Gen. Math. Notes, Vol. 31, No. 2, December 2015, pp. 66-87
ISSN 2219-7184; Copyright © ICSRS Publication, 2015
www.i-csrs.org
Available free online at http://www.geman.in

# On Generalized ( $\sigma, \tau$ )-n-Derivations in Prime Near-Rings 

Abdul Rahman H. Majeed ${ }^{1}$ and Enaam F. Adhab ${ }^{2}$<br>${ }^{1,2}$ Department of Mathematics, College of Science<br>University of Baghdad, Baghdad, Iraq<br>${ }^{1}$ E-mail: Ahmajeed6@yaho.com<br>${ }^{2}$ E-mail: enaam1972mayahi@gmail.com

(Received: 10-10-15 / Accepted: 27-11-15)


#### Abstract

In this paper, we investigate prime near - rings with generalized $(\sigma, \tau)-n$ derivations satisfying certain differential identities. Consequently, some well known results have been generalized.


Keywords: Prime near-ring, ( $\sigma, \tau$ )- $n$-derivations, Generalized ( $\sigma, \tau$ )- $n$ derivations.

## 1 Introduction

A right near - ring (resp. left near ring) is a set N together with two binary operations (+) and (.) such that (i) ( $\mathrm{N},+$ ) is a group (not necessarily abelian). (ii) ( N, .) is a semi group. (iii) For all a,b,c $\in \mathrm{N}$; we have $(\mathrm{a}+\mathrm{b}$ ).c $=\mathrm{a} . \mathrm{c}+\mathrm{b} . \mathrm{c}$ (resp. $\mathrm{a} .(\mathrm{b}+\mathrm{c})=\mathrm{a} . \mathrm{b}+\mathrm{b} . \mathrm{c}$. Throughout this paper, N will be a zero symmetric left near - ring (i.e., a left near-ring $N$ satisfying the property $0 . x=0$ for all $x \in N$ ). We will denote the product of any two elements x and y in N , i.e.; $\mathrm{x} . \mathrm{y}$ by xy . The symbol $Z$ will denote the multiplicative centre of $N$, that is $Z=\{x \in N, x y=y x$ for all $y \in N\}$. For any $x, y \in N$ the symbol $[x, y]=x y-y x$ and $(x, y)=x+y-x-y$
stand for multiplicative commutator and additive commutator of x and y respectively. Let $\sigma$ and $\tau$ be two endomorphisms of $N$. For any $x, y \in N$, set the symbol $[\mathrm{x}, \mathrm{y}]_{\sigma, \tau}$ will denote $\mathrm{x} \sigma(\mathrm{y})-\tau(\mathrm{y}) \mathrm{x}$, while the symbol ( x o y$)_{\sigma, \tau}$ will denote $\mathrm{x} \sigma(\mathrm{y})+\tau(\mathrm{y}) \mathrm{x} . \mathrm{N}$ is called a prime near-ring if $\mathrm{xNy}=\{0\}$ implies that either $\mathrm{x}=0$ or $\mathrm{y}=0$. For terminologies concerning near-rings, we refer to Pilz [9].

An additive endomorphismd: $\mathrm{N} \rightarrow \mathrm{N}$ is called a derivation if $\mathrm{d}(\mathrm{xy})=\mathrm{xd}(\mathrm{y})+$ $\mathrm{d}(\mathrm{x}) \mathrm{y}$, (or equivalently $\mathrm{d}(\mathrm{xy})=\mathrm{d}(\mathrm{x}) \mathrm{y}+\mathrm{xd}(\mathrm{y})$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{N}$, as noted in [10, proposition 1]. The concept of derivation has been generalized in several ways by various authors. The notion of ( $\sigma, \tau$ ) derivation has been already introduced and studied by Ashraf [1]. An additive endomorphism $\mathrm{d}: \mathrm{N} \rightarrow \mathrm{N}$ is said to be a $(\sigma, \tau)$ derivation if $\mathrm{d}(\mathrm{xy})=\sigma(\mathrm{x}) \mathrm{d}(\mathrm{y})+\mathrm{d}(\mathrm{x}) \tau(\mathrm{y})$, (or equivalently $\mathrm{d}(\mathrm{xy})=\mathrm{d}(\mathrm{x}) \tau(\mathrm{y})+$ $\sigma(\mathrm{x}) \mathrm{d}(\mathrm{y})$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{N}$, as noted in [1, Lemma 2.1].

The notions of symmetric bi- $(\sigma, \tau)$ derivation and permuting tri- $(\sigma, \tau)$ derivation have already been introduced and studied in near-rings by Ceven [6] and Öztürk [7], respectively.

