

Gen. Math. Notes, Vol. 4, No. 1, May 2011, pp.85-89 ISSN 2219-7184; Copyright ©ICSRS Publication, 2011 www.i-csrs.org Available free online at http://www.geman.in

On Power Γ -Semigroups

Thawhat Changphas¹

Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand Centre of Excellence in Mathematics, CHE, Si Ayuttaya Rd., Bangkok 10400, Thailand E-mail: thacha@kku.ac.th

(Received:26-12-10 /Accepted:3-5-11)

Abstract

Let S_1 and S_2 be Γ -semigroups. In this note, we determine when S_1 and S_2 are isomorphic if the power semigroup of S_1 and the power semigroup of S_2 are o-isomorphic.

Keywords: Γ -semihypergroups, Power Semigroups.

1 Prelimminaries

In [1], by a *po-semigroup* is a semigroup S such that S is a partially ordered set under a relation \leq and

 $a \leq b$ implies $ca \leq cb$ and $ac \leq bc$

for all $a, b, c \in S$.

Let S_1 and S_2 be *po*-semigroups. A map $\varphi : S_1 \to S_2$ is called an *o*-isomorphism if φ is one to one and onto such that

(i)
$$\varphi(ab) = \varphi(a)\varphi(b);$$

(ii)
$$a \le b \Leftrightarrow \varphi(a) \le \varphi(b)$$

 $^{^1{\}rm This}$ research is supported by the Centre of Excellence in Mathematics, the Commission on Higher Education, Thailand

for all $a, b \in S_1$. In this case, we say that S_1 and S_2 are *o*-isomorphic.

Let S be a (*po*-semigroup) semigroup. Define a binary operation on the set of all nonempty subsets of S, denoted by P(S), by

$$AB = \{ab : a \in A, b \in B\}.$$

for $A, B \in P(S)$. Then P(S) forms a *po*-semigroup (under the inclusion) which is called the *power semigroup* of S.

For any semigroups S_1 and S_2 , it is known that if S_1 and S_2 are isomorphic then $P(S_1)$ and $P(S_2)$ are *o*-isomorphic. This leads to the question: if $P(S_1)$ and $P(S_2)$ are *o*-isomorphic, must S_1 and S_2 be isomorphic?

For a semigroup S, let I(S) and PI(S) be the set of all ideals of S and the set of all principle ideals of S, respectively. We say that S is an *IO-semigroup* if

$$a \in S^1 b S^1, b \in S^1 a S^1 \Rightarrow a = b$$

for all $a, b \in S$. In [3], the author proved that:

Theorem 1.1 Let S_1 and S_2 be commutative OI-semigroups such that $I(S_1) = PI(S_1)$ and $I(S_2) = PI(S_2)$. If $P(S_1)$ and $P(S_2)$ are o-isomorphic, then S_1 and S_2 are isomorphic.

In this note, we generalize this result using the concept of Γ -semigroup.

Let S and Γ be nonempty sets. Then S is called a Γ -semigroup if there exists a mapping $S \times \Gamma \times S \to S$; $(a, \gamma, b) \mapsto a\gamma b$ such that $(a\alpha b)\beta c = a\alpha(b\beta c)$ for all $a, b, c \in S$ and all $\alpha, \beta \in \Gamma$. It is known that the concept of a Γ semigroup, defined by Sen and Saha in 1986, is a generalization of a semigroup. A nonempty subset T of S is called a Γ -subsetmigroup of S if $a\alpha b \in T$ for all $a, b \in T$ and all $\alpha \in \Gamma$.

A bijection map $\varphi : S_1 \to S_2$ from a Γ -semigroup S_1 into a Γ -semigroup S_2 is called an *isomorphism* if $\varphi(a\alpha b) = \varphi(a)\alpha\varphi(b)$ for all $a, b \in S_1$ and all $\alpha \in \Gamma$. In this case, we say that S_1 and S_2 are *isomorphic*.

A Γ -semigroup S is called a *po*- Γ -semigroup if S is a partially ordered set under a relation \leq and

 $a \leq b$ implies $c\alpha a \leq c\alpha b$ and $a\alpha c \leq b\alpha c$

for all $a, b, c \in S$ and all $\alpha \in \Gamma$.

Let S be a Γ -semigroup. For nonempty subsets A and B of S and $\gamma \in \Gamma$, let

$$A\gamma B = \{a\gamma b : a \in A, b \in B\}.$$

Then P(S) forms a Γ -semigroup, called the *power* Γ -semigroup of S. Moreover, under the usual inclusion it is a *po*- Γ -semigroup.

