Gen. Math. Notes, Vol. 20, No. 1, January 2014, pp. 58-66
ISSN 2219-7184; Copyright © ICSRS Publication, 2014
www.i-csrs.org
Available free online at http://www.geman.in

On Some Integral Inequalities Analogs to Hilbert's Inequality

Atta A.K. Abu Hany
Department of Mathematics
Alazhar University of Gaza, Gaza
E-mail: attahany@gmail.com

(Received: 18-10-13 / Accepted: 24-11-13)

Abstract

In this paper we give some further extensions of well-known Hilbert's inequality. We give equivalent form in two dimensions as application.

Keywords: Hilbert's inequality, Hardy-Hilbert's Inequality, equivalent form.

1 Introduction

The well-known Hilbert's inequality and its equivalent form are presented first:
Theorem A: [4] Iff and $g \in L^{2}[0, \infty)$, then the following inequalities hold and are equivalent
$\int_{0}^{\infty} \int_{0}^{\infty} \frac{f(x) g(y)}{x+y} d x d y \leq \pi\left(\int_{0}^{\infty} f^{2}(x) d x\right)^{1 / 2}\left(\int_{0}^{\infty} g^{2}(y) d y\right)^{1 / 2}$,
and

$$
\begin{equation*}
\int_{0}^{\infty}\left(\int_{0}^{\infty} \frac{f(x)}{x+y} d x\right)^{2} d y \leq \pi^{2} \int_{0}^{\infty} f^{2}(x) d x \tag{2}
\end{equation*}
$$

where π and π^{2} are the best possible constants.
The classical Hilbert's integral inequality (1) had been generalized by HardyRiesz (see [2]) in 1925 as the following result.

If f, g are nonnegative functions such that $0<\int_{0}^{\infty} f^{p}(x) d x<\infty$ and
$0<\int_{0}^{\infty} g^{q}(x) d x<\infty$, where $\frac{1}{p}+\frac{1}{q}=1$, then

$$
\begin{align*}
\int_{0}^{\infty} \int_{0}^{\infty} \frac{f(x) g(y)}{x+y} & d x d y \\
< & \pi \csc \left(\frac{\pi}{p}\right)\left(\int_{0}^{\infty} f^{p}(x) d x\right)^{1 / p}\left(\int_{0}^{\infty} g^{q}(y) d y\right)^{1 / q} \tag{3}
\end{align*}
$$

where the constant factor $\pi \csc (\pi / p)$ is the best possible. When $\mathrm{p}=q=2$, inequality (3) is reduced to (1).

In recent years, a number of mathematicians had given lots of generalizations of these inequalities. We mention here some of these contributions in this direction:

Li et al. [5] have proved the following Hardy- Hilbert's type inequality using the hypotheses of (1):
$\int_{0}^{\infty} \int_{0}^{\infty} \frac{f(x) g(y)}{x+y+\max \{x, y\}} d x d y<c\left(\int_{0}^{\infty} f^{2}(x) d x\right)^{1 / 2}\left(\int_{0}^{\infty} g^{2}(y) d y\right)^{1 / 2}$,
Where the constant factor $\mathrm{c}=\sqrt{2}\left(\pi-2-\tan ^{-1} \sqrt{2}\right)=1.7408 \ldots$ is the best possible.
Y. Li, Y. Qian, and B. He [6] deduced the following result:

Theorem B: If $f, g \geq 0,0<\int_{0}^{\infty} f^{2}(x) d x<\infty$ and $0<\int_{0}^{\infty} g^{2}(x) d x<\infty$, then one has

$$
\begin{equation*}
\int_{0}^{\infty} \int_{0}^{\infty} \frac{|\ln x-\ln y|}{x+y+|x-y|} f(x) g(y) d x d y<4\left(\int_{0}^{\infty} f^{2}(x) d x\right)^{1 / 2}\left(\int_{0}^{\infty} g^{2}(x) d x\right)^{1 / 2} \tag{5}
\end{equation*}
$$

where the constant factors 4 is the best possible.
More and more results regarding this direction on Hilbert's type inequalities can be found for example in [3, 7, 8].