Motivated by the concept of tri-derivation in rings, Park [8] introduced the notion of permuting n-derivation in rings. Further, the authors introduced and studied the notion of permuting $n$-derivation in near-rings (for reference see [2]). In [4] Ashraf introduced the notion of generalized n-derivation in near-ring N and investigate several identities involving generalized $n$-derivations of a prime nearring N which force N to be a commutative ring.

Inspired by these concepts, Ashraf [3] introduced ( $\sigma, \tau$ )-n-derivation in near-rings and studied its various properties.

Let n be a fixed positive integer. An n -additive (i.e.; additive in each argument) mapping d: $\underbrace{N \times N \times \ldots \times N}_{n-\text { times }} \rightarrow N$ is called ( $\sigma, \tau$ )-n-derivation of $N$ if there exist outomorphisms $\sigma, \tau: \mathrm{N} \longrightarrow \mathrm{N}$ such that the equations

$$
\begin{gathered}
\mathrm{d}\left(\mathrm{x}_{1} \mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}{ }^{\prime}\right)+\tau\left(\mathrm{x}_{1}\right) \mathrm{d}\left(\mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2} \mathrm{x}_{2}{ }^{\prime}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{2}{ }^{\prime}\right)+\tau\left(\mathrm{x}_{2}\right) \mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}{ }^{\prime}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
\vdots \\
\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}{ }^{\prime}\right)=\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{\mathrm{n}}{ }^{\prime}\right)+\tau\left(\mathrm{x}_{\mathrm{n}}\right) \mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}{ }^{\prime}\right)
\end{gathered}
$$

hold for all $\mathrm{x}_{1}, \mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \mathrm{x}_{2}{ }^{\prime}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}{ }^{\prime} \in \mathrm{N}$
Lemma 1.1 [5] Let $N$ be a prime near-ring. If there exists a non-zero element $z$ of $Z$ such that $z+z \in Z$, then $(N,+)$ is abelian.

Lemma 1.2 [1] Let $N$ be a prime near-ring and d be a nonzero ( $\sigma, \tau$ )-derivation on $N$. Then $x d(N)=\{0\}$ or $d(N) x=\{0\}$, implies $x=0$.

Lemma 1.3 [3] Let $N$ be a near-ring, then $d$ is a $(\sigma, \tau)$-n-derivation of $N$ if and only if

$$
\begin{gathered}
\mathrm{d}\left(\mathrm{x}_{1} \mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\tau\left(\mathrm{x}_{1}\right) \mathrm{d}\left(\mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}{ }^{\prime}\right) \\
\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2} \mathrm{x}_{2}{ }^{\prime}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\tau\left(\mathrm{x}_{2}\right) \mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{2}{ }^{\prime}\right) \\
\vdots \\
\\
\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}{ }^{\prime}\right)=\tau\left(\mathrm{x}_{\mathrm{n}}\right) \mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}{ }^{\prime}\right)+\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{\mathrm{n}}{ }^{\prime}\right)
\end{gathered}
$$

Lemma 1.4 [3] Let $N$ be a near-ring and d be a $(\sigma, \tau)$-n-derivation of $N$, then

$$
\begin{aligned}
& \left(\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}{ }^{\prime}\right)+\tau\left(\mathrm{x}_{1}\right) \mathrm{d}\left(\mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\right) \mathrm{y}= \\
& \mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}{ }^{\prime}\right) \mathrm{y}+\tau\left(\mathrm{x}_{1}\right) \mathrm{d}\left(\mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{y} \\
& \left(\mathrm{~d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{2}{ }^{\prime}\right)+\tau\left(\mathrm{x}_{2}\right) \mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}{ }^{\prime}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\right) \mathrm{y}= \\
& \mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{2}{ }^{\prime}\right) \mathrm{y}+\tau\left(\mathrm{x}_{2}\right) \mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}{ }^{\prime}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{y} \\
& \vdots \\
& \left(\mathrm{~d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{\mathrm{n}}{ }^{\prime}\right)+\tau\left(\mathrm{x}_{\mathrm{n}}\right) \mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}{ }^{\prime}\right)\right) \mathrm{y}= \\
& \mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{\mathrm{n}}{ }^{\prime}\right) \mathrm{y}+\tau\left(\mathrm{x}_{\mathrm{n}}\right) \mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}{ }^{\prime}\right) \mathrm{y}
\end{aligned}
$$

hold for all $\mathrm{x}_{1}, \mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \mathrm{x}_{2}{ }^{\prime}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}{ }^{\prime}, \mathrm{y} \in \mathrm{N}$.
Lemma $1.5[3]$ Let $N$ be a near-ring and d be a $(\sigma, \tau)$-n-derivation of $N$, then