Let S_1 and S_2 be po- Γ -semigroups. A bijection map $\varphi: S_1 \to S_2$ is called an *o-isomorphosm* if On Power Γ -Semigroups

- (i) $\varphi(a\gamma b) = \varphi(a)\gamma\varphi(b);$
- (ii) $a \leq b \Leftrightarrow \varphi(a) \leq \varphi(b)$

for all $a, b \in S_1$ and all $\gamma \in \Gamma$. In this case, we say that S_1 and S_2 are *o-isomorphic*.

Theorem 1.2 Let S_1 and S_2 be Γ -semigroups. If S_1 and S_2 are isomorphic, then $P(S_1)$ and $P(S_2)$ are o-isomorphic.

Proof. Let $\varphi : S_1 \to S_2$ be an isomorphism. Define $\overline{\varphi} : P(S_1) \to P(S_2)$ by $\overline{\varphi}(X) = \varphi(X)$ for all $X \in P(S_1)$ ($\varphi(X) = \{\varphi(x) : x \in X\}$). Since φ is a bijection, so is $\overline{\varphi}$. Let $X, Y \in P(S_1)$ and $\alpha \in \Gamma$. We have

$$\bar{\varphi}(X\alpha Y) = \varphi(X\alpha Y) = \varphi(X)\alpha\varphi(Y) = \bar{\varphi}(X)\alpha\bar{\varphi}(Y).$$

If $X, Y \in P(S_1)$ such that $X \subseteq Y$, then

$$\bar{\varphi}(X) = \varphi(X) \subseteq \varphi(Y) = \bar{\varphi}(Y).$$

Thus $\bar{\varphi}$ is an *o*-isomorphism.

2 Main Results

Let S be a Γ -semigroup. For nonempty subsets A, B of S, let

$$A\Gamma B = \{a\gamma b : a \in A, b \in B, \gamma \in \Gamma\}.$$

A nonempty subset I of S is called an *ideal* of S if $S\Gamma I\Gamma S \subseteq I$, that is $a\alpha c\beta b \in I$ for all $a, b \in S, c \in I$ and all $\alpha, \beta \in \Gamma$. The set of all ideals of S will be denoted by I(S). Note that I(S) is a Γ -subsemigroup of P(S). The intersection of all ideals containing an element a of S is an ideal of S and it is of the form $[a] = S\Gamma a\Gamma S \cup \{a\}$, this is called the *principal ideal* generated by a. The set of all principal ideals of S is denoted by PI(S).

Lemma 2.1 Let S_1 and S_2 be Γ -semigroups. If $\varphi : P(S_1) \to P(S_2)$ is an o-isomorphism, then $\varphi_{|_{I(S_1)}} : I(S_1) \to I(S_2)$ is onto. Moreover, $\varphi_{|_{I(S_1)}}$ is an o-isomorphism.

Proof. We shall prove that $\varphi_{|_{I(S_1)}}(I(S_1)) = I(S_2)$. Since $S_2 \in P(S_2)$ and φ is an *o*-isomorphism we have that $\varphi(Y) = S_2$ for some $Y \in P(S_1)$. Let $X \in I(S_1)$ and $\alpha \in \Gamma$. Since $X \alpha Y \subseteq X$ and $Y \alpha X \subseteq X$, it follows that

$$\varphi(X\alpha Y) \subseteq \varphi(X) \text{ and } \varphi(Y\alpha X) \subseteq \varphi(X)$$

Let $\alpha \in \Gamma$. Then

$$\varphi_{|_{I(S_1)}}(X)\alpha S_2 = \varphi(X)\alpha\varphi(Y) = \varphi(X\alpha Y) \subseteq \varphi(X) = \varphi_{|_{I(S_1)}}(X)$$

and

$$S_2 \alpha \varphi|_{|_{I(S_1)}}(X) = \varphi(Y) \alpha \varphi(X) = \varphi(Y \alpha X) \subseteq \varphi(X) = \varphi|_{|_{I(S_1)}}(X).$$

Thus $\varphi_{|_{I(S_1)}}(X)$ is an ideal of S_2 . Therefore, $\varphi_{|_{I(S_1)}}(I(S_1)) \subseteq I(S_2)$. Consider an *o*-isomorphism $\varphi^{-1} : P(S_2) \to P(S_1)$, we have that

 $\varphi^{-1}(I(S_2)) \subseteq I(S_1).$

Since

$$\varphi|_{I(S_1)}\varphi^{-1}|_{I(S_2)}(I(S_2)) \subseteq \varphi|_{I(S_1)}(I(S_1))$$

we obtain

$$I(S_2) = \varphi|_{I(S_1)}\varphi^{-1}|_{I(S_2)}(I(S_2)) \subseteq \varphi|_{I(S_1)}(I(S_1)).$$

This completes the proof. That $\varphi_{|_{I(S_1)}}$ is an *o*-isomorphism is clear.

