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Abstract

In this article, we study biharmonic Reeb curves in 3-dimensional Ken-
motsu manifold. Moreover, we apply biharmonic Reeb curves in special 3-
dimensional Kenmotsu manifold K. Finally, we characterize Bertrand mate
of the biharmonic Reeb curves in terms of their curvature and torsion in special
3-dimensional Kenmotsu manifold K.

Keywords: Kenmotsu manifold, biharmonic curve, Bertrand curve, Reeb
vector field.

1 Introduction

In the theory of space curves in differential geometry, the associated curves, the
curves for which at the corresponding points of them one of the Frenet vectors
of a curve coincides with the one of the Frenet vectors of the other curve
have an important role for the characterizations of space curves. The well-
known examples of such curves are Bertrand curves. These special curves are
very interesting and characterized as a kind of corresponding relation between
two curves such that the curves have the common principal normal i.e., the
Bertrand curve is a curve which shares the normal line with another curve.
These curves have an important role in the theory of curves.

Let (N, h) and (M, g) be Riemannian manifolds. A smooth map φ : N −→
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M is said to be biharmonic if it is a critical point of the bienergy functional:

E2 (φ) =

∫
N

1

2
|T (φ)|2 dvh,

where the section T (φ) := tr∇φdφ is the tension field of φ.
The Euler–Lagrange equation of the bienergy is given by T2(φ) = 0. Here

the section T2(φ) is defined by

T2(φ) = −∆φT (φ) + trR (T (φ), dφ) dφ, (1.1)

and called the bitension field of φ. Obviously, every harmonic map is bihar-
monic. Non-harmonic biharmonic maps are called proper biharmonic maps.

In this article, we study biharmonic Reeb curves in 3-dimensional Ken-
motsu manifold. Moreover, we apply biharmonic Reeb curves in special 3-
dimensional Kenmotsu manifold K. Finally, we characterize Bertrand mate of
the biharmonic Reeb curves in terms of their curvature and torsion in special
3-dimensional Kenmotsu manifold K.

2 Preliminaries

Let M2n+1 (φ, ξ, η, g) be an almost contact Riemannian manifold with 1-form η,
the associated vector field ξ, (1, 1)-tensor field φ and the associated Riemannian
metric g. It is well known that [2]

φξ = 0, η (ξ) = 1, η (φX) = 0, (2.1)

φ2 (X) = −X + η (X) ξ, (2.2)

g (X, ξ) = η (X) , (2.3)

g (φX, φY ) = g (X, Y )− η (X) η (Y ) , (2.4)

for any vector fields X, Y on M . Moreover,

(∇Xφ)Y = −η (Y )φ (X)− g (X,φY ) ξ, X, Y ∈ χ (M) , (2.5)

∇Xξ = X − η (X) ξ, (2.6)

where ∇ denotes the Riemannian connection of g, then (M,φ, ξ, η, g) is called
an Kenmotsu manifold [2].

In Kenmotsu manifolds the following relations hold [2]:

(∇Xη)Y = g (φX, φY ) , 2.7 (1)

η (R (X, Y )Z) = η (Y ) g (X,Z)− η (X) g (Y, Z) , 2.8 (2)

R (X, Y ) ξ = η (X)Y − η (Y )X, 2.9 (3)

R (ξ,X)Y = η (Y )X − g (X, Y ) ξ, 2.10 (4)

R (ξ,X) ξ = X − η (X) ξ, 2.11 (5)

where R is the Riemannian curvature tensor.
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3 Biharmonic Reeb Curves in the 3-Dimensional

Kenmotsu Manifold

Let γ be a curve on the 3-dimensional Kenmotsu manifold parametrized by arc
length. Let {T,N,B} be the Frenet frame fields tangent to the 3-dimensional
Kenmotsu manifold along γ defined as follows:

T is the unit vector field γ′ tangent to γ, N is the unit vector field in
the direction of ∇TT (normal to γ), and B is chosen so that {T,N,B} is
a positively oriented orthonormal basis. Then, we have the following Frenet
formulas:

∇TT = κN,

∇TN = −κT + τB, 3.1 (6)

∇TB = −τN,

where κ is the curvature of γ and τ its torsion and

g (T,T) = 1, g (N,N) = 1, g (B,B) = 1, 3.2 (7)

g (T,N) = g (T,B) = g (N,B) = 0.