2 Main Results

In this paper, we give some analogs of Hilbert's type inequality. We will use the following lemma in establishing the main result.

Lemma 2.1: [1] Let γ, α, β be three non-negative real numbers. Then we have the following equations

$$
\begin{aligned}
\int_{0}^{\infty} & \frac{|\ln x-\ln y|^{\gamma}}{\alpha x+\beta y+|x-y|}\left(\frac{x}{y}\right)^{1 / 2} d y=\int_{0}^{\infty} \frac{|\ln x-\ln y|^{\gamma}}{\alpha x+\beta y+|x-y|}\left(\frac{y}{x}\right)^{1 / 2} d x \\
& =\int_{0}^{1} \frac{2^{\gamma+1}|\ln t|^{\gamma}}{(\alpha+1)+t^{2}(\beta-1)} d t+\int_{0}^{1} \frac{2^{\gamma+1}|\ln t|^{\gamma}}{t^{2}(\alpha-1)+(\beta+1)} d t=A
\end{aligned}
$$

where $A:=A(\gamma, \alpha, \beta) \in[0, \infty]$.
Another result stated in the following theorem [1] is under consideration.
Theorem 2.1: If f, g are real functions such that $0<\int_{0}^{\infty} f^{2}(x) d x<\infty$, $0<\int_{0}^{\infty} g^{2}(x) d x<\infty$, then we have

$$
\begin{align*}
& \int_{0}^{\infty} \int_{0}^{\infty} \frac{|\ln x-\ln y|^{\gamma}}{\alpha x+\beta y+|x-y|} f(x) g(y) d x \\
& \quad \leq A\left(\int_{0}^{\infty} f^{2}(x) d x\right)^{1 / 2}\left(\int_{0}^{\infty} g^{2}(y) d y\right)^{1 / 2} \tag{6}
\end{align*}
$$

where A is defined in Lemma 2.1 and is the best possible.
In the following theorem, we introduce an equivalent form to inequality (6).
Theorem 2.2: Suppose $f \geq 0$ and $0<\int_{0}^{\infty} f^{2}(x) d x<\infty$, then
$\int_{0}^{\infty}\left[\int_{0}^{\infty} \frac{|\ln x-\ln y|^{\gamma}}{\alpha x+\beta y+|x-y|} f(x) d x\right]^{2} d y \leq A^{2} \int_{0}^{\infty} f^{2}(x) d x$,
where A is defined in Lemma 2.1. Furthermore, Inequality (7) is equivalent to (6).
Proof: Let

$$
\begin{equation*}
I=\int_{0}^{\infty}\left[\int_{0}^{\infty} \frac{|\ln x-\ln y|^{\gamma}}{\alpha x+\beta y+|x-y|} f(x) d x\right]^{2} d y \tag{8}
\end{equation*}
$$

Setting $x=y z, d x=y d z$, then we get

$$
I=\int_{0}^{\infty}\left[\int_{0}^{\infty} \frac{|\ln z|^{\gamma}}{\alpha z+\beta+|z-1|} f(y z) d z\right]^{2} d y
$$

By Minkowski's inequality for integrals,

$$
\begin{gathered}
I \leq\left(\int_{0}^{\infty}\left[\int_{0}^{\infty}\left(\frac{|\ln z|^{\gamma}}{\alpha z+\beta+|z-1|} f(y z)\right)^{2} d y\right]^{1 / 2} d z\right)^{2} \\
I \leq\left(\int_{0}^{\infty} \frac{|\ln z|^{\gamma}}{\alpha z+\beta+|z-1|}\left[\int_{0}^{\infty} f^{2}(y z) d y\right]^{1 / 2} d z\right)^{2}
\end{gathered}
$$

