

Gen. Math. Notes, Vol. 17, No. 1, July, 2013, pp. 74-81 ISSN 2219-7184; Copyright © ICSRS Publication, 2013 www.i-csrs.org Available free online at http://www.geman.in

Multi - Fuzzy Group and its Level Subgroups

R. Muthuraj¹ and **S.** Balamurugan²

¹PG and Research Department of Mathematics H.H. The Rajah's College, Pudukkottai- 622001, Tamilnadu, India E-mail: rmr1973@yahoo.co.in

> ²Department of Mathematics Velammal College of Engineering & Technology Madurai- 625009, Tamilnadu, India E-mail: balasudalai@yahoo.com

(Received: 14-4-13 / Accepted: 29-5-13)

Abstract

In this paper, we define the algebraic structures of multi-fuzzy subgroup and some related properties are investigated. The purpose of this study is to implement the fuzzy set theory and group theory in multi-fuzzy subgroups. Characterizations of multi-level subsets of a multi-fuzzy subgroup of a group are given.

Keywords: Fuzzy set, multi-fuzzy set, fuzzy subgroup, multi-fuzzy subgroup, anti fuzzy subgroup, multi-anti fuzzy subgroup.

1 Introduction

S. Sabu and T.V. Ramakrishnan [5] proposed the theory of multi-fuzzy sets in terms of multi-dimensional membership functions and investigated some properties of multi-level fuzziness. L.A. Zadeh [4] introduced the theory of multi-

fuzzy set is an extension of theories of fuzzy sets. In this paper we define a new algebraic structure of multi-fuzzy subgroups and study some of their related properties.

2 **Preliminaries**

In this section, we site the fundamental definitions that will be used in the sequel.

2.1 Definition: Let X be any non-empty set. A fuzzy subset μ of X is $\mu : X \rightarrow [0,1]$.

2.2 Definition: Let X be a non-empty set. A multi-fuzzy set A in X is defined as a set of ordered sequences:

 $A = \{(x, \mu_1(x), \mu_2(x), ..., \mu_i(x), ...) : x \in X\}, \text{ where } \mu_i : X \to [0, 1] \text{ for all } i.$

Remark:

- i. If the sequences of the membership functions have only k-terms (finite number of terms), k is called the dimension of A.
- ii. The set of all multi-fuzzy sets in X of dimension k is denoted by $\mathbb{M}^k FS(X)$.
- iii. The multi-fuzzy membership function μ_A is a function from X to $[0, 1]^k$ such that for all x in X, $\mu_A(x) = (\mu_1(x), \mu_2(x), ..., \mu_k(x))$.
- iv. For the sake of simplicity, we denote the multi-fuzzy set $A = \{(x, \mu_1(x), \mu_2(x), ..., \mu_k(x)) : x \in X\} \text{ as } A = (\mu_1, \mu_2, ..., \mu_k).$

2.3 Definition: Let k be a positive integer and let A and B in $\mathbb{M}^k FS(X)$, where $A = (\mu_1, \mu_2, ..., \mu_k)$ and $B = (\nu_1, \nu_2..., \nu_k)$, then we have the following relations and operations:

- i. $A \subseteq B$ if and only if $\mu_i \leq \nu_i$, for all i = 1, 2, ..., k;
- ii. A = B if and only if $\mu_i = \nu_i$, for all i = 1, 2, ..., k;
- iii. $A \cup B = (\mu_1 \cup \nu_1, ..., \mu_k \cup \nu_k) = \{(x, \max(\mu_1(x), \nu_1(x)), ..., \max(\mu_k(x), \nu_k(x))) : x \in X\};$
- iv. $A \cap B = (\mu_1 \cap \nu_1, ..., \mu_k \cap \nu_k) = \{(x, \min(\mu_1(x), \nu_1(x)), ..., \min(\mu_k(x), \nu_k(x))) : x \in X\};$
- $\begin{array}{ll} v. & A+B=(\mu_1+\nu_1,\,...,\,\mu_k+\nu_k)=\{(x,\,\mu_1(x)+\nu_1(x)-\mu_1(x)\nu_1(x),\,...,\,\mu_k(x)+\nu_k(x)-\mu_k(x)\nu_k(x)\,):x\in X\}. \end{array}$

2.4 Definition: Let $A = (\mu_1, \mu_2, ..., \mu_k)$ be a multi-fuzzy set of dimension k and let μ_i' be the fuzzy complement of the ordinary fuzzy set μ_i for i = 1, 2, ..., k. The Multi-fuzzy Complement of the multi-fuzzy set A is a multi-fuzzy set $(\mu_1', ..., \mu_k')$ and it is denoted by C(A) or A' or A^C .

