Gen. Math. Notes, Vol. 5, No. 2, August 2011, pp.67-74
ISSN 2219-7184; Copyright (c)ICSRS Publication, 2011
www.i-csrs.org
Available free online at http://www.geman.in

Bertrand Mate of Biharmonic Reeb Curves in 3-Dimensional Kenmotsu Manifold

Talat Körpinar ${ }^{1}$ and Essin Turhan ${ }^{2}$
${ }^{1}$ Frrat University, Department of Mathematics, 23119, Elazığ, Turkey
E-mail: talatkorpinar@gmail.com
${ }^{2}$ Frrat University, Department of Mathematics, 23119, Elazığ, Turkey
E-mail: essin.turhan@gmail.com

(Received: 14-5-11/ Accepted: 27-6-11)

Abstract

In this article, we study biharmonic Reeb curves in 3-dimensional Kenmotsu manifold. Moreover, we apply biharmonic Reeb curves in special 3dimensional Kenmotsu manifold \mathbb{K}. Finally, we characterize Bertrand mate of the biharmonic Reeb curves in terms of their curvature and torsion in special 3-dimensional Kenmotsu manifold \mathbb{K}.

Keywords: Kenmotsu manifold, biharmonic curve, Bertrand curve, Reeb vector field.

1 Introduction

In the theory of space curves in differential geometry, the associated curves, the curves for which at the corresponding points of them one of the Frenet vectors of a curve coincides with the one of the Frenet vectors of the other curve have an important role for the characterizations of space curves. The wellknown examples of such curves are Bertrand curves. These special curves are very interesting and characterized as a kind of corresponding relation between two curves such that the curves have the common principal normal i.e., the Bertrand curve is a curve which shares the normal line with another curve. These curves have an important role in the theory of curves.

Let (N, h) and (M, g) be Riemannian manifolds. A smooth map $\phi: N \longrightarrow$
M is said to be biharmonic if it is a critical point of the bienergy functional:

$$
E_{2}(\phi)=\int_{N} \frac{1}{2}|\mathcal{T}(\phi)|^{2} d v_{h}
$$

where the section $\mathcal{T}(\phi):=\operatorname{tr} \nabla^{\phi} d \phi$ is the tension field of ϕ.
The Euler-Lagrange equation of the bienergy is given by $\mathcal{T}_{2}(\phi)=0$. Here the section $\mathcal{T}_{2}(\phi)$ is defined by

$$
\begin{equation*}
\mathcal{T}_{2}(\phi)=-\Delta_{\phi} \mathcal{T}(\phi)+\operatorname{tr} R(\mathcal{T}(\phi), d \phi) d \phi \tag{1.1}
\end{equation*}
$$

and called the bitension field of ϕ. Obviously, every harmonic map is biharmonic. Non-harmonic biharmonic maps are called proper biharmonic maps.

In this article, we study biharmonic Reeb curves in 3-dimensional Kenmotsu manifold. Moreover, we apply biharmonic Reeb curves in special 3dimensional Kenmotsu manifold \mathbb{K}. Finally, we characterize Bertrand mate of the biharmonic Reeb curves in terms of their curvature and torsion in special 3 -dimensional Kenmotsu manifold \mathbb{K}.

2 Preliminaries

Let $M^{2 n+1}(\phi, \xi, \eta, g)$ be an almost contact Riemannian manifold with 1-form η, the associated vector field $\xi,(1,1)$-tensor field ϕ and the associated Riemannian metric g. It is well known that [2]

$$
\begin{gather*}
\phi \xi=0, \quad \eta(\xi)=1, \quad \eta(\phi X)=0 \tag{2.1}\\
\phi^{2}(X)=-X+\eta(X) \xi \tag{2.2}\\
g(X, \xi)=\eta(X) \tag{2.3}\\
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y) \tag{2.4}
\end{gather*}
$$

for any vector fields X, Y on M. Moreover,

$$
\begin{gather*}
\left(\nabla_{X} \phi\right) Y=-\eta(Y) \phi(X)-g(X, \phi Y) \xi, \quad X, Y \in \chi(M) \tag{2.5}\\
\nabla_{X} \xi=X-\eta(X) \xi \tag{2.6}
\end{gather*}
$$

where ∇ denotes the Riemannian connection of g, then (M, ϕ, ξ, η, g) is called an Kenmotsu manifold [2].