Lemma 3.1. (see [13]) If γ is a biharmonic Reeb curve which are either
tangent or normal to the Reeb vector field 3-dimensional Kenmotsu manifold,
then γ is a helix.

We consider the special 3-dimensional manifold

K =
{

(x, y, z) ∈ R3 : (x, y, z) 6= (0, 0, 0)
}
,

where (x, y, z) are the standard coordinates in R3. The vector fields

e1 = z
∂

∂x
, e2 = z

∂

∂y
, e3 = −z ∂

∂z
(3.3)

are linearly independent at each point of K. Let g be the Riemannian metric
defined by

g (e1, e1) = g (e2, e2) = g (e3, e3) = 1, 3.4 (8)

g (e1, e2) = g (e2, e3) = g (e1, e3) = 0.

The characterising properties of χ(K) are the following commutation rela-
tions:

[e1, e2] = 0, [e1, e3] = e1, [e2, e3] = e2.

Let η be the 1-form defined by

η(Z) = g(Z, e3) for any Z ∈ χ(M)
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Let φ be the (1,1) tensor field defined by

φ(e1) = −e2, φ(e2) = e1, φ(e3) = 0.

Then using the linearity of and g we have

η(e3) = 1,

φ2(Z) = −Z + η(Z)e3,

g (φZ, φW ) = g (Z,W )− η(Z)η(W ),

for any Z,W ∈ χ(K). Thus for e3 = ξ, (φ, ξ, η, g) defines an almost contact
metric structure on K.

Now, we consider biharmonicity of curves in the special three-dimensional
Kenmotsu manifold K.

Theorem 3.4. (see [13]) Let γ : I −→ K be a unit speed biharmonic Reeb
curve which are either tangent or normal to the Reeb vector field 3-dimensional
Kenmotsu manifold K. Then, the parametric equations of γ are

x (s) =
C1 sin5 ϕ

κ2 + sin4 ϕ cos2 ϕ
e− cosϕs(

κ

sin2 ϕ
cos(

κ

sin2 ϕ
s+ σ)

+ cosϕ sin(
κ

sin2 ϕ
s+ σ)) + C2,

y (s) =
C1 sin5 ϕ

κ2 + sin4 ϕ cos2 ϕ
e− cosϕs(− cosϕ cos(

κ

sin2 ϕ
s+ σ)3.14 (9)

+
κ

sin2 ϕ
sin(

κ

sin2 ϕ
s+ σ)) + C3,

z (s) = C1e
− cosϕs,

where C, C1, C2, C3 are constants of integration.

4 Bertrand Mate of Biharmonic Reeb Curves

in the Special Three-Dimensional Kenmotsu

Manifold K
A curve γ : I −→ K with κ 6= 0 is called a Bertrand curve if there exist a
curve γB : I −→ K such that the principal normal lines of γ and γB at s ∈ I
are equal. In this case γB is called a Bertrand mate of γ.
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On the other hand, let γ : I −→ K be a Bertrand curve parametrized by
arc length. A Bertrand mate of γ is as follows:

γB (s) = γ (s) + λN (s) , ∀s ∈ I, (4.1)

where λ is constant.