That is, $C(A) = \{(x, c(\mu_I(x)), ..., c(\mu_k(x))) : x \in X\} = \{(x, 1 - \mu_I(x), ..., 1 - \mu_k(x)) : x \in X\}$, where *c* is the fuzzy complement operation.

2.5 Definition: Let A be a fuzzy set on a group G. Then A is said to be a fuzzy subgroup of G if for all $x, y \in G$,

i. $A(xy) \ge \min \{ A(x), A(y) \}$ ii. $A(x^{-1}) = A(x)$.

2.6 Definition: A multi-fuzzy set A of a group G is called a multi-fuzzy subgroup of G if for all $x, y \in G$,

i. $\begin{array}{ll} A(xy) \geq \min \left\{ A(x), A(y) \right\} \\ \text{ii.} & A(x^{-1}) = A \left(x \right) \end{array}$

2.7 Definition: Let A be a fuzzy set on a group G. Then A is called an anti fuzzy subgroup of G if for all $x, y \in G$,

i. $A(xy) \le \max \{ A(x), A(y) \}$ ii. $A(x^{-1}) = A(x)$.

2.8 Definition: A multi-fuzzy set A of a group G is called a multi-anti fuzzy subgroup of G if for all $x, y \in G$,

i. $A(xy) \le \max \{A(x), A(y)\}$ ii. $A(x^{-1}) = A(x)$

2.9 Definition: Let A and B be any two multi-fuzzy sets of a non-empty set X. Then for all $x \in X$,

i. $A \subseteq B$ iff $A(x) \leq B(x)$,

ii. A = B iff A(x) = B(x),

iii. $A \cup B(x) = \max \{A(x), B(x)\},\$

iv. $A \cap B(x) = \min \{A(x), B(x)\}.$

2.10 Definition: Let A and B be any two multi-fuzzy sets of a non-empty set X. Then

i. $A \cup A = A, A \cap A = A,$ ii. $A \subseteq A \cup B, B \subseteq A \cup B, A \cap B \subseteq A$ and $A \cap B \subseteq B,$ iii. $A \subseteq B$ iff $A \cup B = B,$ iv. $A \subseteq B$ iff $A \cap B = A.$

3 Properties of Multi-Fuzzy Subgroups

In this section, we discuss some of the properties of multi-fuzzy subgroups.

3.1 Theorem: Let 'A' be a multi-fuzzy subgroup of a group G and 'e' is the identity element of G. Then

i. $A(x) \le A(e)$ for all $x \in G$. ii. The subset $H = \{x \in G / A(x) = A(e)\}$ is a subgroup of G.

Proof:

- i. Let $x \in G$. A (x) = min { A (x) , A (x) } = min { A (x) , A (x⁻¹) } $\leq A (xx^{-1})$ = A (e). Therefore, A (x) \leq A (e), for all $x \in G$.
- ii. Let $H = \{x \in G / A(x) = A(e)\}$ Clearly H is non-empty as $e \in H$.

Let x, $y \in H$. Then, A(x) = A(y) = A(e)

$$\begin{array}{rl} A(xy^{-1}) &\geq & \min \left\{ A(x), A(y^{-1}) \right\} \\ &= & \min \left\{ A(x), A(y) \right\} \\ &= & \min \left\{ A(e), A(e) \right\} \\ &= & A(e) \\ \end{array}$$

That is, $A(xy^{-1}) \geq A(e)$ and obviously $A(xy^{-1}) \leq A(e)$ by i.

Hence, $A(xy^{-1}) = A(e)$ and $xy^{-1} \in H$.

Clearly, H is a subgroup of G.

3.2 Theorem: A is a multi-fuzzy subgroup of G iff AC is a multi-anti fuzzy subgroup of G.

Proof: Suppose A is a multi-fuzzy subgroup of G. Then for all $x, y \in G$,

 $\begin{array}{rcl} A\left(xy\right) &\geq \min \left\{A\left(x\right), A\left(y\right)\right\} \\ \Leftrightarrow & 1 - A^{c}(xy) &\geq \min \left\{\left(1 - A^{c}(x)\right), \left(1 - A^{c}(y)\right)\right\} \\ \Leftrightarrow & A^{c}(xy) &\leq 1 - \min \left\{\left(1 - A^{c}(x)\right), \left(1 - A^{c}(y)\right)\right\} \\ \Leftrightarrow & A^{c}\left(xy\right) &\leq \max \left\{A^{c}(x), A^{c}(y)\right\}. \end{array}$ We have, $A(x) = A(x^{-1})$ for all x in G $\Leftrightarrow 1 - A^{c}(x) = 1 - A^{c}(x^{-1})$ Therefore, $A^{c}(x) = A^{c}(x^{-1})$.

Hence A^c is a multi-anti fuzzy subgroup of G.

