

Gen. Math. Notes, Vol. 5, No. 2, August 2011, pp.67-74 ISSN 2219-7184; Copyright ©ICSRS Publication, 2011 www.i-csrs.org Available free online at http://www.geman.in

Bertrand Mate of Biharmonic Reeb Curves in 3-Dimensional Kenmotsu Manifold

Talat Körpinar¹ and Essin Turhan²

¹Fırat University, Department of Mathematics, 23119, Elazığ, Turkey E-mail: talatkorpinar@gmail.com
²Fırat University, Department of Mathematics, 23119, Elazığ, Turkey E-mail: essin.turhan@gmail.com

(Received: 14-5-11/ Accepted: 27-6-11)

Abstract

In this article, we study biharmonic Reeb curves in 3-dimensional Kenmotsu manifold. Moreover, we apply biharmonic Reeb curves in special 3dimensional Kenmotsu manifold \mathbb{K} . Finally, we characterize Bertrand mate of the biharmonic Reeb curves in terms of their curvature and torsion in special 3-dimensional Kenmotsu manifold \mathbb{K} .

Keywords: Kenmotsu manifold, biharmonic curve, Bertrand curve, Reeb vector field.

1 Introduction

In the theory of space curves in differential geometry, the associated curves, the curves for which at the corresponding points of them one of the Frenet vectors of a curve coincides with the one of the Frenet vectors of the other curve have an important role for the characterizations of space curves. The well-known examples of such curves are Bertrand curves. These special curves are very interesting and characterized as a kind of corresponding relation between two curves such that the curves have the common principal normal i.e., the Bertrand curve is a curve which shares the normal line with another curve. These curves have an important role in the theory of curves.

Let (N, h) and (M, g) be Riemannian manifolds. A smooth map $\phi : N \longrightarrow$

M is said to be biharmonic if it is a critical point of the bienergy functional:

$$E_2(\phi) = \int_N \frac{1}{2} \left| \mathcal{T}(\phi) \right|^2 dv_h,$$

where the section $\mathcal{T}(\phi) := \mathrm{tr} \nabla^{\phi} d\phi$ is the tension field of ϕ .

The Euler-Lagrange equation of the bienergy is given by $\mathcal{T}_2(\phi) = 0$. Here the section $\mathcal{T}_2(\phi)$ is defined by

$$\mathcal{T}_2(\phi) = -\Delta_{\phi} \mathcal{T}(\phi) + \operatorname{tr} R\left(\mathcal{T}(\phi), d\phi\right) d\phi, \qquad (1.1)$$

and called the bitension field of ϕ . Obviously, every harmonic map is biharmonic. Non-harmonic biharmonic maps are called proper biharmonic maps.

In this article, we study biharmonic Reeb curves in 3-dimensional Kenmotsu manifold. Moreover, we apply biharmonic Reeb curves in special 3dimensional Kenmotsu manifold \mathbb{K} . Finally, we characterize Bertrand mate of the biharmonic Reeb curves in terms of their curvature and torsion in special 3-dimensional Kenmotsu manifold \mathbb{K} .

2 Preliminaries

Let $M^{2n+1}(\phi, \xi, \eta, g)$ be an almost contact Riemannian manifold with 1-form η , the associated vector field ξ , (1, 1)-tensor field ϕ and the associated Riemannian metric g. It is well known that [2]

$$\phi \xi = 0, \quad \eta (\xi) = 1, \quad \eta (\phi X) = 0,$$
(2.1)

$$\phi^{2}(X) = -X + \eta(X)\xi, \qquad (2.2)$$

$$g(X,\xi) = \eta(X), \qquad (2.3)$$

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X) \eta(Y), \qquad (2.4)$$

for any vector fields X, Y on M. Moreover,

$$\left(\nabla_X\phi\right)Y = -\eta\left(Y\right)\phi\left(X\right) - g\left(X,\phi Y\right)\xi, \quad X, Y \in \chi\left(M\right), \qquad (2.5)$$

$$\nabla_X \xi = X - \eta \left(X \right) \xi, \tag{2.6}$$

where ∇ denotes the Riemannian connection of g, then (M, ϕ, ξ, η, g) is called an Kenmotsu manifold [2].