Setting $y=u / z, d y=(1 / z) d u$,then by Fubini's Theorem, we obtain

$$
\begin{aligned}
I & \leq\left(\int_{0}^{\infty} \frac{|\ln z|^{\gamma} z^{-1 / 2}}{\alpha z+\beta+|z-1|} d z\left[\int_{0}^{\infty} f^{2}(u) d u\right]^{1 / 2}\right)^{2} \\
I & \leq\left(\int_{0}^{\infty} \frac{|\ln z|^{\gamma} z^{-1 / 2}}{\alpha z+\beta+|z-1|} d z\right)^{2} \int_{0}^{\infty} f^{2}(u) d u \\
& =A^{2} \int_{0}^{\infty} f^{2}(x) d x
\end{aligned}
$$

Thus Inequality (7) holds.
Now, to prove that Inequality (7) is equivalent to (6): Suppose that Inequality (6) holds, and let

$$
g(y)=\int_{0}^{\infty} \frac{|\ln x-\ln y|^{\gamma}}{\alpha x+\beta y+|x-y|} f(x) d x
$$

Hence

$$
0<\int_{0}^{\infty} g^{2}(y) d y=\int_{0}^{\infty}\left(\int_{0}^{\infty} \frac{|\ln x-\ln y|^{\gamma}}{\alpha x+\beta y+|x-y|} f(x) d x\right) g(y) d y
$$

By Fubini's Theorem and Inequalities (6),

$$
\begin{aligned}
\int_{0}^{\infty} g^{2}(y) d y & =\int_{0}^{\infty} \int_{0}^{\infty} \frac{|\ln x-\ln y|^{\gamma}}{\alpha x+\beta y+|x-y|} f(x) g(y) d x d y \\
& \leq A\left(\int_{0}^{\infty} f^{2}(x) d x\right)^{1 / 2}\left(\int_{0}^{\infty} g^{2}(y) d y\right)^{1 / 2}
\end{aligned}
$$

Notice that by Inequality (7), $g \in L^{2}$. So the last integral is finite, and hence

$$
\left(\int_{0}^{\infty} g^{2}(y) d y\right)^{1 / 2} \leq A\left(\int_{0}^{\infty} f^{2}(x) d x\right)^{1 / 2}
$$

Thus

$$
\int_{0}^{\infty}\left[\int_{0}^{\infty} \frac{|\ln x-\ln y|^{\gamma}}{\alpha x+\beta y+|x-y|} f(x) d x\right]^{2} d y \leq A^{2} \int_{0}^{\infty} f^{2}(x) d x
$$

Conversly, if Inequality (7) holds, then

$$
\begin{aligned}
& \int_{0}^{\infty} \int_{0}^{\infty} \frac{|\ln x-\ln y|^{\gamma}}{\alpha x+\beta y+|x-y|} f(x) g(y) d x d y \\
& \quad=\int_{0}^{\infty}\left(\int_{0}^{\infty} \frac{|\ln x-\ln y|^{\gamma}}{\alpha x+\beta y+|x-y|} f(x) d x\right) g(y) d y
\end{aligned}
$$

By Cauchy - Schwarz inequality we get

$$
\begin{aligned}
& \int_{0}^{\infty}\left(\int_{0}^{\infty} \frac{|\ln x-\ln y|^{\gamma}}{\alpha x+\beta y+|x-y|} f(x) d x\right) g(y) d y \\
& \quad \leq\left(\int_{0}^{\infty}\left[\int_{0}^{\infty} \frac{|\ln x-\ln y|^{\gamma}}{\alpha x+\beta y+|x-y|} f(x) d x\right]^{2} d y\right)^{1 / 2}\left(\int_{0}^{\infty} g^{2}(y) d y\right)^{1 / 2} \\
& \quad \leq A\left(\int_{0}^{\infty} f^{2}(x) d x\right)^{1 / 2}\left(\int_{0}^{\infty} g^{2}(y) d y\right)^{1 / 2}
\end{aligned}
$$

Lemma 2.2: [2] Let f be a nonnegative integrable function, and $F(x)=$ $\int_{0}^{x} f(t) d t$, then

$$
\int_{0}^{\infty}\left(\frac{F(x)}{x}\right)^{p} d x<\left(\frac{p}{p-1}\right)^{p} \int_{0}^{\infty} f(x) d x, \quad p>1
$$

Using the above lemma and together with Theorem 2.1, we introduce the following result.

