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Abstract 

     Due to the fact that systems of nonlinear equations arise frequently in science and 
engineering, they have recently attracted researchers’ interest. In this work, we present a 
new Newton-like approach which is independent of function evaluation and has been 
provided using an original idea that improves some definitions and notions of a recently 
proposed method [1] for solving systems of nonlinear. Also, the convergence of proposed 
method has been discussed. The computational advantages and convergence rate of the 
proposed method are also tested via some numerical experiments. From the obtained 
numerical results it seems that present approach affect considerably the overall performance 
in relation to Newton's method and its aforementioned variants. 

     Keywords: Iterative methods, System of nonlinear equations, Newton’s method 
 

1      Introduction 
 
Let us consider the problem of finding a real zero, say * * * *

1 2( , , , )nx x x x= … , of a system of 
nonlinear equations 
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This system can be referred by( ) 0F x = , where 1 2( , , , ) : n n
nF f f f D= ⊆ →… ℝ ℝ  is continuously 

differentiable on an open neighborhood *D D⊆ of *x .  
The most widely used iterative scheme for solving systems of nonlinear equations is 
Newton’s method, giving by 
 
 1 1( ) ( ),p pp px x F x F x+ −′= −  (2) 

Where 1( )pF x −′ denote the Jacobian matrix at the current approximation 

1 2( , , , )p p p p
nx x x x= … and 1px +  is the next approximation. It is well known that the method has 

quadratic convergence. 
Since there exists no general method that yields an exact solution of (1), in recent years, a 
large number of algorithms and methods of solutions of different orders have been derived 
and studied in the literature. These attempts and considerations are mainly because of their 
numerous influences and applications in real applications such as in science and engineering 
[2, 3]. 
Some approaches to solving such systems were proposed using decomposition method [4], 
quadrature formulas [5, 6] and other techniques [7, 8]. 
In some cases, we may encounter with different kinds of (1), while the nonlinear system is 
known with some precision only, for example when the function and derivative values 
depend on the results of numerical simulations [9], or in some cases the precision of the 
desired function is available at a prohibitive cost or when the function value results from the 
sum of an infinite series (e.g. Bessel or Airy functions [10, 11]).  
In [12] a method without evaluation of nonlinear function values is proposed which can be 
applied for polynomial systems. Also, these methods are ideal for situations with unavailable 
accurate function values or high computational cost [13].  
So, it is very important to obtain methods which are free of function evaluations, i.e., the 
required function values are not directly evaluated from the corresponding component 
functions if but are approximated by using appropriate quantities, as have recently used in so-
called IWFEN method [1].  
Here, we generalize some used definitions in IWFEN method and then by using a new 
geometrical interpretation a method which is a new improved Newton’s method without 
direct function evaluations is presented.  
The rest of this contribution is structured as follows. In Section 2, we develop the new 
method and its convergence theorem is proved. Some numerical examples and some 
comparisons between the results of different approaches and our proposed method are given 
in Section 3. Finally, conclusions are drawn in Section 4. 
 

2 New Approach to the Solution of the Problem 
 
To develop a new method, let us have the following definition of pivot points which extends 
the corresponding existing ones. 
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Definition 1. For any { }1,2, ,i n∈ … and 1,2,p = … and based on 1n − components of current 

point px , we generalize the definition of pivot points in [1] 
 
 , ,

1 2 1( , , , , )p i p p p p i
pivot n nx x x x x−= …  (3) 

 as its new following form 
 
 , ,

1 2 ( ) 1( , , , , , , ).p i p p p i p p
pivot j i n nx x x x x x−= … …  (4) 

It is obvious that the only difference between our definition (4) and (3) is that in (3)( )j i has 
considered to be the fix value of n , but in our definition { }( ) 1,2, ,j i n∈ … is not known in prior 

and should be obtained in such way that will be introduced later.  
Moreover, we impose the pivot points (4) to be lied on a parallel line to ( )j i  axis, which 

passes through the current point px  any iterationp of the algorithm. From the definition of 
the pivot points, it is obvious, that these points have the same 1n − components with the 
current point px  and differ only at the ( )j i th component. 