In Kenmotsu manifolds the following relations hold [2]:

$$(\nabla_X \eta) Y = g(\phi X, \phi Y), 2.7 \tag{1}$$

$$\eta (R(X,Y)Z) = \eta (Y) g (X,Z) - \eta (X) g (Y,Z), 2.8$$
(2)

$$R(X,Y)\xi = \eta(X)Y - \eta(Y)X, 2.9$$
(3)

$$R(\xi, X) Y = \eta(Y) X - g(X, Y) \xi, 2.10$$
(4)

$$R(\xi, X)\xi = X - \eta(X)\xi, 2.11$$
(5)

where R is the Riemannian curvature tensor.

3 Biharmonic Reeb Curves in the 3-Dimensional Kenmotsu Manifold

Let γ be a curve on the 3-dimensional Kenmotsu manifold parametrized by arc length. Let $\{\mathbf{T}, \mathbf{N}, \mathbf{B}\}$ be the Frenet frame fields tangent to the 3-dimensional Kenmotsu manifold along γ defined as follows:

T is the unit vector field γ' tangent to γ , **N** is the unit vector field in the direction of $\nabla_{\mathbf{T}}\mathbf{T}$ (normal to γ), and **B** is chosen so that {**T**, **N**, **B**} is a positively oriented orthonormal basis. Then, we have the following Frenet formulas:

$$\nabla_{\mathbf{T}} \mathbf{T} = \kappa \mathbf{N},$$

$$\nabla_{\mathbf{T}} \mathbf{N} = -\kappa \mathbf{T} + \tau \mathbf{B}, 3.1 \qquad (6)$$

$$\nabla_{\mathbf{T}} \mathbf{B} = -\tau \mathbf{N},$$

where κ is the curvature of γ and τ its torsion and

$$g(\mathbf{T}, \mathbf{T}) = 1, \ g(\mathbf{N}, \mathbf{N}) = 1, \ g(\mathbf{B}, \mathbf{B}) = 1, \ 3.2$$
(7)
$$g(\mathbf{T}, \mathbf{N}) = g(\mathbf{T}, \mathbf{B}) = g(\mathbf{N}, \mathbf{B}) = 0.$$

Lemma 3.1. (see [13]) If γ is a biharmonic Reeb curve which are either tangent or normal to the Reeb vector field 3-dimensional Kenmotsu manifold, then γ is a helix.

We consider the special 3-dimensional manifold

$$\mathbb{K} = \left\{ (x, y, z) \in \mathbb{R}^3 : (x, y, z) \neq (0, 0, 0) \right\},\$$

where (x, y, z) are the standard coordinates in \mathbb{R}^3 . The vector fields

$$\mathbf{e}_1 = z \frac{\partial}{\partial x}, \quad \mathbf{e}_2 = z \frac{\partial}{\partial y}, \quad \mathbf{e}_3 = -z \frac{\partial}{\partial z}$$
 (3.3)

are linearly independent at each point of \mathbb{K} . Let g be the Riemannian metric defined by

$$g(\mathbf{e}_{1}, \mathbf{e}_{1}) = g(\mathbf{e}_{2}, \mathbf{e}_{2}) = g(\mathbf{e}_{3}, \mathbf{e}_{3}) = 1, 3.4$$
(8)
$$g(\mathbf{e}_{1}, \mathbf{e}_{2}) = g(\mathbf{e}_{2}, \mathbf{e}_{3}) = g(\mathbf{e}_{1}, \mathbf{e}_{3}) = 0.$$

The characterising properties of $\chi(\mathbb{K})$ are the following commutation relations:

$$[\mathbf{e}_1, \mathbf{e}_2] = 0, \ [\mathbf{e}_1, \mathbf{e}_3] = \mathbf{e}_1, \ [\mathbf{e}_2, \mathbf{e}_3] = \mathbf{e}_2$$

Let η be the 1-form defined by

$$\eta(Z) = g(Z, \mathbf{e}_3)$$
 for any $Z \in \chi(M)$

Let ϕ be the (1,1) tensor field defined by

$$\phi(\mathbf{e}_1) = -\mathbf{e}_2, \ \phi(\mathbf{e}_2) = \mathbf{e}_1, \ \phi(\mathbf{e}_3) = 0.$$

Then using the linearity of and g we have

$$\eta(\mathbf{e}_3) = 1,$$

$$\phi^2(Z) = -Z + \eta(Z)\mathbf{e}_3,$$

$$g(\phi Z, \phi W) = g(Z, W) - \eta(Z)\eta(W),$$

for any $Z, W \in \chi(\mathbb{K})$. Thus for $\mathbf{e}_3 = \xi$, (ϕ, ξ, η, g) defines an almost contact metric structure on \mathbb{K} .