The next lemma is easy to see.

Lemma 2.2 Let S be a commutative Γ -semigroup. For $a, b \in S$ and $\alpha \in \Gamma$,

 $[a]\alpha[b] = [a\alpha b].$

Let S be a Γ -semigroup. We say that S is an IO- Γ -semigroup if for all $a, b \in S, a \in [b], b \in [a] \Rightarrow a = b$.

Theorem 2.3 Let S_1 and S_2 be commutative OI- Γ -semigroups such that $I(S_1) = PI(S_1)$ and $I(S_2) = PI(S_2)$. If $P(S_1)$ and $P(S_2)$ are o-isomorphic, then S_1 and S_2 are isomorphic.

Proof. Assume that $P(S_1)$ and $P(S_2)$ are *o*-isomorphic. Let $\varphi : P(S_1) \to P(S_2)$ be an *o*-isomorphism. By Lemma 2.1, $\varphi|_{I(S_1)} : I(S_1) \to I(S_2)$ is an *o*-isomorphism. Let $\varphi_1 : S_1 \to I(S_1)$ by $a \mapsto [a]$ and $\varphi_2 : S_2 \to I(S_2)$ by $b \mapsto [b]$. Let $\alpha \in \Gamma$ and $a, a' \in S_1$. By Lemma 2.2 we have

$$\varphi_1(a\alpha a') = [a\alpha a'] = [a]\alpha[a'] = \varphi_1(a)\alpha\varphi_1(a').$$

Let $a, a' \in S_1$ be such that $\varphi_1(a) = \varphi_1(a')$, that is [a] = [a']. Since S_1 is an *IO*-semigroup, a = a'. Let $A \in I(S_1)$. Since $PI(S_1) = I(S_1)$, $A \in PI(S_1)$. Then A = [a] for some $a \in S_1$. Since $\varphi_1(a) = [a] = A$, φ_1 is onto. Therefore φ_1 is an isomorphism. Similarly, φ_2 is an isomorphism. This implies that $\varphi_2^{-1}\varphi_{|_{I(X)}}\varphi_1 : S_1 \to S_2$ is an isomorphism. Thus S_1 and S_1 are isomorphic.

This follows from Theorem 3.2.

Corollary 2.4 Let S_1 and S_2 be commutative OI- Γ -semgroups such that $I(S_1) = PI(S_1)$ and $I(S_2) = PI(S_2)$. If $I(S_1)$ and $I(S_2)$ are o-isomorphic, then S_1 and S_2 are isomorphic.

3 Conclusion

These are the main results of the paper.

Theorem 3.1 Let S_1 and S_2 be Γ -semigroups. If S_1 and S_2 are isomorphic, then $P(S_1)$ and $P(S_2)$ are o-isomorphic.

Theorem 3.2 Let S_1 and S_2 be commutative OI- Γ -semigroups such that $I(S_1) = PI(S_1)$ and $I(S_2) = PI(S_2)$. If $P(S_1)$ and $P(S_2)$ are o-isomorphic, then S_1 and S_2 are isomorphic.

References

- G. Birkhoff, Lattice theory, Amer. Math. Sco. Coll. Publ., Providence, XXV(1967).
- [2] N. Kehayopulu, On le-Γ-semigroups, International Mathematical Forum, 39(2009), 1915-1922.
- [3] N. Kuroki, On power semigroups, Proc. Japan Acad., 47(1971), 449-451.
- [4] M. Petrich, *Introduction to Semigroups*, Merrill, Columbus, (1973).
- [5] M.K. Sen, On Γ-semigroups, Algebra and its Applications (New Delhi, (1981)), 301-308, Lecture Notes in Pure and Appl. Math., Dekker, New York, 91(1984).
- [6] M.K. Sen and N.K. Saha, On Γ-semigroup I, Bull. Cal. Math. Soc., 78(1986), 180-186.