$$
\begin{aligned}
& \left(\tau\left(\mathrm{x}_{1}\right) \mathrm{d}\left(\mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}{ }^{\prime}\right)\right) \mathrm{y}= \\
& \tau\left(\mathrm{x}_{1}\right) \mathrm{d}\left(\mathrm{x}_{1}^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{y}+\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}{ }^{\prime}\right) \mathrm{y} \\
& \left(\tau\left(\mathrm{x}_{2}\right) \mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}{ }^{\prime}, \ldots, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{2}^{\prime}\right)\right) \mathrm{y}= \\
& \tau\left(\mathrm{x}_{2}\right) \mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}^{\prime}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{y}+\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{2}{ }^{\prime}\right) \mathrm{y} \\
& \vdots \\
& \left(\tau\left(\mathrm{x}_{\mathrm{n}}\right) \mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}{ }^{\prime}\right)+\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{\mathrm{n}}{ }^{\prime}\right)\right) \mathrm{y}= \\
& \tau\left(\mathrm{x}_{\mathrm{n}}\right) \mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}{ }^{\prime}\right) \mathrm{y}+\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{\mathrm{n}}{ }^{\prime}\right) \mathrm{y}
\end{aligned}
$$

hold for all $\mathrm{x}_{1}, \mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \mathrm{x}_{2}{ }^{\prime}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}{ }^{\prime}, \mathrm{y} \in \mathrm{N}$.
Lemma 1.6 [3] Let $N$ be a prime near-ring, d a nonzero ( $\sigma, \tau)$-n-derivation of $N$ and $x \in N$.
(i) If $\mathrm{d}(\mathrm{N}, \mathrm{N}, \ldots, \mathrm{N}) \mathrm{x}=\{0\}$, then $\mathrm{x}=0$.
(ii) If $\mathrm{xd}(\mathrm{N}, \mathrm{N}, \ldots, \mathrm{N})=\{0\}$, then $\mathrm{x}=0$.

In the present paper, we define generalized ( $\sigma, \tau$ )-n-derivation in near-rings and study some properties involved there, which gives a generalization of $(\sigma, \tau)$-nderivation of near-rings.

## 2 Generalized ( $\sigma, \tau$ )-n-Derivation on Prime Near-Rings

Definition 2.1 Let $N$ be a near-ring and $d$ be ( $\sigma, \tau$ )-n-derivation of $N$. An $n$ additive mapping $f: \underbrace{N \times N \times \ldots \times N}_{n \text {-times }} \rightarrow N$ is called a right generalized ( $\sigma, \tau$ )-nderivation associated with ( $\sigma, \tau)$-n-derivation $d$ if the relations
$\mathrm{f}\left(\mathrm{x}_{1} \mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}{ }^{\prime}\right)+\tau\left(\mathrm{x}_{1}\right) \mathrm{d}\left(\mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$
$\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2} \mathrm{x}_{2}{ }^{\prime}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{2}{ }^{\prime}\right)+\tau\left(\mathrm{x}_{2}\right) \mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}{ }^{\prime}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$
$\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}{ }^{\prime}\right)=\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{\mathrm{n}}{ }^{\prime}\right)+\tau\left(\mathrm{x}_{\mathrm{n}}\right) \mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}{ }^{\prime}\right)$
hold for all $\mathrm{x}_{1}, \mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \mathrm{x}_{2}{ }^{\prime}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}{ }^{\prime} \in \mathrm{N}$.
Example 2.2 Let $n$ be a fixed positive integer and $R$ be a commutative ring and $S$ be zero symmetric left near-ring which is not a ring such that $(S,+)$ is abelian, it can be easily verified that the set $M=R \times S$ is a zero symmetric left near-ring with respect to component wise addition and multiplication. Now suppose that
$N_{1}=\left\{\left.\left(\begin{array}{ll}(0,0) & \left(x, x^{\prime}\right) \\ (0,0) & \left(y, y^{\prime}\right)\end{array}\right) \right\rvert\,\left(x, x^{\prime}\right),\left(y, y^{\prime}\right),(0,0) \in M\right\}$
It can be easily seen that N is a non commutative zero symmetric left near-ring with respect to matrix addition and matrix multiplication.