Now, we consider biharmonicity of curves in the special three-dimensional Kenmotsu manifold \mathbb{K} .

Theorem 3.4. (see [13]) Let $\gamma : I \longrightarrow \mathbb{K}$ be a unit speed biharmonic Reeb curve which are either tangent or normal to the Reeb vector field 3-dimensional Kenmotsu manifold \mathbb{K} . Then, the parametric equations of γ are

$$x(s) = \frac{C_{1}\sin^{5}\varphi}{\kappa^{2} + \sin^{4}\varphi\cos^{2}\varphi}e^{-\cos\varphi s}\left(\frac{\kappa}{\sin^{2}\varphi}\cos\left(\frac{\kappa}{\sin^{2}\varphi}s + \sigma\right)\right) + \cos\varphi\sin\left(\frac{\kappa}{\sin^{2}\varphi}s + \sigma\right)\right) + C_{2},$$

$$y(s) = \frac{C_{1}\sin^{5}\varphi}{\kappa^{2} + \sin^{4}\varphi\cos^{2}\varphi}e^{-\cos\varphi s}\left(-\cos\varphi\cos\left(\frac{\kappa}{\sin^{2}\varphi}s + \sigma\right)3.14\right) \quad (9)$$

$$+\frac{\kappa}{\sin^{2}\varphi}\sin\left(\frac{\kappa}{\sin^{2}\varphi}s + \sigma\right)\right) + C_{3},$$

$$z(s) = C_{1}e^{-\cos\varphi s},$$

where C, C_1, C_2, C_3 are constants of integration.

4 Bertrand Mate of Biharmonic Reeb Curves in the Special Three-Dimensional Kenmotsu Manifold K

A curve $\gamma : I \longrightarrow \mathbb{K}$ with $\kappa \neq 0$ is called a Bertrand curve if there exist a curve $\gamma_{\mathcal{B}} : I \longrightarrow \mathbb{K}$ such that the principal normal lines of γ and $\gamma_{\mathcal{B}}$ at $s \in I$ are equal. In this case $\gamma_{\mathcal{B}}$ is called a Bertrand mate of γ .

70

Bertrand Mate of Biharmonic Reeb Curves...

On the other hand, let $\gamma: I \longrightarrow \mathbb{K}$ be a Bertrand curve parametrized by arc length. A Bertrand mate of γ is as follows:

$$\gamma_{\mathcal{B}}(s) = \gamma(s) + \lambda \mathbf{N}(s), \quad \forall s \in I,$$
(4.1)

where λ is constant.

Theorem 4.1. Let $\gamma : I \longrightarrow \mathbb{K}$ be a biharmonic curve parametrized by arc length. If $\gamma_{\mathcal{B}}$ is a Bertrand mate of γ , then the parametric equations of $\gamma_{\mathcal{B}}$ are

$$\begin{aligned} x_{\mathcal{B}}(s) &= \frac{\lambda \sin \varphi}{\kappa} \left(\frac{\kappa}{\sin^2 \varphi} \cos(\frac{\kappa}{\sin^2 \varphi} s + \sigma) + \cos \varphi \sin(\frac{\kappa}{\sin^2 \varphi} s + \sigma) \right) \left(\bar{C}_1 s + \bar{C}_2 \right) \\ &+ \frac{C_1 \sin^3 \varphi}{\kappa} e^{-\cos \varphi s} (-\cos \sigma \cos(\frac{\kappa}{\sin^2 \varphi} s) + \sin \sigma \sin(\frac{\kappa}{\sin^2 \varphi} s)) + C_2, 4.2(10) \end{aligned} \\ y_{\mathcal{B}}(s) &= \frac{\lambda \sin \varphi}{\kappa} \left(-\frac{\kappa}{\sin^2 \varphi} \sin(\frac{\kappa}{\sin^2 \varphi} s + \sigma) + \cos \varphi \cos(\frac{\kappa}{\sin^2 \varphi} s + \sigma) \right) \left(\bar{C}_1 s + \bar{C}_2 \right) \\ &= \frac{C_1 \sin^3 \varphi}{\kappa} e^{-\cos \varphi s} (\sin \sigma \cos(\frac{\kappa}{\sin^2 \varphi} s + \sigma) + \cos \sigma \sin(\frac{\kappa}{\sin^2 \varphi} s + \sigma)) + C_3, \end{aligned}$$
$$z_{\mathcal{B}}(s) &= \frac{\lambda}{\kappa} \left(\bar{C}_1 s + \bar{C}_2 \right) + C_1 e^{-\cos \varphi s}, \end{aligned}$$

where $\sigma, \bar{C}_1, \bar{C}_2, C_1, C_2, C_3$ are constants of integration.