Theorem 2.3: Let $f, g \geq 0$,
$F(x)=\int_{0}^{x} f(t) d t, \quad G(y)=\int_{0}^{y} g(t) d t$,
and assume that $0<\int_{0}^{\infty} f^{2}(x) d x<\infty$ and $0<\int_{0}^{\infty} g^{2}(y) d y<\infty$, then we have

$$
\begin{align*}
& \int_{0}^{\infty} \int_{0}^{\infty} \frac{|\ln x-\ln y|^{\gamma}}{\alpha x+\beta y+|x-y|} \frac{F(x)}{x} \frac{G(y)}{y} d x d y \\
& \quad \leq \mu\left(\int_{0}^{\infty} f^{2}(x) d x\right)^{1 / 2}\left(\int_{0}^{\infty} g^{2}(y) d y\right)^{1 / 2} \tag{9}
\end{align*}
$$

Proof: Let

$$
I=\int_{0}^{\infty} \int_{0}^{\infty} \frac{|\ln x-\ln y|^{\gamma}}{\alpha x+\beta y+|x-y|} \frac{F(x)}{x} \frac{G(y)}{y} d x d y
$$

By Holder's inequality, we obtain

$$
\begin{aligned}
& I \leq\left\{\int_{0}^{\infty}\left(\int_{0}^{\infty} \frac{|\ln x-\ln y|^{\gamma}}{\alpha x+\beta y+|x-y|}\left(\frac{x}{y}\right)^{1 / 2} d y\right)\left(\frac{F(x)}{x}\right)^{2} d x\right\}^{1 / 2} \\
& \times\left\{\int_{0}^{\infty}\left(\int_{0}^{\infty} \frac{|\ln x-\ln y|^{\gamma}}{\alpha x+\beta y+|x-y|}\left(\frac{y}{x}\right)^{1 / 2} d x\right)\left(\frac{G(y)}{y}\right)^{2} d y\right\}^{1 / 2}
\end{aligned}
$$

By using Lemma 2.1,

$$
\begin{gathered}
I \leq\left\{\int_{0}^{\infty} A\left(\frac{F(x)}{x}\right)^{2} d x\right\}^{1 / 2} \times\left\{\int_{0}^{\infty} A\left(\frac{G(y)}{y}\right)^{2} d y\right\}^{1 / 2}, \\
I \leq A\left\{\int_{0}^{\infty}\left(\frac{F(x)}{x}\right)^{2} d x\right\}^{1 / 2}\left\{\int_{0}^{\infty}\left(\frac{G(y)}{y}\right)^{2} d y\right\}^{1 / 2}
\end{gathered}
$$

Finally, by Lemma 2.2, for $p=2$, we have

$$
I \leq 4 A\left(\int_{0}^{\infty} f^{2}(x) d x\right)^{1 / 2}\left(\int_{0}^{\infty} g^{2}(y) d y\right)^{1 / 2}
$$

Letting $\mu=4 A$, and inequality (9) is proved.
Corollary 2.1: Let $\alpha=\beta=1$ in Theorem 2.3, then we obtain

$$
\int_{0}^{\infty} \int_{0}^{\infty} \frac{|\ln x-\ln y|^{\gamma}}{x+y+|x-y|} \frac{F(x)}{x} \frac{G(y)}{y} d x d y
$$

$$
\begin{equation*}
\leq K_{\gamma}\left(\int_{0}^{\infty} f^{2}(x) d x\right)^{1 / 2}\left(\int_{0}^{\infty} g^{2}(y) d y\right)^{1 / 2} \tag{10}
\end{equation*}
$$