Define $d_{1}, \mathrm{f}_{1}: \mathrm{N}_{1} \times \mathrm{N}_{1} \times \cdots \times \mathrm{N}_{1} \rightarrow \mathrm{~N}_{1}$ and $\sigma_{1}, \tau_{1}: \mathrm{N}_{1} \rightarrow \mathrm{~N}_{1}$ such that
$d_{1}\left(\left(\begin{array}{ll}(0,0) & \left(x_{1}, x_{1}{ }^{\prime}\right) \\ (0,0) & \left(y_{1}, y_{1}{ }^{\prime}\right)\end{array}\right),\left(\begin{array}{ll}(0,0) & \left(x_{2}, x_{2}{ }^{\prime}\right) \\ (0,0) & \left(y_{2}, y_{2}{ }^{\prime}\right)\end{array}\right), \ldots,\left(\begin{array}{ll}(0,0) & \left(x_{n}, x_{\mathrm{n}}{ }^{\prime}\right) \\ (0,0) & \left(y_{n}, y_{n}{ }^{\prime}\right)\end{array}\right)\right)$
$=\left(\begin{array}{cc}(0,0) & \left(y_{1} y_{2} \ldots y_{n}, 0\right) \\ (0,0) & (0,0)\end{array}\right)$
$\mathrm{f}_{1}\left(\left(\begin{array}{ll}(0,0) & \left(\mathrm{x}_{1}, \mathrm{x}_{1}{ }^{\prime}\right) \\ (0,0) & \left(\mathrm{y}_{1}, \mathrm{y}_{1}{ }^{\prime}\right)\end{array}\right),\left(\begin{array}{ll}(0,0) & \left(\mathrm{x}_{2}, \mathrm{x}_{2}{ }^{\prime}\right) \\ (0,0) & \left(\mathrm{y}_{2}, \mathrm{y}_{2}{ }^{\prime}\right)\end{array}\right), \ldots,\left(\begin{array}{ll}(0,0) & \left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}{ }^{\prime}\right) \\ (0,0) & \left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}{ }^{\prime}\right)\end{array}\right)\right)$
$\left.=\left(\begin{array}{cc}(0,0) & (0,0) \\ (0,0) & \left(y_{1} y_{2}\right.\end{array} \ldots y_{n}, 0\right) ~\right) ~$
$\sigma_{1}\left(\left(\begin{array}{cc}(0,0) & \left(x, x^{\prime}\right) \\ (0,0) & \left(y, y^{\prime}\right)\end{array}\right)\right)=\left(\begin{array}{cc}(0,0) & \left(-x,-x^{\prime}\right) \\ (0,0) & \left(y, y^{\prime}\right)\end{array}\right)$,
$\tau_{1}\left(\left(\begin{array}{cc}(0,0) & \left(x, x^{\prime}\right) \\ (0,0) & \left(y, y^{\prime}\right)\end{array}\right)\right)=\left(\begin{array}{cc}(0,0) & \left(x,-x^{\prime}\right) \\ (0,0) & \left(y, y^{\prime}\right)\end{array}\right)$
It can be easily verified that $\mathrm{d}_{1}$ is a $\left(\sigma_{1}, \tau_{1}\right)$-n-derivation of $\mathrm{N}_{1}$ and $\mathrm{f}_{1}$ is a right (but not left) generalized $\left(\sigma_{1}, \tau_{1}\right)$-n-derivation associated with $d_{1}$, where $\sigma_{1}$ and $\tau_{1}$ are automorphisms.

Definition 2.3 Let $N$ be a near-ring and d be ( $\sigma, \tau$ )-n-derivation of $N$. An $n$ additive mapping $f: \underbrace{N \times N \times \ldots \times N}_{n \text {-times }} \rightarrow N$ is called a left generalized ( $\sigma, \tau$ )-nderivation associated with $(\sigma, \tau)$-n-derivation $d$ if the relations
$\mathrm{f}\left(\mathrm{x}_{1} \mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}{ }^{\prime}\right)+\tau\left(\mathrm{x}_{1}\right) \mathrm{f}\left(\mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$
$\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2} \mathrm{x}_{2}{ }^{\prime}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{2}{ }^{\prime}\right)+\tau\left(\mathrm{x}_{2}\right) \mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}{ }^{\prime}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$
$\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}{ }^{\prime}\right)=\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{\mathrm{n}}{ }^{\prime}\right)+\tau\left(\mathrm{x}_{\mathrm{n}}\right) \mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}{ }^{\prime}\right)$
hold for all $\mathrm{x}_{1}, \mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \mathrm{x}_{2}{ }^{\prime}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}{ }^{\prime} \in \mathrm{N}$.
Example 2.4 Let M be a zero symmetric left near-ring as defined in Example 2.2.
Now suppose that
$N_{2}=\left\{\left.\left(\begin{array}{cc}\left(x, x^{\prime}\right) & \left(y, y^{\prime}\right) \\ (0,0) & (0,0)\end{array}\right) \right\rvert\,\left(x, x^{\prime}\right),\left(y, y^{\prime}\right),(0,0) \in M\right\}$
It can be easily seen that $\mathrm{N}_{2}$ is a non commutative zero symmetric left near-ring with respect to matrix addition and matrix multiplication.