Proof. Assume that **T** is

$$\mathbf{T} = T_1 \mathbf{e}_1 + T_2 \mathbf{e}_2 + T_3 \mathbf{e}_3, \tag{4.3}$$

where T_1, T_2, T_3 are differentiable functions on I.

From [13], we obtain

$$\mathbf{T} = \sin\varphi\sin(\frac{\kappa}{\sin^2\varphi}s + \sigma)\mathbf{e}_1 + \sin\varphi\cos(\frac{\kappa}{\sin^2\varphi}s + \sigma)\mathbf{e}_2 + \cos\varphi\mathbf{e}_3.$$
(4.4)

Using (3.3) in (4.4), we obtain

$$\mathbf{T} = (z\sin\varphi\sin(\frac{\kappa}{\sin^2\varphi}s + \sigma), z\sin\varphi\cos(\frac{\kappa}{\sin^2\varphi}s + \sigma), -z\cos\varphi).$$
(4.5)

Because, by making use of (3.3), we have

$$\nabla_{\mathbf{T}}\mathbf{T} = (T_1' + T_1T_3)\mathbf{e}_1 + (T_2' + T_2T_3)\mathbf{e}_2 + T_3'\mathbf{e}_3.$$
(4.6)

From (3.1) and (4.4), we get

$$\nabla_{\mathbf{T}} \mathbf{T} = \sin \varphi \left(\frac{\kappa}{\sin^2 \varphi} \cos \left[\frac{\kappa}{\sin^2 \varphi} s + \sigma \right] + \cos \varphi \sin \left[\frac{\kappa}{\sin^2 \varphi} s + \sigma \right] \right) \mathbf{e}_1 4.$$

$$+ \sin \varphi \left(-\frac{\kappa}{\sin^2 \varphi} \sin \left[\frac{\kappa}{\sin^2 \varphi} s + \sigma \right] + \cos \varphi \cos \left[\frac{\kappa}{\sin^2 \varphi} s + C \right] \right) \mathbf{e}_2.$$

Then, by using Frenet formulas (3.1), we get

$$\mathbf{N} = \frac{1}{\kappa} \nabla_{\mathbf{T}} \mathbf{T}$$

= $\frac{1}{\kappa} [\sin \varphi \left(\frac{\kappa}{\sin^2 \varphi} \cos(\frac{\kappa}{\sin^2 \varphi} s + \sigma) + \cos \varphi \sin(\frac{\kappa}{\sin^2 \varphi} s + \sigma) \right) \mathbf{e}_1 4.8(12)$
+ $\sin \varphi \left(-\frac{\kappa}{\sin^2 \varphi} \sin(\frac{\kappa}{\sin^2 \varphi} s + \sigma) + \cos \varphi \cos(\frac{\kappa}{\sin^2 \varphi} s + \sigma) \right) \mathbf{e}_2].$

Finally, we substitute (3.5) and (4.8) into (4.1), we get (4.2). The proof is completed.

Corollary 4.2. Let $\gamma : I \longrightarrow \mathbb{K}$ be a biharmonic curve parametrized by arc length. If $\gamma_{\mathcal{B}}$ is a Bertrand mate of γ , then the parametric equations of $\gamma_{\mathcal{B}}$ in terms of τ are