where the constant
$K_{\gamma}=\int_{0}^{1} 2^{\gamma+1}|\ln h|^{\gamma} d h=2 \gamma K_{\gamma-1}$. Here, $\gamma=1,2,3, \ldots$ and $K_{0}=2$.
Proof: The proof of (10) is similar to that of (9), and here we only prove that:
$K_{\gamma}=\int_{0}^{1} 2^{\gamma+1}|\ln h|^{\gamma} d h=2 \gamma K_{\gamma-1}$.
We have $K_{\gamma}=\int_{0}^{\infty} \frac{|\ln x-\ln y|^{\gamma}}{x+y+|x-y|}\left(\frac{x}{y}\right)^{1 / 2} d y=\int_{0}^{\infty} \frac{|\ln t|^{\gamma}}{1+t+|1-t|}\left(\frac{1}{t}\right)^{1 / 2} d t$

$$
=\int_{0}^{1} \frac{|\ln t|^{\gamma}}{2}\left(\frac{1}{t}\right)^{1 / 2} d t+\int_{1}^{\infty} \frac{|\ln t|^{\gamma}}{2 t}\left(\frac{1}{t}\right)^{1 / 2} d t
$$

For the last integral, take $t=s^{-1}$ and rewrite this integral in term of t, We obtain

$$
K_{\gamma}=\int_{0}^{1} \frac{|\ln t|^{\gamma}}{2}\left(\frac{1}{t}\right)^{1 / 2} d t+\int_{0}^{1} \frac{|\ln t|^{\gamma}}{2}\left(\frac{1}{t}\right)^{1 / 2} d t=\int_{0}^{1}|\ln t|^{\gamma}\left(\frac{1}{t}\right)^{1 / 2} d t .
$$

Setting $h=t^{1 / 2}$, we get

$$
K_{\gamma}=\int_{0}^{1} 2^{\gamma+1}|\ln h|^{\gamma} d h=2 \gamma K_{\gamma-1} .
$$

3 Several Special Cases

We now introduce some special inequalities of (9) by choosing different values for γ, α, and β.
(1) If $\gamma=\alpha=0, \beta=1$, then we obtain

$$
\begin{align*}
& \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{y+|x-y|} \frac{F(x)}{x} \frac{G(y)}{y} d x d y \\
& \quad \leq \mu\left(\int_{0}^{\infty} f^{2}(x) d x\right)^{1 / 2}\left(\int_{0}^{\infty} g^{2}(y) d y\right)^{1 / 2} \tag{12}
\end{align*}
$$

where $\mu=4 A$ and from Lemma 2.1,

65On Some Integral Inequalities Analogs to...

$$
\begin{aligned}
A & =\int_{0}^{1} \frac{2}{1} d t+\int_{0}^{1} \frac{2}{-t^{2}+2} d t=2+2 \int_{0}^{1}\left(\frac{1 / 2 \sqrt{2}}{\sqrt{2}-t}+\frac{1 / 2 \sqrt{2}}{\sqrt{2}+t}\right) d t \\
& =2+\frac{1}{\sqrt{2}}\left(-\left.\ln |\sqrt{2}-t|\right|_{0} ^{1}+\left.\ln |\sqrt{2}+t|\right|_{0} ^{1}\right)=3.24646 .
\end{aligned}
$$

(2) If $\gamma=0, \alpha=1, \beta=2$, then

$$
\begin{align*}
& \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{x+2 y+|x-y|} \frac{F(x)}{x} \frac{G(y)}{y} d x d y \\
& \quad \leq \mu\left(\int_{0}^{\infty} f^{2}(x) d x\right)^{1 / 2}\left(\int_{0}^{\infty} g^{2}(y) d y\right)^{1 / 2} \tag{13}
\end{align*}
$$

where $\mu=4 A$ and from Lemma 2.1,

$$
A=\int_{0}^{1} \frac{2}{2+t^{2}} d t+\int_{0}^{1} \frac{2}{3} d t=2\left[\frac{1}{\sqrt{2}} \tan ^{-1} \frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}} \tan ^{-1} 0\right]+\frac{2}{3}
$$

