \text{ is an intuitionistic fuzzy } \omega \text{ closed set in } X \text{ and } A \subseteq K \},\$

 $IF\omega$ int $(A) = \bigcup \{G: G \text{ is an intuitionistic fuzzy } \omega \text{ open set in } X \text{ and } G \subseteq A \}.$

Definition 3.4: A function $f: (X,T) \to (Y,S)$ is called intuitionistic fuzzy ω continuous if $f^{-1}(V)$ is an intuitionistic fuzzy ω closed set of (X,T) for every intuitionistic fuzzy closed set V of (Y,S).

Proposition 3.1: For any intuitionistic fuzzy set A of an intuitionistic fuzzy topological space (X,T), the following statements hold:

(a) $\overline{IF\omega \ cl(A)} = IF\omega \ int(\overline{A})$

(b) $\overline{IF\omega int(A)} = IF\omega cl(\overline{A})$

Definition 3.5: Let (X,T) be an intuitionistic fuzzy topological space. Let A be any intuitionistic fuzzy ω open set in (X,T). If an intuitionistic fuzzy ω closure of A is intuitionistic fuzzy ω open, then (X,T) is said to be an intuitionistic fuzzy ω extremally disconnected space.

Proposition 3.2: For an intuitionistic fuzzy topological space (X,T) the following statements are equivalent:

- (a) (X, T) is intuitionistic fuzzy ω extremally disconnected.
- (b) For each intuitionistic fuzzy ω closed set A, IF ω int(A) is intuitionistic fuzzy ω closed.
- (c) For each intuitionistic fuzzy ω open set A, $IF\omega \ cl(IF\omega \ int(\overline{A})) = \overline{IF\omega \ cl(A)}$
- (d) For each pair of intuitionistic fuzzy ω open sets A and B in (X,T) with $\overline{IF\omega \ cl(A)} = B$, $IF\omega \ cl(B) = \overline{IF\omega \ cl(A)}$.

Proposition 3.3: Let (X,T) be an intuitionistic fuzzy topological space. Then (X,T) is an intuitionistic fuzzy ω extremally disconnected space if and only if for any intuitionistic fuzzy ω open set A and intuitionistic fuzzy ω closed set B such that $A \subseteq B$, $IF \omega cl(A) \subseteq IF \omega$ int(B).

Notation 3.1: An intuitionistic fuzzy set which is both intuitionistic fuzzy ω open set and intuitionistic fuzzy ω closed set is called intuitionistic fuzzy ω clopen set.

Remark 3.1: Let (X,T) be an intuitionistic fuzzy ω extremally disconnected space. Let $\{A_i, \overline{B}_i / i \in N\}$ be a collection such that A_i 's are intuitionistic fuzzy ω open sets, B_i 's are intuitionistic fuzzy ω closed sets and let A, \overline{B} be intuitionistic fuzzy ω clopen sets respectively. If $A_i \subseteq A \subseteq B_j$ and $A_i \subseteq B \subseteq B_j$ for all $i, j \in N$ then there exists an intuitionistic fuzzy ω clopen set C such that $IF\omega cl(A_i) \subseteq C \subseteq IF\omega int(B_j)$ for all $i, j \in N$.

Proposition 3.4: Let (X,T) be an intuitionistic fuzzy ω extremally disconnected space. Let $(A_q)_{q \in 0}$ and $(B_q)_{q \in 0}$ be the monotone increasing collections of

intuitionistic fuzzy ω open sets and intuitionistic fuzzy ω closed sets of (X,T) respectively and suppose that $A_{q_1} \subseteq B_{q_2}$ whenever $q_1 < q_2$ (Q is the set of rational numbers). Then there exists a monotone increasing collection $\{C_q\}_{q \in Q}$ of intuitionistic fuzzy ω clopen sets of (X,T) such that $IF\omega \ cl(A_{q_1}) \subseteq C_{q_2}$ and $C_{q_2} \subseteq IF\omega \ int(B_{q_2})$ whenever $q_1 < q_2$.

4 Properties and Characterizations of Intuitionistic Fuzzy ω Extremally Disconnected Spaces

In this section, various properties and characterizations of intuitionistic fuzzy ω extremally disconnected spaces are discussed.

Definition 4.1: Let (X, T) be an intuitionistic fuzzy topological space. A function $f: X \to R_I(I)$ is called lower (resp., upper) intuitionistic fuzzy ω continuous, if $f^{-1}(R_t^I)$ (resp., $f^{-1}(\overline{L}_t^I)$) is an intuitionistic fuzzy ω open set (resp., intuitionistic fuzzy ω clopen) for each $t \in R$.

Lemma 4.1: Let (X,T) be an intuitionistic fuzzy topological space. Let $A \in \zeta^X$ and let $f: X \to R_I(I)$ be such that

$$f(x)(t) = \begin{cases} 1^{\sim} if & t < 0, \\ A^{\sim} if & 0 \le t \le 1, \\ 0^{\sim} if & t > 1, \end{cases}$$

for all $x \in X$ and $t \in R$. Then f is lower (resp., upper) intuitionistic fuzzy ω continuous iff A is intuitionistic fuzzy ω open (resp., intuitionistic fuzzy ω clopen) set.