In Kenmotsu manifolds the following relations hold [2]:

$$
\begin{align*}
\left(\nabla_{X} \eta\right) Y & =g(\phi X, \phi Y), 2.7 \tag{1}\\
\eta(R(X, Y) Z) & =\eta(Y) g(X, Z)-\eta(X) g(Y, Z), 2.8 \tag{2}\\
R(X, Y) \xi & =\eta(X) Y-\eta(Y) X, 2.9 \tag{3}\\
R(\xi, X) Y & =\eta(Y) X-g(X, Y) \xi, 2.10 \tag{4}\\
R(\xi, X) \xi & =X-\eta(X) \xi, 2.11 \tag{5}
\end{align*}
$$

where R is the Riemannian curvature tensor.

3 Biharmonic Reeb Curves in the 3-Dimensional Kenmotsu Manifold

Let γ be a curve on the 3-dimensional Kenmotsu manifold parametrized by arc length. Let $\{\mathbf{T}, \mathbf{N}, \mathbf{B}\}$ be the Frenet frame fields tangent to the 3-dimensional Kenmotsu manifold along γ defined as follows:
\mathbf{T} is the unit vector field γ^{\prime} tangent to γ, \mathbf{N} is the unit vector field in the direction of $\nabla_{\mathbf{T}} \mathbf{T}$ (normal to γ), and \mathbf{B} is chosen so that $\{\mathbf{T}, \mathbf{N}, \mathbf{B}\}$ is a positively oriented orthonormal basis. Then, we have the following Frenet formulas:

$$
\begin{align*}
\nabla_{\mathbf{T}} \mathbf{T} & =\kappa \mathbf{N} \\
\nabla_{\mathbf{T}} \mathbf{N} & =-\kappa \mathbf{T}+\tau \mathbf{B}, 3.1 \tag{6}\\
\nabla_{\mathbf{T}} \mathbf{B} & =-\tau \mathbf{N},
\end{align*}
$$

where κ is the curvature of γ and τ its torsion and

$$
\begin{align*}
g(\mathbf{T}, \mathbf{T}) & =1, g(\mathbf{N}, \mathbf{N})=1, g(\mathbf{B}, \mathbf{B})=1,3.2 \tag{7}\\
g(\mathbf{T}, \mathbf{N}) & =g(\mathbf{T}, \mathbf{B})=g(\mathbf{N}, \mathbf{B})=0 .
\end{align*}
$$

Lemma 3.1. (see [13]) If γ is a biharmonic Reeb curve which are either tangent or normal to the Reeb vector field 3-dimensional Kenmotsu manifold, then γ is a helix.

We consider the special 3-dimensional manifold

$$
\mathbb{K}=\left\{(x, y, z) \in \mathbb{R}^{3}:(x, y, z) \neq(0,0,0)\right\}
$$

where (x, y, z) are the standard coordinates in \mathbb{R}^{3}. The vector fields

$$
\begin{equation*}
\mathbf{e}_{1}=z \frac{\partial}{\partial x}, \quad \mathbf{e}_{2}=z \frac{\partial}{\partial y}, \quad \mathbf{e}_{3}=-z \frac{\partial}{\partial z} \tag{3.3}
\end{equation*}
$$

are linearly independent at each point of \mathbb{K}. Let g be the Riemannian metric defined by

$$
\begin{align*}
g\left(\mathbf{e}_{1}, \mathbf{e}_{1}\right) & =g\left(\mathbf{e}_{2}, \mathbf{e}_{2}\right)=g\left(\mathbf{e}_{3}, \mathbf{e}_{3}\right)=1,3.4 \tag{8}\\
g\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right) & =g\left(\mathbf{e}_{2}, \mathbf{e}_{3}\right)=g\left(\mathbf{e}_{1}, \mathbf{e}_{3}\right)=0 .
\end{align*}
$$