$$\begin{aligned} x_{\mathcal{B}}(s) &= \frac{\lambda \sin \varphi}{\sqrt{1 - \tau^2}} \left(\frac{\sqrt{1 - \tau^2}}{\sin^2 \varphi} \cos(\frac{\sqrt{1 - \tau^2}}{\sin^2 \varphi} s + \sigma) + \cos \varphi \sin(\frac{\sqrt{1 - \tau^2}}{\sin^2 \varphi} s + \sigma) \right) \left(\bar{C}_1 s + \bar{C}_2 \right) \\ &+ \frac{C_1 \sin^3 \varphi}{\sqrt{1 - \tau^2}} e^{-\cos \varphi s} (-\cos \sigma \cos(\frac{\sqrt{1 - \tau^2}}{\sin^2 \varphi} s) + \sin \sigma \sin(\frac{\sqrt{1 - \tau^2}}{\sin^2 \varphi} s)) + C_2, \\ y_{\mathcal{B}}(s) &= \frac{\lambda \sin \varphi}{\sqrt{1 - \tau^2}} \left(-\frac{\sqrt{1 - \tau^2}}{\sin^2 \varphi} \sin(\frac{\sqrt{1 - \tau^2}}{\sin^2 \varphi} s + \sigma) + \cos \varphi \cos(\frac{\sqrt{1 - \tau^2}}{\sin^2 \varphi} s + \sigma) \right) \left(\bar{C}_1 s + \bar{C}_2 \right) \\ &= \frac{C_1 \sin^3 \varphi}{\sqrt{1 - \tau^2}} e^{-\cos \varphi s} (\sin \sigma \cos(\frac{\sqrt{1 - \tau^2}}{\sin^2 \varphi} s + \sigma) + \cos \sigma \sin(\frac{\sqrt{1 - \tau^2}}{\sin^2 \varphi} s + \sigma)) + C_3, \\ z_{\mathcal{B}}(s) &= \frac{\lambda}{\sqrt{1 - \tau^2}} \left(\bar{C}_1 s + \bar{C}_2 \right) + C_1 e^{-\cos \varphi s}, \end{aligned}$$

where $\sigma, \bar{C}_1, \bar{C}_2, C_1, C_2, C_3$ are constants of integration.

References

[1] K. Arslan, R. Ezentas, C. Murathan and T. Sasahara, Biharmonic submanifolds 3-dimensional (κ,μ) – manifolds, Internat. J. Math. Math. Sci.22(2005), 3575 – 3586.

- [2] D.E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics, Springer-Verlag 509, Berlin-New York, (1976).
- [3] R. Caddeo, S. Montaldo and C. Oniciuc, Biharmonic submanifolds of \mathbb{S}^n , *Israel J. Math.*, To Appear.
- [4] R. Caddeo, S. Montaldo and P. Piu, Biharmonic curves on a surface, *Rend. Mat.*, To Appear.
- [5] B.Y. Chen, Some open problems and conjectures on submanifolds of finite type, Soochow J. Math., 17(1991), 169-188.
- [6] S. Degla and L. Todjihounde, Biharmonic Reeb curves in Sasakian manifolds, arXiv:1008.1903.[rgb]0.98,0.00,0.00//Journal name,vol.,no. missing
- [7] J. Eells and L. Lemaire, A report on harmonic maps, Bull. London Math. Soc., 10(1978), 1-68.
- [8] J. Eells and J.H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86(1964), 109-160.
- [9] T. Hasanis and T. Vlachos, Hypersurfaces in E⁴ with harmonic mean curvature vector field, *Math. Nachr.*, 172-(1995), 145-169.
- [10] G.Y. Jiang, 2-harmonic isometric immersions between Riemannian manifolds, Chinese Ann. Math. Ser. A, 7(2) (1986), 130-144.
- [11] G.Y. Jiang, 2-harmonic maps and their first and second variational formulas, *Chinese Ann. Math. Ser. A*, 7(4) (1986), 389-402.
- [12] K. Kenmotsu, A class of almost contact Riemannian manifolds, *Tohoku Math. J.*, 24(1972), 93-103.
- [13] T. Körpınar and E. Turhan, Biharmonic reeb curves in 3-Dimensinal Kenmotsu manifolds, World Applied Sciences Journal, 15(2) (2011), 214-217.
- [14] B. O'Neill, Semi-Riemannian Geometry, Academic Press, New York (1983).
- [15] P. Strzelecki, On biharmonic maps and their generalizations, Calc. Var., 18(2003), 401-432.
- [16] E. Turhan and T. Körpinar, Characterize on the Heisenberg Group with left invariant Lorentzian metric, *Demonstratio Mathematica*, 42(2) (2009), 423-428.
- [17] C. Wang, Biharmonic maps from \mathbb{R}^4 into a Riemannian manifold, *Math.* Z., 247(2004), 65-87.

[18] C. Wang, Remarks on biharmonic maps into spheres, *Calc. Var.*, 21(2004), 221-242.