(3) If $\gamma=1, \alpha=\beta=0$, then

$$
\begin{align*}
& \int_{0}^{\infty} \int_{0}^{\infty} \frac{|\ln x-\ln y|}{|x-y|} \frac{F(x)}{x} \frac{G(y)}{y} d x d y \\
& \quad \leq \mu\left(\int_{0}^{\infty} f^{2}(x) d x\right)^{1 / 2}\left(\int_{0}^{\infty} g^{2}(y) d y\right)^{1 / 2} \tag{14}
\end{align*}
$$

where $\mu=4 A$, and from Lemma 2.1,

$$
A=\int_{0}^{1} \frac{-4 \ln t}{1-t^{2}} d t+\int_{0}^{1} \frac{-4 \ln t}{-t^{2}+1} d t=-8 \int_{0}^{1} \frac{\ln t}{1-t^{2}} d t
$$

Since

$$
\int_{0}^{1} \frac{\ln t}{t-1} t^{-1 / 2} d t=\pi^{2}
$$

Then we have

$$
A=-8 \int_{0}^{1} \frac{\ln t}{1-t^{2}} d t=2 \pi^{2}
$$

(4) If $\gamma=\alpha=0, \beta=2$, then

$$
\begin{align*}
& \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{2 y+|x-y|} \frac{F(x)}{x} \frac{G(y)}{y} d x d y \\
& \quad \leq \mu\left(\int_{0}^{\infty} f^{2}(x) d x\right)^{1 / 2}\left(\int_{0}^{\infty} g^{2}(y) d y\right)^{1 / 2} \tag{15}
\end{align*}
$$

where $\mu=4 A$ and from Lemma 2.1,

$$
\begin{aligned}
& A=\int_{0}^{1} \frac{2}{1+t^{2}} d t+\int_{0}^{1} \frac{2}{-t^{2}+3} d t=\frac{\pi}{2}+2 \int_{0}^{1}\left(\frac{1 / 2 \sqrt{3}}{\sqrt{3}-t}+\frac{1 / 2 \sqrt{3}}{\sqrt{3}+t}\right) d t \\
& =\frac{\pi}{2}+\frac{1}{\sqrt{3}}\left(-\left.\ln |\sqrt{3}-t|\right|_{0} ^{1}+\left.\ln |\sqrt{3}+t|\right|_{0} ^{1} \begin{array}{l}
0
\end{array}\right)=1.968 .
\end{aligned}
$$

References

[1] A.A.K. AbuHany, On some new analogues of Hilbert's inequality, International Journal of Mathematics and Computation, 24(3) (2014), 7076.
[2] G.H. Hardy, Note on a theorem of Hilbert, Mathematische Zeitschrift, 6(34) (1920), 314-317.
[3] H.X. Du and Y. Miao, Several analogues of Hilbert inequalities, Demonstratio Math, XLII(2) (2009), 297-302.
[4] M. Krnic and J. Pecaric, General Hilbert's and Hardy's inequalities, Mathematical Inequalities and Applications, 8(1) (2005), 29-51.
[5] Y. Li, J. Wu and B. He, A new Hilbert-type integral inequality and the equivalent from, International Journal of Mathematics and Mathematical Sciences, Article ID 45378(2006), 6 pages.
[6] Y. Li, Y. Qian and B. He, On further analogs of Hilbert's inequality, International Journal of Mathematic and Mathematical Sciences, Article ID 76329(2007), 6pages.
[7] Y. Miao and H.X. Du, A note on Hilbert type integral inequality, Inequality Theory and Applications, 6(2010), 261-267.
[8] W.T. Sulaiman, Four inequalities similar to Hardy-Hilbert's integral inequality, J. Inequal. Pure Appl. Math (JIPAM), 7(2) (Article 76) (2006).