The characterising properties of $\chi(\mathbb{K})$ are the following commutation relations:

$$
\left[\mathbf{e}_{1}, \mathbf{e}_{2}\right]=0, \quad\left[\mathbf{e}_{1}, \mathbf{e}_{3}\right]=\mathbf{e}_{1}, \quad\left[\mathbf{e}_{2}, \mathbf{e}_{3}\right]=\mathbf{e}_{2}
$$

Let η be the 1 -form defined by

$$
\eta(Z)=g\left(Z, \mathbf{e}_{3}\right) \text { for any } Z \in \chi(M)
$$

Let ϕ be the $(1,1)$ tensor field defined by

$$
\phi\left(\mathbf{e}_{1}\right)=-\mathbf{e}_{2}, \phi\left(\mathbf{e}_{2}\right)=\mathbf{e}_{1}, \phi\left(\mathbf{e}_{3}\right)=0
$$

Then using the linearity of and g we have

$$
\begin{gathered}
\eta\left(\mathbf{e}_{3}\right)=1, \\
\phi^{2}(Z)=-Z+\eta(Z) \mathbf{e}_{3} \\
g(\phi Z, \phi W)=g(Z, W)-\eta(Z) \eta(W),
\end{gathered}
$$

for any $Z, W \in \chi(\mathbb{K})$. Thus for $\mathbf{e}_{3}=\xi,(\phi, \xi, \eta, g)$ defines an almost contact metric structure on \mathbb{K}.

Now, we consider biharmonicity of curves in the special three-dimensional Kenmotsu manifold \mathbb{K}.

Theorem 3.4. (see [13]) Let $\gamma: I \longrightarrow \mathbb{K}$ be a unit speed biharmonic Reeb curve which are either tangent or normal to the Reeb vector field 3-dimensional Kenmotsu manifold \mathbb{K}. Then, the parametric equations of γ are

$$
\begin{aligned}
x(s)= & \frac{C_{1} \sin ^{5} \varphi}{\kappa^{2}+\sin ^{4} \varphi \cos ^{2} \varphi} e^{-\cos \varphi s}\left(\frac{\kappa}{\sin ^{2} \varphi} \cos \left(\frac{\kappa}{\sin ^{2} \varphi} s+\sigma\right)\right. \\
& \left.+\cos \varphi \sin \left(\frac{\kappa}{\sin ^{2} \varphi} s+\sigma\right)\right)+C_{2}, \\
y(s)= & \frac{C_{1} \sin ^{5} \varphi}{\kappa^{2}+\sin ^{4} \varphi \cos ^{2} \varphi} e^{-\cos \varphi s}\left(-\cos \varphi \cos \left(\frac{\kappa}{\sin ^{2} \varphi} s+\sigma\right) 3.14\right. \\
& \left.+\frac{\kappa}{\sin ^{2} \varphi} \sin \left(\frac{\kappa}{\sin ^{2} \varphi} s+\sigma\right)\right)+C_{3}, \\
z(s)= & C_{1} e^{-\cos \varphi s}
\end{aligned}
$$

where C, C_{1}, C_{2}, C_{3} are constants of integration.

4 Bertrand Mate of Biharmonic Reeb Curves in the Special Three-Dimensional Kenmotsu Manifold \mathbb{K}

A curve $\gamma: I \longrightarrow \mathbb{K}$ with $\kappa \neq 0$ is called a Bertrand curve if there exist a curve $\gamma_{\mathcal{B}}: I \longrightarrow \mathbb{K}$ such that the principal normal lines of γ and $\gamma_{\mathcal{B}}$ at $s \in I$ are equal. In this case $\gamma_{\mathcal{B}}$ is called a Bertrand mate of γ.