Proposition 4.1: Let (X,T) be an intuitionistic fuzzy topological space and let $A \in \zeta^X$. Then ψ_A is lower (resp., upper) intuitionistic fuzzy ω continuous iff A is intuitionistic fuzzy ω open (resp., intuitionistic fuzzy ω clopen).

Definition 4.2: Let (X,T) and (Y,S) be two intuitionistic fuzzy topological spaces. A function $f:(X,T) \rightarrow (Y,S)$ is called intuitionistic fuzzy strongly ω continuous if $f^{-1}(A)$ is intuitionistic fuzzy ω clopen in (X,T) for every intuitionistic fuzzy ω open set in (Y,S).

Proposition 4.2: Let (X,T) be an intuitionistic fuzzy topological space. Then the following statements are equivalent:

- (a) (X, T) is intuitionistic fuzzy ω extremally disconnected,
- (b) If $g, h: X \to R_I(I)$, g is lower intuitionistic fuzzy ω continuous, h is upper intuitionistic fuzzy ω continuous and $g \subseteq h$, then there exists an

intuitionistic fuzzy strongly ω continuous function, $f:(X,T) \rightarrow R_I(I)$ such that $g \subseteq f \subseteq h$.

(c) If \overline{A} and B are intuitionistic fuzzy ω open sets such that $B \subseteq A$ then there exists an intuitionistic fuzzy strongly ω continuous function $f: (X, T, \leq) \rightarrow I_I(I)$ such that $B \subseteq \overline{L_1^I} f \subseteq R_0^I f \subseteq A$.

5 Tietze Extension Theorem for Intuitionistic Fuzzy ω Extremally Disconnected Spaces

In this section, Tietze extension theorem for intuitionistic fuzzy ω extremally disconnected space is studied.

Proposition 5.1: Let (X,T) be an upper intuitionistic fuzzy ω extremally disconnected space and let $A \subset X$ be such that χ^*_A is an intuitionistic fuzzy ω open set in (X,T). Let $f:(A,T/A) \to I_I(I)$ be an intuitionistic fuzzy strongly ω continuous function. Then, f has an intuitionistic fuzzy strongly ω continuous extension over (X,T).

Acknowledgement:

The authors express their sincere thanks to the referees for their valuable comments regarding the improvement of the paper.

References

- [1] D. Amsaveni, M.K. Uma and E. Roja, Intuitionistic fuzzy presemi extremally disconnected spaces, *Far East Journal of Mathematical Sciences*, 73(2013), 119-129.
- [2] K. Atanassov, Intuitionstic fuzzy sets, In: V. Sgurev (Ed.), *VII ITKR's Session*, Sofia (une 1983 Central Sci. and Techn. Library, Bulg. Academy of Sciences, 1984).
- [3] K. Atanssov, Intuitionistic fuzzy sets, *Fuzzy Sets and Systems*, 20(1986), 87-96.
- [4] K. Atanassov, *Review and New Results on Intuitionistic Fuzzy Sets*, Preprint IM-MFAIS, Sofia, (1988), 1-88.
- [5] K. Atanassov and S. Stoeva, Intuitionistic fuzzy sets, In: *Polish Symp. On Internal & Fuzzy Mathematics, Poznan*, August (1983), 23-26.
- [6] K. Atanassov and S. Stoeva, Intuitionistic L-fuzzy sets, In: R. Trappl (Ed.), *Cybernetics and System Research (Vol. 2)*, Elsevier, Amsterdam, (1984), 539-540.
- [7] G. Balasubramanian, On fuzzy β-compact spaces and fuzzy β-extremally disconnected spaces, *Kybernetika*, 33(1997), 271-277.
- [8] D. Coker, An introduction to intuitionistic fuzzy topological spaces, *Fuzzy Sets and Systems*, 88(1997), 81-89.

- [9] H. Gurcay, D. Coker and A. Es. Haydar, On fuzzy continuity in intuitionistic fuzzy topological spaces, *The J. Fuzzy Mathematics*, 5(2) (1997), 365-378.
- [10] M.S. John, A study on generalizations of closed sets and continuous maps in topological and bitopological spaces, *Ph. D. Thesis*, (2002), Bharathiar University, Coimbatore.
- [11] T. Kubiak, L-fuzzy normal spaces and Tietze extension theorem, J. Math. Anal. Appl., 25(1987), 141-153.
- [12] M.K. Uma and E. Roja and G. Balasubramanian, Tietze extension theorem for ordered fuzzy pre extremally disconnected spaces, *East Asian Math J.*, 24(2008), 213-221.
- [13] L.A. Zadeh, Fuzzy sets, *Inform and Control*, 8(1965), 338-353.