Define $d_{2}, f_{2}: N_{2} \times N_{2} \times \cdots \times N_{2} \rightarrow N_{2}$ and $\sigma_{2}, \tau_{2}: N_{2} \rightarrow N_{2}$ such that

$$
\left.\begin{array}{l}
\mathrm{d}_{2}\left(\left(\begin{array}{cc}
\left(\begin{array}{cc}
\left.\mathrm{x}_{1}, \mathrm{x}_{1}{ }^{\prime}\right) & \left(\mathrm{y}_{1}, \mathrm{y}_{1}{ }^{\prime}\right) \\
(0,0) & (0,0)
\end{array}\right),\left(\begin{array}{cc}
\left(\mathrm{x}_{2}, \mathrm{x}_{2}{ }^{\prime}\right) & \left(\mathrm{y}_{2}, \mathrm{y}_{2}{ }^{\prime}\right) \\
(0,0) & (0,0)
\end{array}\right), \ldots,\left(\begin{array}{cc}
\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}{ }^{\prime}\right) & \left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}{ }^{\prime}\right) \\
(0,0) & (0,0)
\end{array}\right) \\
=\left(\begin{array}{cc}
(0,0) & \left(\mathrm{x}_{1} \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{n}}, 0\right) \\
(0,0) & (0,0)
\end{array}\right) \\
\mathrm{f}_{2}\left(\left(\begin{array}{cc}
\left(\begin{array}{cc}
\left.\mathrm{x}_{1}, \mathrm{x}_{1}{ }^{\prime}\right) & \left(\mathrm{y}_{1}, \mathrm{y}_{1}{ }^{\prime}\right) \\
(0,0) & (0,0)
\end{array}\right),\left(\begin{array}{cc}
\left(\mathrm{x}_{2}, \mathrm{x}_{2}{ }^{\prime}\right) & \left(\mathrm{y}_{2}, \mathrm{y}_{2}{ }^{\prime}\right) \\
(0,0) & (0,0)
\end{array}\right), \ldots,\left(\begin{array}{cc}
\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}{ }^{\prime}\right) & \left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}{ }^{\prime}\right) \\
(0,0) & (0,0)
\end{array}\right)
\end{array}\right)\right. \\
=\left(\begin{array}{cc}
\left(\begin{array}{cc}
\left.\mathrm{x}_{1} \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{n}}, 0\right) & (0,0) \\
(0,0) & (0,0)
\end{array}\right)
\end{array}\right.
\end{array}\right)\right. \\
(0,0
\end{array}\right)
$$

$\sigma_{2}\left(\left(\begin{array}{cc}\left(x, x^{\prime}\right) & \left(y, y^{\prime}\right) \\ (0,0) & (0,0)\end{array}\right)\right)=\left(\begin{array}{cc}\left(x, x^{\prime}\right) & \left(y,-y^{\prime}\right) \\ (0,0) & (0,0)\end{array}\right)$,
$\tau_{2}\left(\left(\begin{array}{cc}\left(x, x^{\prime}\right) & \left(y, y^{\prime}\right) \\ (0,0) & (0,0)\end{array}\right)\right)=\left(\begin{array}{cc}\left(x, x^{\prime}\right) & \left(-y,-y^{\prime}\right) \\ (0,0) & (0,0)\end{array}\right)$
It can be easily verified that $d_{2}$ is a ( $\sigma_{2}, \tau_{2}$ )-n-derivation of $N_{2}$ and $f_{2}$ is a left (but not right) generalized $\left(\sigma_{2}, \tau_{2}\right)$-n-derivation associated with $\mathrm{d}_{2}$, where $\sigma_{2}$ and $\tau_{2}$ are automorphisms.

Definition 2.5 Let $N$ be a near-ring and $d$ be ( $\sigma, \tau$ )-n-derivation of $N$. An $n$ additive mapping $f: \underbrace{N \times N \times \ldots \times N}_{n \text {-times }} \rightarrow N$ is called a generalized ( $\sigma, \tau$ )-n-derivation associated with $(\sigma, \tau)$-n-derivation $d$ if it is both a right generalized ( $\sigma, \tau$ )-nderivation associated with $(\sigma, \tau)$-n-derivation $d$ as well as a left generalized $(\sigma, \tau)$-nderivation associated with $(\sigma, \tau)$-n-derivation d.