Theorem 4.1. Let γ : I −→ K be a biharmonic curve parametrized by arc
length. If γB is a Bertrand mate of γ, then the parametric equations of γB
are

xB (s) =
λ sinϕ

κ

(
κ

sin2 ϕ
cos(

κ

sin2 ϕ
s+ σ) + cosϕ sin(

κ

sin2 ϕ
s+ σ)

)(
C̄1s+ C̄2

)
+
C1 sin3 ϕ

κ
e− cosϕs(− cosσ cos(

κ

sin2 ϕ
s) + sin σ sin(

κ

sin2 ϕ
s)) + C2, 4.2(10)

yB (s) =
λ sinϕ

κ

(
− κ

sin2 ϕ
sin(

κ

sin2 ϕ
s+ σ) + cosϕ cos(

κ

sin2 ϕ
s+ σ)

)(
C̄1s+ C̄2

)
C1 sin3 ϕ

κ
e− cosϕs(sinσ cos(

κ

sin2 ϕ
s+ σ) + cos σ sin(

κ

sin2 ϕ
s+ σ)) + C3,

zB (s) =
λ

κ

(
C̄1s+ C̄2

)
+ C1e

− cosϕs,

where σ, C̄1, C̄2, C1, C2, C3 are constants of integration.

Proof. Assume that T is

T =T1e1 + T2e2 + T3e3, (4.3)

where T1, T2, T3 are differentiable functions on I.
From [13], we obtain

T = sinϕ sin(
κ

sin2 ϕ
s+ σ)e1 + sinϕ cos(

κ

sin2 ϕ
s+ σ)e2 + cosϕe3. (4.4)

Using (3.3) in (4.4), we obtain

T = (z sinϕ sin(
κ

sin2 ϕ
s+ σ), z sinϕ cos(

κ

sin2 ϕ
s+ σ),−z cosϕ). (4.5)

Because, by making use of (3.3), we have

∇TT = (T ′1 + T1T3) e1 + (T ′2 + T2T3) e2 + T ′3e3. (4.6)

From (3.1) and (4.4), we get
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∇TT = sinϕ

(
κ

sin2 ϕ
cos

[
κ

sin2 ϕ
s+ σ

]
+ cosϕ sin

[
κ

sin2 ϕ
s+ σ

])
e14.7(11)

+ sinϕ

(
− κ

sin2 ϕ
sin

[
κ

sin2 ϕ
s+ σ

]
+ cosϕ cos

[
κ

sin2 ϕ
s+ C

])
e2.

Then, by using Frenet formulas (3.1), we get

N =
1

κ
∇TT

=
1

κ
[sinϕ

(
κ

sin2 ϕ
cos(

κ

sin2 ϕ
s+ σ) + cosϕ sin(

κ

sin2 ϕ
s+ σ)

)
e14.8(12)

+ sinϕ

(
− κ

sin2 ϕ
sin(

κ

sin2 ϕ
s+ σ) + cosϕ cos(

κ

sin2 ϕ
s+ σ)

)
e2].

Finally, we substitute (3.5) and (4.8) into (4.1), we get (4.2). The proof is
completed.

Corollary 4.2. Let γ : I −→ K be a biharmonic curve parametrized by arc
length. If γB is a Bertrand mate of γ, then the parametric equations of γB in
terms of τ are

xB (s) =
λ sinϕ√
1− τ 2

(√
1− τ 2

sin2 ϕ
cos(

√
1− τ 2

sin2 ϕ
s+ σ) + cosϕ sin(

√
1− τ 2

sin2 ϕ
s+ σ)

)(
C̄1s+ C̄2

)
+
C1 sin3 ϕ√

1− τ 2
e− cosϕs(− cosσ cos(

√
1− τ 2

sin2 ϕ
s) + sin σ sin(

√
1− τ 2

sin2 ϕ
s)) + C2,

yB (s) =
λ sinϕ√
1− τ 2

(
−
√

1− τ 2
sin2 ϕ

sin(

√
1− τ 2

sin2 ϕ
s+ σ) + cosϕ cos(

√
1− τ 2

sin2 ϕ
s+ σ)

)(
C̄1s+ C̄2

)
C1 sin3 ϕ√

1− τ 2
e− cosϕs(sinσ cos(

√
1− τ 2

sin2 ϕ
s+ σ) + cos σ sin(

√
1− τ 2

sin2 ϕ
s+ σ)) + C3,

zB (s) =
λ√

1− τ 2
(
C̄1s+ C̄2

)
+ C1e

− cosϕs,

where σ, C̄1, C̄2, C1, C2, C3 are constants of integration.
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