 
Definition 2. Let’s define the functions ,

( ) :p i
j ig →ℝ ℝ , as 

 
 ,

( ) 1 2 ( ) 1 ( ) 1 1( ) ( , , , , , , , , ).p i p p p p p p
j i i j i j i n ng t f x x x t x x x− + −= … …  (5) 

From (5) and the imposed property to pivot points (4), it is evident that the unknown ( )j i -th 
component of (4), ,

( )
p i
j ix , can be found by solving each of the corresponding one dimensional 

equations 
 
 ,

( ) ( ) 0p i
j ig t =  (6) 

According to Implicit Function Theorem [14] there exist unique mappings iφ  such that 
 ( ) ( ), ( ; ( )) 0j i i i ix y f y yφ φ= = and therefore 

 
 ,

( ) ( ).p i p
j i ix yφ=   

Where 1 2 ( ) 1 ( ) 1 1( , , , , , , , ).j i j i n ny x x x x x x− + −= … …  

Similar in [1], in this paper the sign-function based method [15] is used for solving the 
corresponding one-dimensional equations. 
It is clear that the solution of (6) is depending on the expression of the components if and the 
current approachpx . That is, if any of the Eq. (6) has no zeros, we are not able to apply our 
proposed method on a system of equations. Here, similar to what was discussed in [1], we 
can adopted some techniques to guarantee the existence of pivot points. For example 
choosing a linear combination between the components like in [16] or applying either a 
reordering technique like in [17]). For the needs of this work we consider that we are always 
able to find the zeros of (6) is possible.   
The key idea in this paper is to substitute the function value of 

1 2 1( ) ( ( ), ( ), , ( ), ( )),p p p p p

n nF x f x f x f x f x−= …  in Newton’s method (2) to the its suitable 
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approximation. Hence, let us use the first orders Taylor expansion of 

( )j i

pg  around the point 

( )j i

pt x=  as 

 
( )

( ) ( ) ( ) ( )

,

, ,
( )( ) ( ) ( )( ).j i

j i j i j i j i

p i

p i p i p p p
j i

dg
g t g x x t x

dt
≈ + −  

(7) 

Setting 
( )

,

j i

p it x= at (7) and in view of (5), we have 

 
 

( ) ( )

, , ,
( ) ( ) ( )( ) ( ) ( )( )

j i j i

p i p i p p p i p
j i i j i i j ig x f x f x x x≈ + ∂ −  (8) 

Due to the property of pivot points (i.e.
( )

, ,
( )( ) 0

j i

p i p i
j ig x = , the relation (8) becomes 

 
 

( )

,
( ) ( )( ) ( )( )

j i

p p p p i
i j i i j if x f x x x≈ ∂ −  (9) 

The relation (9) is so important for the development of our approach, because using (9) in (2) 
will transform it to a new Newton's method, which will not depend directly on the function 
values ( )p

if x , but on ( ) ( )p
j i if x∂  and the n-th components of the points px  and ,p i

pivotx . 

In Fig. 1, we can see the behavior of function 
( )

, ( )
j i

p ig t
 
for any { }( ) 1,2, ,j i n∈ … . If we bring from 

the pivot point ,
, ( )( ,0)p i

pivot j iB x= , the parallel line to the tangent of the function at the 

point ( )( , ( ))p p
j i iP x f x= . From the similar triangles, the function value( )p

if x , denoted by the 

segment AP, can be approximated by the quantity
( )

,
( ) ( )( )( )

j i

p p i p
j i i j if x x x∂ − , denoted by the 

segment AQ. This plot can give us a good idea to choose a suitable direction of ( )j i .Using 
similarity in triangles, it can be verified that whenever segment BC has a fewer length, the 
approximation 

( )

,
( ) ( )( )( )

j i

p p i p
j i i j if x x x∂ − instead of ( )p

if x is more valid. So, we should choose that 

direction ( )j i  which minimizes the expression 
 
 

( )

,
( )

( )

( )

( )j i

p
p p ii

j ip
j i i

f x
BC x x

f x
= − −

∂
 

(10) 

From triangular inequality in (10), we have 
 
 

( )

,
( )

( )

( )

( )j i

p
p p i i

j i p
j i i

f x
BC x x

f x
≤ − +

∂
 

(11) 