Example 2.6 Let $M$ be a zero symmetric left near-ring as defined in Example 2.2. Now suppose that
$N_{3}=\left\{\left(\begin{array}{ccc}(0,0) & \left(x, x^{\prime}\right) & \left(y, y^{\prime}\right) \\ (0,0) & (0,0) & (0,0) \\ (0,0) & (0,0) & \left(z, z^{\prime}\right)\end{array}\right),\left(x, x^{\prime}\right),\left(y, y^{\prime}\right),\left(z, z^{\prime}\right),(0,0) \in M\right\}$
It can be easily seen that $N_{3}$ is a non commutative zero symmetric left near-ring with respect to matrix addition and matrix multiplication.

Define $\mathrm{d}_{3}, \mathrm{f}_{3}: \mathrm{N}_{3} \times \mathrm{N}_{3} \times \cdots \times \mathrm{N}_{3} \rightarrow \mathrm{~N}_{3}$ and $\sigma_{3}, \tau_{3}: \mathrm{N}_{3} \rightarrow \mathrm{~N}_{3}$ such that

$$
\left.\begin{array}{l}
d_{3} \\
\left(\left(\begin{array}{ccc}
(0,0) & \left(x_{1}, x_{1}^{\prime}\right) & \left(y_{1}, y_{1}^{\prime}\right) \\
(0,0) & (0,0) & (0,0) \\
(0,0) & (0,0) & \left(z_{1}, z_{1}^{\prime}\right)
\end{array}\right),\left(\begin{array}{ccc}
(0,0) & \left(x_{2}, x_{2}^{\prime}\right) & \left(y_{2}, y_{2}^{\prime}\right) \\
(0,0) & (0,0) & (0,0) \\
(0,0) & (0,0) & \left(z_{2}, z_{2}^{\prime}\right)
\end{array}\right), \ldots,\left(\begin{array}{ccc}
(0,0) & \left(x_{n}, x_{n}^{\prime}\right) & \left(y_{n 1}, y_{n}^{\prime}\right) \\
(0,0) & (0,0) & (0,0) \\
(0,0) & (0,0) & \left(z_{n}, z_{n}{ }^{\prime}\right)
\end{array}\right)\right) \\
=\left(\begin{array}{ccc}
(0,0) & \left(x_{1} x_{2}, \ldots x_{n}, 0\right) & (0,0) \\
(0,0) & (0,0) & (0,0) \\
(0,0) & (0,0) & (0,0)
\end{array}\right) \\
f_{3} \\
\left(\left(\begin{array}{ccc}
(0,0) & \left(x_{1}, x_{1}^{\prime}\right) & \left(y_{1}, y_{1}^{\prime}\right) \\
(0,0) & (0,0) & (0,0) \\
(0,0) & (0,0) & \left(z_{1}, z_{1}^{\prime}\right)
\end{array}\right),\left(\begin{array}{ccc}
(0,0) & \left(x_{2}, x_{2}^{\prime}\right) & \left(y_{2}, y_{2}^{\prime}\right) \\
(0,0) & (0,0) & (0,0) \\
(0,0) & (0,0) & \left(z_{2}, z_{2}^{\prime}\right)
\end{array}\right), \ldots,\left(\begin{array}{ccc}
(0,0) & \left(x_{n}, x_{n}^{\prime}\right) & \left(y_{n 1}, y_{n}^{\prime}\right) \\
(0,0) & (0,0) & (0,0) \\
(0,0) & (0,0) & \left(z_{n}, z_{n}^{\prime}\right)
\end{array}\right)\right.
\end{array}\right) .
$$

$$
\begin{aligned}
& =\left(\begin{array}{ccc}
(0,0) & (0,0) & (0,0) \\
(0,0) & (0,0) & (0,0) \\
(0,0) & (0,0) & (0,0)
\end{array}\right) \\
& \sigma_{3}\left(\left(\begin{array}{ccc}
(0,0) & \left(x_{1}, x_{1}^{\prime}\right) & \left(y_{1}, y_{1}^{\prime}\right) \\
(0,0) & (0,0) & (0,0) \\
(0,0) & (0,0) & \left(z_{1}, z_{1}^{\prime}\right)
\end{array}\right)\right)=\left(\left(\begin{array}{ccc}
(0,0) & \left(x_{1}, x_{1}^{\prime}\right) & \left(-y_{1},-y_{1}^{\prime}\right) \\
(0,0) & (0,0) & (0,0) \\
(0,0) & (0,0) & \left(z_{1}, z_{1}^{\prime}\right)
\end{array}\right)\right), \\
& \tau_{3}\left(\left(\begin{array}{ccc}
(0,0) & \left(x_{1}, x_{1}^{\prime}\right) & \left(y_{1}, y_{1}^{\prime}\right) \\
(0,0) & (0,0) & (0,0) \\
(0,0) & (0,0) & \left(z_{1}, z_{1}^{\prime}\right)
\end{array}\right)\right)=\left(\left(\begin{array}{ccc}
(0,0) & \left(x_{1}, x_{1}^{\prime}\right) & \left(y_{1}, y_{1}^{\prime}\right) \\
(0,0) & (0,0) & (0,0) \\
(0,0) & (0,0) & \left(-z_{1},-z_{1}^{\prime}\right)
\end{array}\right)\right)
\end{aligned}
$$