3.3 Theorem: Let 'A' be any multi-fuzzy subgroup of a group G with identity 'e'. Then $A(xy^{-1}) = A(e) \implies A(x) = A(y)$ for all $x, y \in G$.

Proof: Given A is a multi-fuzzy subgroup of G and A $(xy^{-1}) = A(e)$. Then for all x, $y \in G$,

$$A(x) = A(x(y^{-1}y))$$

$$= A((xy^{-1})y)$$

$$\geq \min \{A(xy^{-1}), A(y)\}$$

$$= \min \{A(e), A(y)\}$$

$$= A(y).$$
That is, $A(x) \geq A(y).$
Now, $A(y) = A(y^{-1})$, since A is a multi-fuzzy subgroup of G.
$$= A(ey^{-1})$$

$$= A((x^{-1}x)y^{-1})$$

$$= A(x^{-1}(xy^{-1}))$$

$$\geq \min \{A(x^{-1}), A(xy^{-1})\}$$

$$= \min \{A(x), A(e)\}$$

$$= A(x).$$
That is, $A(y) \geq A(x).$
Hence, $A(x) = A(y).$

3.4 Theorem: A is a multi-fuzzy subgroup of a group G if and only if $A(x y^{-1}) \ge \min \{A(x), A(y)\}$, for all x, $y \in G$.

Proof: Let A be a multi-fuzzy subgroup of a group G. Then for all x ,y in G,

 $\begin{array}{rcl} A (x \ y) & \geq & \min \left\{ A \ (x), \ A \ (y) \right\} \\ And & A \ (x) & = & A \ (x^{-1}). \\ Now, & A(x \ y^{-1}) & \geq & \min \left\{ \ A(x) \ , \ A(y^{-1}) \right\}. \\ & & = & \min \left\{ A(x), \ A(y) \right\} \\ & \Leftrightarrow & A(x \ y^{-1}) & \geq & \min \left\{ \ A(x) \ , \ A(y) \right\}. \end{array}$

4 Properties of Multi-Level Subsets of a Multi-Fuzzy Subgroup

In this section, we introduce the concept of multi-level subset of a multi-fuzzy subgroup and discuss some of its properties.

4.1 Definition: Let A be a multi-fuzzy subgroup of a group G. For any $t = (t_1, t_2, ..., t_k, ...)$ where $t_i \in [0,1]$, for all i, we define the multi-level subset of A is the set,

 $L(A; t) = \{x \in G / A(x) \ge t \}.$

4.1 Theorem: Let A be a multi-fuzzy subgroup of a group G. Then for any $t = (t_1, t_2, ..., t_k, ...)$, where $t_i \in [0, 1]$ for all i such that $t \leq A(e)$, where 'e' is the identity element of G, L(A; t) is a subgroup of G.

Proof: For all x, $y \in L(A; t)$, we have, $A(x) \ge t$; $A(y) \ge t$. Now, $A(xy^{-1}) \ge \min \{A(x), A(y)\}$. $\ge \min \{t, t\} = t$ That is, $A(xy^{-1}) \ge t$. Therefore, $xy^{-1} \in L(A; t)$. Hence L(A; t) is a subgroup of G.

4.2 Theorem: Let G be a group and A be a multi-fuzzy subset of G such that L(A; t) is a subgroup of G. Then for $t = (t_1, t_2, ..., t_k, ...)$, where $t_i \in [0,1]$ for all i such that $t \leq A$ (e) where 'e' is the identity element of G, A is a multi-fuzzy subgroup of G.

Proof: Let $x, y \in G$ and A(x) = r and A(y) = s, where $r = (r_1, r_2, ..., r_k, ...)$, $s = (s_1, s_2, ..., s_k, ...)$, for $r_i, s_i \in [0,1]$ for all i.

Suppose r < s. Now A(x) = r which implies $x \in L(A ; r)$. And now A(y) = s > r which implies $y \in L(A ; r)$. Therefore $x, y \in L(A ; r)$.

As L(A; r) is a subgroup of G, $xy^{-1} \in L(A; r)$. Hence, $A(xy^{-1}) \ge r = \min \{r, s\}$ $\ge \min \{A(x), A(y)\}$ That is, $A(xy^{-1}) \ge \min \{A(x), A(y)\}$. Hence A is a multi-fuzzy subgroup of G.

4.2 Definition: Let A be a multi-fuzzy subgroup of a group G. The subgroups L(A; t) for $t = (t_1, t_2, ..., t_k, ...)$ where $t_i \in [0,1]$ for all i and $t \leq A(e)$ where 'e' is the identity element of G, are called multi-level subgroups of A.