On the other hand, let $\gamma: I \longrightarrow \mathbb{K}$ be a Bertrand curve parametrized by arc length. A Bertrand mate of γ is as follows:

$$
\begin{equation*}
\gamma_{\mathcal{B}}(s)=\gamma(s)+\lambda \mathbf{N}(s), \quad \forall s \in I \tag{4.1}
\end{equation*}
$$

where λ is constant.
Theorem 4.1. Let $\gamma: I \longrightarrow \mathbb{K}$ be a biharmonic curve parametrized by arc length. If $\gamma_{\mathcal{B}}$ is a Bertrand mate of γ, then the parametric equations of $\gamma_{\mathcal{B}}$ are

$$
\begin{aligned}
x_{\mathcal{B}}(s)= & \frac{\lambda \sin \varphi}{\kappa}\left(\frac{\kappa}{\sin ^{2} \varphi} \cos \left(\frac{\kappa}{\sin ^{2} \varphi} s+\sigma\right)+\cos \varphi \sin \left(\frac{\kappa}{\sin ^{2} \varphi} s+\sigma\right)\right)\left(\bar{C}_{1} s+\bar{C}_{2}\right) \\
& \left.+\frac{C_{1} \sin ^{3} \varphi}{\kappa} e^{-\cos \varphi s}\left(-\cos \sigma \cos \left(\frac{\kappa}{\sin ^{2} \varphi} s\right)+\sin \sigma \sin \left(\frac{\kappa}{\sin ^{2} \varphi} s\right)\right)+C_{2}, 4 . \not 210\right) \\
y_{\mathcal{B}}(s)= & \frac{\lambda \sin \varphi}{\kappa}\left(-\frac{\kappa}{\sin ^{2} \varphi} \sin \left(\frac{\kappa}{\sin ^{2} \varphi} s+\sigma\right)+\cos \varphi \cos \left(\frac{\kappa}{\sin ^{2} \varphi} s+\sigma\right)\right)\left(\bar{C}_{1} s+\bar{C}_{2}\right) \\
& \frac{C_{1} \sin ^{3} \varphi}{\kappa} e^{-\cos \varphi s}\left(\sin \sigma \cos \left(\frac{\kappa}{\sin ^{2} \varphi} s+\sigma\right)+\cos \sigma \sin \left(\frac{\kappa}{\sin ^{2} \varphi} s+\sigma\right)\right)+C_{3}, \\
z_{\mathcal{B}}(s)= & \frac{\lambda}{\kappa}\left(\bar{C}_{1} s+\bar{C}_{2}\right)+C_{1} e^{-\cos \varphi s},
\end{aligned}
$$

where $\sigma, \bar{C}_{1}, \bar{C}_{2}, C_{1}, C_{2}, C_{3}$ are constants of integration.
Proof. Assume that T is

$$
\begin{equation*}
\mathbf{T}=T_{1} \mathbf{e}_{1}+T_{2} \mathbf{e}_{2}+T_{3} \mathbf{e}_{3} \tag{4.3}
\end{equation*}
$$

where T_{1}, T_{2}, T_{3} are differentiable functions on I.
From [13], we obtain

$$
\begin{equation*}
\mathbf{T}=\sin \varphi \sin \left(\frac{\kappa}{\sin ^{2} \varphi} s+\sigma\right) \mathbf{e}_{1}+\sin \varphi \cos \left(\frac{\kappa}{\sin ^{2} \varphi} s+\sigma\right) \mathbf{e}_{2}+\cos \varphi \mathbf{e}_{3} \tag{4.4}
\end{equation*}
$$

Using (3.3) in (4.4), we obtain

$$
\begin{equation*}
\mathbf{T}=\left(z \sin \varphi \sin \left(\frac{\kappa}{\sin ^{2} \varphi} s+\sigma\right), z \sin \varphi \cos \left(\frac{\kappa}{\sin ^{2} \varphi} s+\sigma\right),-z \cos \varphi\right) \tag{4.5}
\end{equation*}
$$