It can be easily seen that $d_{3}$ is $\left(\sigma_{3}, \tau_{3}\right)$-n-derivations of $N$ and $f_{3}$ is a nonzero generalized $\left(\sigma_{3}, \tau_{3}\right)$-n-derivations associated with $d_{3}$, where $\sigma_{3}$ and $\tau_{3}$ are automorphisms of near-rings $\mathrm{N}_{3}$.

If $\mathrm{f}=\mathrm{d}$ then generalized $(\sigma, \tau)$-n-derivation is just ( $\sigma, \tau$ )-n-derivation. If $\sigma=\tau=1$, the identity map on N , then generalized ( $\sigma, \tau$ )-n-derivation is simply a generalized n -derivation. If $\sigma=\tau=1$ and $\mathrm{d}=\mathrm{f}$, then generalized $(\sigma, \tau)$ - n -derivation is an n derivation. Hence the class of generalized $(\sigma, \tau)$-n-derivations includes those of $n$ derivations, generalized n -derivations and ( $\sigma, \tau$ )-n-derivation.

Lemma 2.7 Let $N$ be a near-ring, then
(i) f is a right generalized ( $\sigma, \tau$ )-n-derivation of N associated with $(\sigma, \tau)$-nderivation $d$ if and only if

$$
\begin{gathered}
\mathrm{f}\left(\mathrm{x}_{1} \mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\tau\left(\mathrm{x}_{1}\right) \mathrm{d}\left(\mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}{ }^{\prime}\right) \\
\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2} \mathrm{x}_{2}{ }^{\prime}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\tau\left(\mathrm{x}_{2}\right) \mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}^{\prime}, \ldots, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{2}^{\prime}\right) \\
\vdots \\
\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}{ }^{\prime}\right)=\tau\left(\mathrm{x}_{\mathrm{n}}\right) \mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}{ }^{\prime}\right)+\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{\mathrm{n}}{ }^{\prime}\right)
\end{gathered}
$$

for all $\mathrm{x}_{1}, \mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \mathrm{x}_{2}{ }^{\prime}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}{ }^{\prime} \in \mathrm{N}$.
(ii) f is a left generalized $(\sigma, \tau)$-n-derivation of N if and only if
$\mathrm{f}\left(\mathrm{x}_{1} \mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\tau\left(\mathrm{x}_{1}\right) \mathrm{f}\left(\mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}{ }^{\prime}\right)$
$\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2} \mathrm{x}_{2}{ }^{\prime}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\tau\left(\mathrm{x}_{2}\right) \mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}{ }^{\prime}, \ldots, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{2}{ }^{\prime}\right)$
$\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}{ }^{\prime}\right)=\tau\left(\mathrm{x}_{\mathrm{n}}\right) \mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}{ }^{\prime}\right)+\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{\mathrm{n}}{ }^{\prime}\right)$
for all $\mathrm{x}_{1}, \mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \mathrm{x}_{2}{ }^{\prime}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}{ }^{\prime} \in \mathrm{N}$.

## Proof:

(i) By hypothesis, we get for all $\mathrm{x}_{1}, \mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \in \mathrm{N}$.

$$
\begin{align*}
& \mathrm{f}\left(\mathrm{x}_{1}\left(\mathrm{x}_{1}{ }^{\prime}+\mathrm{x}_{1}{ }^{\prime}\right), \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
& =\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}^{\prime}{ }^{\prime}+\mathrm{x}_{1}^{\prime}\right)+\tau\left(\mathrm{x}_{1}\right) \mathrm{d}\left(\mathrm{x}_{1}^{\prime}+\mathrm{x}_{1}^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
& =\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}^{\prime}\right)+\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}^{\prime}\right)+\tau\left(\mathrm{x}_{1}\right) \mathrm{d}\left(\mathrm{x}_{1}^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
&  \tag{1}\\
& +\tau\left(\mathrm{x}_{1}\right) \mathrm{d}\left(\mathrm{x}_{1}^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)
\end{align*}
$$