4.3 Theorem: Let A be a multi-fuzzy subgroup of a group G and 'e' is the identity element of G. If two multi-level subgroups L(A ; r), L(A ; s), for $r = (r_1, r_2, ..., r_k, ...)$, $s = (s_1, s_2, ..., s_k, ...)$, where r_i , $s_i \in [0,1]$ for all i and $r, s \leq A(e)$ with r < s of A are equal, then there is no x in G such that $r \leq A(x) < s$.

Proof:

Let L(A; r) = L(A; s). Suppose there exists a $x \in G$ such that $r \leq A(x) < s$. Then $L(A; s) \subseteq L(A; r)$. That is, $x \in L(A; r)$, but $x \notin L(A; s)$, which contradicts the assumption that, L(A; r) = L(A; s). Hence there is no x in G such that $r \le A(x) < s$. Conversely, Suppose that there is no x in G such that $r \le A(x) < s$. Then, by the definition, $L(A; s) \subseteq L(A; r)$. Let $x \in L(A; r)$ and there is no x in G such that $r \le A(x) < s$. Hence $x \in L(A; s)$ and therefore, $L(A; r) \subseteq L(A; s)$. Hence L(A; r) = L(A; s).

4.4 Theorem: A multi-fuzzy subset A of G is a multi-fuzzy subgroup of a group G if and only if the multi-level subsets L(A ; t), for $t = (t_1, t_2, ..., t_k, ...)$ where $t_i \in [0,1]$ for all i and $t \leq A(e)$, are subgroups of G.

Proof: It is clear.

4.5 Theorem: Any subgroup H of a group G can be realized as a multi-level subgroup of some multi-fuzzy subgroup of G.

Proof:

Let A be a multi-fuzzy subset and $x \in G$.

Define,

$$A(x) = \begin{cases} 0 & \text{if } x \notin H \\ \\ t & \text{if } x \in H \text{, for } t = (t_1, t_2, \dots, t_k, \dots) \text{ where } t_i \in [0, 1] \text{ for all } i \text{ and} \\ \\ t \leq A(e). \end{cases}$$

We shall prove that A is a multi-fuzzy subgroup of G. Let $x, y \in G$.

i. Suppose x,
$$y \in H$$
. Then $xy \in H$ and $xy^{-1} \in H$.
 $A(x) = t, A(y) = t, A(xy) = t$ and $A(xy^{-1}) = t$.
Hence $A(xy^{-1}) \ge \min \{A(x), A(y)\}$.

ii. Suppose
$$x \in H$$
 and $y \notin H$. Then $xy \notin H$ and $xy^{-1} \notin H$.

A (x) = t, A(y) = 0 and A (
$$xy^{-1}$$
) = 0.

Hence $A(xy^{-1}) \ge \min \{ A(x), A(y) \}.$

iii. Suppose x, $y \notin H$. Then $xy^{-1} \in H$ or $xy^{-1} \notin H$.

$$A(x) = 0$$
, $A(y) = 0$ and $A(xy^{-1}) = t$ or 0.

Hence A $(xy^{-1}) \ge \min\{A(x), A(y)\}.$

Thus in all cases, A is a multi-fuzzy subgroup of G.

For this multi-fuzzy subgroup A, L(A; t) = H.

Remark: As a consequence of the Theorem 4.3, the multi-level subgroups of a multi-fuzzy subgroup A of a group G form a chain. Since $A(e) \ge A(x)$ for all x in G where 'e' is the identity element of G , therefore $L(A; t_0)$, where $A(e) = t_0$ is the smallest and we have the chain:

 $\{e\}\subseteq L(A;t_0)\subset L(A;t_1)\subset L(A;t_2)\subset\ldots\subset L(A;t_n)=G$, where $t_0>t_1>t_2>\ldots\ldots>t_n$.

References

- [1] N. Palaniappan and R. Muthuraj, Anti fuzzy group and lower level subgroups, *Antartica J. Math.*, 1(1) (2004), 71-76.
- [2] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35(1971), 512-517.
- [3] R. Muthuraj, P.M. Sitharselvam and M.S. Muthuraman, Anti Q-fuzzy group and its lower level subgroups, *International Journal of Computer Applications (0975-8887)*, 3(3) (June) (2010), 16-20.
- [4] L.A. Zadeh, Fuzzy sets, *Information and Control*, 8(1965), 338-353.
- [5] S. Sabu and T.V. Ramakrishnan, Multi-fuzzy sets, *International Mathematical Forum*, 50(2010), 2471-2476.
- [6] S. Sabu and T.V. Ramakrishnan, Multi-fuzzy topology, *International Journal of Applied Mathematics*, (Accepted).
- [7] S. Sabu and T.V. Ramakrishnan, Multi-fuzzy subgroups, *Int. J. Contemp. Math. Sciences*, 6(8) (2011), 365-372.