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Abstract

In this paper we present steps to follow when designing elliptic curve dis-
crete logarithm ECDL. Principle results from general theory are given. In order
to avoid some serious attacks against ECDL, special attention are suggested on
the parameters. Finally, we describe general methods to follow when designing
ECDL.
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1 Introduction

In public-key cryptography, each participant possesses two keys: a public key
and a private key. These are linked in a unique manner by a one way function.
We will de�ne this notion in the following section. These are functions that
are easy to calculate but di�cult to inverse. The security of a cryptographic
protocol is related to the di�culty of inverting. So, we will have to estimate
this di�culty in term of the time needed for computers to inverse this func-
tion. Complexity theory deal with this notion of complexity of algorithms.
Searching for such function is an important task in cryptography and they are
used as cryptographic primitive in protocols. RSA is one of the well known
protocol that rely on the di�culty of factoring large numbers. There exist sub
exponential time algorithm that can factor such numbers. For high level of
security, RSA is not convenient and we will search for other one way function
for which inverting is match harder. Discrete logarithm system over �nite �eld
is another cryptographic primitive used in security protocols. But they present
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weakness and special attention is required in designing such system. On ellip-
tic curves, we know construct discrete logarithm on the group of the point of
the curve. In this paper we explain how to construct such system leading to
e�cient one way function and how to avoid attacks and weakness. This work
is an abstract of the results obtained in [21].

2 De�nitions

2.1 One Way Function

Let S be the set of binary strings and f be a function from S to S. We say
that f is a one-way function if

• the function f is one-on-one and for all x ∈ S, f(x) is at most polyno-
mially longer or shorter than x

• for all x ∈ S, f(x) can be computed in polynomial time

• there is no polynomial time algorithm which for all y ∈ S returns either
no if y /∈ S or x ∈ S such that y = f(x).

Given a one way function one can choose as the private key an a ∈ S and
obtains the public key f(a). This value can be published since it is computa-
tionally unfeasible to defer a from it.Complexity theory gives a mathematical
measure to de�ne what is meant by (computationally unfeasible). We treat
this notion in a next section.For some applications it will be necessary to have
a special class of computational one way functions that can be inverted if one
possesses additional information. These functions are called trapdoor one way
functions. We will explain in this paper how to construct such function in a
manner that no algorithm can invert it in less than exponential time.

2.2 Generic Discrete Logarithm Systems

Let (G,⊕) be a cyclic group of prime order l and let P be a generator of G.
Let the map

φ : Z→ G

n→ [n]P = P ⊕ P ⊕ ...⊕ P︸ ︷︷ ︸
ńtimes

The problem of computing the inverse of this map is called the discrete
logarithm problem (DLP) to the base of P . If [n]P = Q so we note logPQ = n.

In this paper we consider the group of point of elliptic curve over �nite �eld
and the related DLP.



86 Benamara Oualid

2.3 Complexity

Determining the execution time of an algorithm consist of counting the number
of basic operations needed for its execution. We attach a certain function f to
an algorithm that bounds the time used for the computation given the length
of the input called complexity parameter. This suggest the fallowing de�nition:
Let f and g be two real functions of s variables. The function g(N1, ..., Ns) is
of order f(N1, ..., Ns) denoted by Of(N1, ..., Ns) if for a constant c one has:

|g(N1, ..., Ns)| ≤ cf(N1, ..., Ns)

with Ni > N for some constant N .
We will estimate the complexity of the DLP on elliptic curve group and so

evaluate the hardness of such algorithms.
In this paper, we are searching for e�cient one way functions 2.1. We

construct a DLP 2.2 on elliptic curve group 3 in such a manner that no known
polynomial time algorithm 2.3 can compute it.

3 Elliptic Curves

An elliptic curve over a �eld K is a non singular protective algebraic curve
over K with genus 1 together with a given point, I. Elliptic curve is de�ned
as all the points on the curve (given by the Weirstrass equation)

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with a1, a2, a3, a4, a5, a6 ∈ K together with I, the point at in�nity. We also
require that the curve is non singular. Note that if the �eld we are working
over has characteristic not equal to two or three then we can transform this
equation to:

y2 = x3 + ax+ a4x+ b

We de�ne the the addition on the points of an elliptic curve E of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with the fallowing rules:

3.1 De�nition

If P0 = I then −I = I. Otherwise let P0 = (x0, y0) ∈ E. Then

−P0 = (x0,−y0 − a1x0 − a3)
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If one of P1 or P2 equals I then P + I = I + P = P , otherwise let