Because, by making use of (3.3), we have

$$
\begin{equation*}
\nabla_{\mathbf{T}} \mathbf{T}=\left(T_{1}^{\prime}+T_{1} T_{3}\right) \mathbf{e}_{1}+\left(T_{2}^{\prime}+T_{2} T_{3}\right) \mathbf{e}_{2}+T_{3}^{\prime} \mathbf{e}_{3} \tag{4.6}
\end{equation*}
$$

From (3.1) and (4.4), we get

$$
\begin{aligned}
\nabla_{\mathbf{T}} \mathbf{T}= & \sin \varphi\left(\frac{\kappa}{\sin ^{2} \varphi} \cos \left[\frac{\kappa}{\sin ^{2} \varphi} s+\sigma\right]+\cos \varphi \sin \left[\frac{\kappa}{\sin ^{2} \varphi} s+\sigma\right]\right) \mathbf{e}_{1} 4 . \not(11) \\
& +\sin \varphi\left(-\frac{\kappa}{\sin ^{2} \varphi} \sin \left[\frac{\kappa}{\sin ^{2} \varphi} s+\sigma\right]+\cos \varphi \cos \left[\frac{\kappa}{\sin ^{2} \varphi} s+C\right]\right) \mathbf{e}_{2}
\end{aligned}
$$

Then, by using Frenet formulas (3.1), we get

$$
\begin{aligned}
\mathbf{N}= & \frac{1}{\kappa} \nabla_{\mathbf{T}} \mathbf{T} \\
= & \frac{1}{\kappa}\left[\sin \varphi\left(\frac{\kappa}{\sin ^{2} \varphi} \cos \left(\frac{\kappa}{\sin ^{2} \varphi} s+\sigma\right)+\cos \varphi \sin \left(\frac{\kappa}{\sin ^{2} \varphi} s+\sigma\right)\right) \mathbf{e}_{1} 4 . \not 12\right) \\
& \left.+\sin \varphi\left(-\frac{\kappa}{\sin ^{2} \varphi} \sin \left(\frac{\kappa}{\sin ^{2} \varphi} s+\sigma\right)+\cos \varphi \cos \left(\frac{\kappa}{\sin ^{2} \varphi} s+\sigma\right)\right) \mathbf{e}_{2}\right]
\end{aligned}
$$

Finally, we substitute (3.5) and (4.8) into (4.1), we get (4.2). The proof is completed.

Corollary 4.2. Let $\gamma: I \longrightarrow \mathbb{K}$ be a biharmonic curve parametrized by arc length. If $\gamma_{\mathcal{B}}$ is a Bertrand mate of γ, then the parametric equations of $\gamma_{\mathcal{B}}$ in terms of τ are