It is clear that, the expression
( )

( )

( )

p
i

p
j i i

f x

f x∂
minimizing whenever the numerator expression 

achieves its maximum value.  
Hence, in this paper we let ( )j i J=  whereas for any { }1,2, ,k n∈ … , J  be the smallest index 

which we have ( ) ( )p p
J i k if x f x∂ ≥ ∂ , i.e. that direction which has the steepest slope among the 

components of the gradient vector of function if  at the point px .  
Now, using (9) in Newton method (2), we have 
 
 ( ) ( ) ( )( ) 0p p p pV x L x F x x x′+ − =  (12) 
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Where 
 
 

(1) 1

(2) 1

( ) 1

( ) 0 0

0 ( ) 0
( )

0 0 ( )

p

p
j

p
j

p
j n

f x

f x
V x

f x

 ∂
 ∂ =
 
 

∂  

…

…

⋮ ⋮ ⋱ ⋮

…

and  

,
(1) 1 (1) (1)

,
(2) 2 (2) (2)

,
( ) ( ) ( )

( )

( )
( ) .

( )

p

p p p p i
j j j
p p p p i
j j j

p p p p i
j n n j n j n

x y x x

x y x x
L x

x y x x

φ
φ

φ

   − −
   − −   = =
   
   

− −      

⋮ ⋮
 

Under the assumptions of Implicit Function Theorem the diagonal matrix ( )pV x is invertible 
and (12) becomes 
 
 1( ) ( )( ) ( )p p p pV x F x x x L x− ′ − = −   
Now, we consider the function 
 
 (1) (2) 2 ( )( ) ( ( ), ( ), , ( ))Tj i j j n nL x x y x y x yφ φ φ= − − −…  (13) 

Utilizing again the Implicit Function Theorem to derive ( )j i xφ∂ , we have   

 
 
 

1 1 2 1 1

(1) 1 (1) 1 ( ) 1

21 2 2

(2) 2 (2) 2 (1) 2

1 2

( ) ( ) ( )

( ) ( ) ( )
1

( ) ( ) ( )

( )( ) ( )
1

( ) ( ) ( )( ) (

( ) ( ) ( )
1

( ) ( ) ( )

n

j j j r

s n

j j j

n n n n

j n n j n n j n n

f x f x f x

f x f x f x

f xf x f x

f x f x f xL x V x

f x f x f x

f x f x f x

∂ ∂ ∂ 
 ∂ ∂ ∂
 
 ∂∂ ∂
 

∂ ∂ ∂′ = = 
 
 
 ∂ ∂ ∂
 ∂ ∂ ∂ 

… …

… …

⋮ ⋮ ⋱ ⋱ ⋮ ⋮

… …

1) ( ),F x− ′  

(14) 

Where the entries of 1 occur at ( )j i -th column for i -th row. 
Finally, Eqs. (13) and (14) introduce iterative method given by 
 
 1 1( ) ( ),p pp px x L x L x+ −′= −  (15) 

A similar convergence theorem to what stated in [1], can be presented and proved, as follows. 
 
Theorem 1. Let 1 2( , , , ) : n n

nF f f f D= ⊆ →… ℝ ℝ be sufficiently differentiable at each point of an 
open neighborhood D  of * nx ∈ℝ , that is a solution of the system( ) 0F x = . Let us suppose that 

( )F x′  is continuous and nonsingular in*x . Then the sequence { }
1

k

k
x

≥
obtained using the 

iterative scheme (14) for sufficiently close initial guess 0x , converges to *x  with convergence 
order of two. 
 
Proof. Using the mapping 1 2( , , , ) :T n n

nL l l l D= ⊆ →… ℝ ℝ , where 
 
 ( ) ( ),i n il x x yφ= −   
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The iteration of our method is given by 1 1( ) ( )p p p px x L x L x+ −′= − For the above mapping the 
well-known conditions of Newton's theorem (see [14]) are obviously fulfilled because of the 
form of ( )L x′ , stated in (14) and the property of pivot points * *( ),n ix yϕ− for 1,2, ,i n= … . The 
convergence theorem for mapping L  is proved, and the iterations px  of (15) converge to 

*x quadratic ally.� 
Using this proposed idea, we may expect that our method will have better convergence than 
the method of IWFEN method. The results of experiments in Section 3 will confirm this 
conjecture. 
Also, it should be pointed out that the proposed new procedure remains the cost of IWFEN 
method. This is because of it does not need more computational cost, since the used new 
partial derivatives have already been evaluated in the corresponding Jacobian matrix. 
 