P1 + P2 = P3

with Pi ∈ E If x1 = x2 and y1 + y2 + a1x2 + a + 3 = 0 then P1 + P2 = I.
Otherwise de�ne

α =
y2 − y2

x2 − x1

,

β =
y1x2 − y2x1

x2 − x1

if x1 6= x2;

α =
3x2

1 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3

and

β =
−x3

1 + a4x1 + 2a6 − a3y1

2y1 + a1x1 + a3

if x1 = x2. Then P3 = (x3, y3) where

x3 = α2 + a1α− a2 − x1 − x2

y3 = −(α + a1)x3 − β − a3

3.2 Theorem

The addition low de�ned bellow has the following proprieties:

1. P + I = P for all P ∈ E,

2. P +Q = Q+ P for all P,Q ∈ E (the law is commutative),

3. Let P ∈ E. There is a point of E, denoted −P , so that

P + (−P ) = I

(the additive inverse element),

4. the addition is associative

We obtain an associative group (E,+)
In designing such groups and for security reason, we want the E is of prime

order or a multiplicative su�ciently large prime. The method consists of esti-
mating a family of valid curves and use e�cient algorithms (polynomial time)
to compute the order of the group obtained.
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4 Choice of Parameters

One has to be careful with the choice of the pair (C,Fq) if one wants to
have instances in which the complexity of algorithms computing the discrete
logarithm is O(l1/2). To avoid Index Calculus Attack [4], one has to chose a
curve of genus g ≤ 4. For g ≤ 3 we have the following results:

• l does not divide q to avoid transferring of DLP to a group in witch there
is e�cient attacks [1] [2] [3].

• The extension �eld of Fq is of su�ciently large degree k. For small k,
fast algorithms for DLP can be found in [5] [6] [7].

• Let q = pd,to avoid weaker DLP [8], one has to avoid the case where d
d0

is small where d0 is a divisor of d and the case where d is prime with
the existence of a small t for which 2t ≡ 1mod(d). Also d must not be a
Mersenne or a Fermat prime number

5 Point Counting

We are searching for groups of prime order or of order of large prime divisor.
This is why the speed of point counting is important in designing elliptic curve
DLP. The computation of the order of a group for curves C of genus g de�ned
over �elds Fq can be performed e�ciently by not too complicated algorithms
if

• The curve C is already de�ned over a small sub�eld Fq0 of Fq, [9] [10]
[11] or

• The genus g is equal to 1, [12] [13] [14] or

• The characteristic of Fq is small, [15] or

• The genus of C is 1 or 2, the �eld Fq is a prime �eld, and the curve Cis
the reduction modulo q of a curve C ′ with complex multiplication over
a given order EndC in a CM-�eld. Here is the algorithm [16]

6 Primality

In the applications we envision we must be sure that a given integer p is prime.
The most obvious way is to try for all integers n ≤

√
N whenever n devise

N . This is not realizable in practice.In fact, it is too time-consuming to prove
primality, or for that matter compositeness, of a given integer by failing or
succeeding to �nd a proper factor of it. The best primality test algorithms
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will only prove p to be prime and will not output any divisor in case it is not.
Most algorithms will be probabilistic in nature in the sense that one output is
always true while the other is only true with a certain probability. Iterating this
algorithm allows us to enlarge the probability that the answer that was given
only with a certain probability actually holds true. These techniques o�er
quite good performance. To prove primality using probabilistic algorithms
one usually starts with some iterations of an algorithm whose output non
prime is always correct while the output prime is true only with a certain
probability (Trial division, Fermat tests, Rabin Miller test, Lucas pseudoprime
tests, BPSW tests). After passing some rounds one uses an algorithm that is
correct when it outputs prime (Atkin Morain ECPP test [18], APRCL Jacobi
sum test [17]). The reason for this order is that usually the algorithms of
the �rst type have a shorter running time and allow us to detect composite
integers very e�ciently. Factoring algorithms (Pollard s rho method, Pollard s
p-1 method, Factoring with elliptic curves, Fermat Morrison Brillhart approach
[19] [20]) on the other hand, are usually much slower.

7 Conclusion

In this paper we present a general method to use when designing elliptic curve
di�e-Hellmann logarithm. We review the important results obtained in this
�eld and present them in a methodical approach. Even if the security of such
system repose on the fact that there is no polynomial time algorithm witch
solve DLP, it still there is no proof of the non existence of such algorithm.
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