$$
\begin{aligned}
x_{\mathcal{B}}(s)= & \frac{\lambda \sin \varphi}{\sqrt{1-\tau^{2}}}\left(\frac{\sqrt{1-\tau^{2}}}{\sin ^{2} \varphi} \cos \left(\frac{\sqrt{1-\tau^{2}}}{\sin ^{2} \varphi} s+\sigma\right)+\cos \varphi \sin \left(\frac{\sqrt{1-\tau^{2}}}{\sin ^{2} \varphi} s+\sigma\right)\right)\left(\bar{C}_{1} s+\bar{C}_{2}\right) \\
& +\frac{C_{1} \sin ^{3} \varphi}{\sqrt{1-\tau^{2}}} e^{-\cos \varphi s}\left(-\cos \sigma \cos \left(\frac{\sqrt{1-\tau^{2}}}{\sin ^{2} \varphi} s\right)+\sin \sigma \sin \left(\frac{\sqrt{1-\tau^{2}}}{\sin ^{2} \varphi} s\right)\right)+C_{2}, \\
y_{\mathcal{B}}(s)= & \frac{\lambda \sin \varphi}{\sqrt{1-\tau^{2}}}\left(-\frac{\sqrt{1-\tau^{2}}}{\sin ^{2} \varphi} \sin \left(\frac{\sqrt{1-\tau^{2}}}{\sin ^{2} \varphi} s+\sigma\right)+\cos \varphi \cos \left(\frac{\sqrt{1-\tau^{2}}}{\sin ^{2} \varphi} s+\sigma\right)\right)\left(\bar{C}_{1} s+\bar{C}_{2}\right) \\
& \frac{C_{1} \sin ^{3} \varphi}{\sqrt{1-\tau^{2}}} e^{-\cos \varphi s}\left(\sin \sigma \cos \left(\frac{\sqrt{1-\tau^{2}}}{\sin ^{2} \varphi} s+\sigma\right)+\cos \sigma \sin \left(\frac{\sqrt{1-\tau^{2}}}{\sin ^{2} \varphi} s+\sigma\right)\right)+C_{3}, \\
z_{\mathcal{B}}(s)= & \frac{\lambda}{\sqrt{1-\tau^{2}}}\left(\bar{C}_{1} s+\bar{C}_{2}\right)+C_{1} e^{-\cos \varphi s},
\end{aligned}
$$

where $\sigma, \bar{C}_{1}, \bar{C}_{2}, C_{1}, C_{2}, C_{3}$ are constants of integration.

References

[1] K. Arslan, R. Ezentas, C. Murathan and T. Sasahara, Biharmonic submanifolds 3-dimensional (κ, μ) manifolds, Internat. J. Math. Math. Sci.22(2005), 3575-3586.
[2] D.E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics, Springer-Verlag 509, Berlin-New York, (1976).
[3] R. Caddeo, S. Montaldo and C. Oniciuc, Biharmonic submanifolds of \mathbb{S}^{n}, Israel J. Math., To Appear.
[4] R. Caddeo, S. Montaldo and P. Piu, Biharmonic curves on a surface, Rend. Mat., To Appear.
[5] B.Y. Chen, Some open problems and conjectures on submanifolds of finite type, Soochow J. Math., 17(1991), 169-188.
[6] S. Degla and L. Todjihounde, Biharmonic Reeb curves in Sasakian manifolds, arXiv:1008.1903.[rgb]0.98,0.00,0.00//Journal name,vol.,no. missing
[7] J. Eells and L. Lemaire, A report on harmonic maps, Bull. London Math. Soc., 10(1978), 1-68.
[8] J. Eells and J.H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86(1964), 109-160.
[9] T. Hasanis and T. Vlachos, Hypersurfaces in \mathbb{E}^{4} with harmonic mean curvature vector field, Math. Nachr., 172-(1995), 145-169.
[10] G.Y. Jiang, 2-harmonic isometric immersions between Riemannian manifolds, Chinese Ann. Math. Ser. A, 7(2) (1986), 130-144.
[11] G.Y. Jiang, 2-harmonic maps and their first and second variational formulas, Chinese Ann. Math. Ser. A, 7(4) (1986), 389-402.
[12] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J., 24(1972), 93-103.
[13] T. Körpınar and E. Turhan, Biharmonic reeb curves in 3-Dimensinal Kenmotsu manifolds, World Applied Sciences Journal, 15(2) (2011), 214-217.
[14] B. O'Neill, Semi-Riemannian Geometry, Academic Press, New York (1983).
[15] P. Strzelecki, On biharmonic maps and their generalizations, Calc. Var., 18(2003), 401-432.
[16] E. Turhan and T. Körpınar, Characterize on the Heisenberg Group with left invariant Lorentzian metric, Demonstratio Mathematica, 42(2) (2009), 423-428.
[17] C. Wang, Biharmonic maps from \mathbb{R}^{4} into a Riemannian manifold, Math. Z., 247(2004), 65-87.
[18] C. Wang, Remarks on biharmonic maps into spheres, Calc. Var., 21(2004), 221-242.