3 Numerical Examples 
 
In this section, we perform some numerical experiments for testing the convergence of the 
iterative method proposed in the previous section. 
In order to compare the results, we take the same examples which were used in [1]. In Tables 
1-2, we present the results obtained, for various initial points by Newton’s method, IWFEN 
and our new proposed method. 
 
Example 1. The first system has two roots *

1 (0.1,0.1,0.1)x = and *
2 ( 0.1, 0.1, 0.1)x = − − − . It is given 

by: 
 3

1 1 2 3 1 1 2 3

2
1 1 2 3 2 1 3

3 1 2 3 1 3 2 1

( , , ) 0,

( , , ) 0,

( , , ) 10 0.1 0.

f x x x x x x x

f x x x x x x

f x x x x x x x

= − =

= − =
= + − − =

 

 

 
Example 2. The second example is 
 
 2

1 4
1 1 2 3 1 3 3

2 2 2
2 1 2 3 1 1 2 2 3 2

3 3
3 1 2 3 1 3

( , , ) 10 0,

( , , ) ( ) ( ) 0,

( , , ) 0.

xf x x x x x x e

f x x x x x x x x x

f x x x x x

−= − + =

= + + − =

= + =

 

 

With the solution * 4 4 4( 0.9999001 10 , 0.9999001 10 ,0.9999001 10 )x − − −= − × − × × . 
Results were obtained by using Maple software via 30 digit floating point arithmetic 
(Digits:=30). The iterative process will stop if  
 
 1 1410 .k kx x+ −− <

 
 

 

From Tables 1-2, we see that the results of computation for the proposed iterative method 
admit the theoretical order of convergence in Theorem 1. Furthermore the proposed iterative 
method converges much faster than the other compared methods. 
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Fig 1. The behavior of function
( )

, ( )
j i

p ig t  

 
 

Table1 
Comparison between different methods for example 1. 

0
1x  0

2x  0
3x  Newton IWFEN Present Method 

IT FE *
ix  IT FE *

ix  IT FE *
ix  

0.4 0.5 0.5 53 636 *
2x  20 240 *

2x  16 144 *
2x  

-4 -2 1 33 396 *
2x  33 396 *

2x  23 207 *
2x  

-1 -2 0.6 51 612 *
1x  51 612 *

1x  10 90 *
1x  

-1 -2 1 29 384 *
2x  29 384 *

2x  19 171 *
2x  

0.5 2 1 54 648 *
1x  54 648 *

1x  18 162 *
1x  

5 -2 -2 38 456 *
1x  38 456 *

1x  18 162 *
1x  

10 -2 -2 39 468 *
1x  39 468 *

1x  33 297 *
1x  

 
Table2 

Comparison between different methods for example 2. 
0
1x  0

2x  0
3x  Newton IWFEN Present Method 

IT FE IT FE IT FE 
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2 2 2 42 504 38 342 12 108 

-2 -2 -2 27 324 27 243 7 63 

3 3 5 92 1104 18 162 24 216 

4 4 4 73 876 26 234 27 243 

0.5 0.5 0.5 46 552 32 288 7 63 

1 1 5 37 444 37 333 11 99 

-4 -1 -2 28 336 26 234 17 153 

 
 

4 Conclusion 
 
In this paper we present a generalization of a recently proposed variant of Newton's method 
for solving nonlinear systems. This new method has the order of convergence two and is 
independent of function evaluation. Also, the proposed method can be used in some systems 
where the function calculations are quite costly or cannot be done precisely. As seen in 
Tables [1-2], the numerical results of the proposed method are quite satisfactory and admit 
the geometrical explanations. In some cases the results of ourselves are very acceptable and 
there is a sufficient reduction on the number of iterations and hence the proposed method 
seems to be a reliable refinement for Newton’s method and some its recent modifications. 
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