And

$$
\begin{align*}
& \mathrm{f}\left(\mathrm{x}_{1}\left(\mathrm{x}_{1}{ }^{\prime}+\mathrm{x}_{1}{ }^{\prime}\right), \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
& =\mathrm{f}\left(\mathrm{x}_{1} \mathrm{x}_{1}{ }^{\prime}+\mathrm{x}_{1} \mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
& =\mathrm{f}\left(\mathrm{x}_{1} \mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{f}\left(\mathrm{x}_{1} \mathrm{x}_{1}^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
& =\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}{ }^{\prime}\right)+\tau\left(\mathrm{x}_{1}\right) \mathrm{d}\left(\mathrm{x}_{1}^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
&  \tag{2}\\
& \quad+\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}^{\prime}\right)+\tau\left(\mathrm{x}_{1}\right) \mathrm{d}\left(\mathrm{x}_{1}^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)
\end{align*}
$$

Comparing the two equations (1) and (2), we conclude that

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}^{\prime}\right)+\tau\left(\mathrm{x}_{1}\right) \mathrm{d}\left(\mathrm{x}_{1}^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)= \\
& \tau\left(\mathrm{x}_{1}\right) \mathrm{d}\left(\mathrm{x}_{1}^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}^{\prime}\right)
\end{aligned}
$$

for all $x_{1}, x_{1}{ }^{\prime}, x_{2}, \ldots, x_{n} \in N$.
Similarly we can prove the remaining ( $\mathrm{n}-1$ ) relations. Converse can be proved in a similar manner.
(ii) Use same arguments as used in the proof of (i).

Lemma 2.8 Let $N$ be a near-ring admitting a right generalized ( $\sigma, \tau$ )-n-derivation $f$ associated with ( $\sigma, \tau$ )-n-derivation $d$ of $N$, then

$$
\begin{aligned}
& \left(\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}^{\prime}\right)+\tau\left(\mathrm{x}_{1}\right) \mathrm{d}\left(\mathrm{x}_{1}^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\right) \mathrm{y}= \\
& \quad \mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}^{\prime}\right) \mathrm{y}+\tau\left(\mathrm{x}_{1}\right) \mathrm{d}\left(\mathrm{x}_{1}^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{y}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{2}{ }^{\prime}\right)+\tau\left(\mathrm{x}_{2}\right) \mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}{ }^{\prime}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\right) \mathrm{y}= \\
& \mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{2}{ }^{\prime}\right) \mathrm{y}+\tau\left(\mathrm{x}_{2}\right) \mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}^{\prime}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{y} \\
& \vdots \\
& \left(\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{\mathrm{n}}^{\prime}\right)+\tau\left(\mathrm{x}_{\mathrm{n}}\right) \mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}{ }^{\prime}\right)\right) \mathrm{y}= \\
& \mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{\mathrm{n}}{ }^{\prime}\right) \mathrm{y}+\tau\left(\mathrm{x}_{\mathrm{n}}\right) \mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}{ }^{\prime}\right) \mathrm{y}
\end{aligned}
$$

hold for all $\mathrm{x}_{1}, \mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \mathrm{x}_{2}{ }^{\prime}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}{ }^{\prime}, \mathrm{y} \in \mathrm{N}$.
Proof: for all $\mathrm{x}_{1}, \mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \in \mathrm{N}$, we have

$$
\begin{align*}
& \mathrm{f}\left(\left(\mathrm{x}_{1} \mathrm{x}_{1}{ }^{\prime}\right) \mathrm{x}_{1}{ }^{\prime \prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
& =\mathrm{f}\left(\mathrm{x}_{1} \mathrm{x}_{1}^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}^{\prime \prime}\right)+\tau\left(\mathrm{x}_{1} \mathrm{x}_{1}{ }^{\prime}\right) \mathrm{d}\left(\mathrm{x}_{1}{ }^{\prime \prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
& =\left(\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}^{\prime}\right)+\tau\left(\mathrm{x}_{1}\right) \mathrm{d}\left(\mathrm{x}_{1}^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\right) \sigma\left(\mathrm{x}_{1}^{\prime \prime}\right)+ \\
& \quad \tau\left(\mathrm{x}_{1}\right) \tau\left(\mathrm{x}_{1}^{\prime}\right) \mathrm{d}\left(\mathrm{x}_{1}^{\prime \prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) . \tag{3}
\end{align*}
$$

Also

$$
\begin{align*}
& \mathrm{f}\left(\mathrm{x}_{1}\left(\mathrm{x}_{1}{ }^{\prime} \mathrm{x}_{1}{ }^{\prime \prime}\right), \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
& =\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}{ }^{\prime} \mathrm{x}_{1}{ }^{\prime \prime}\right)+\tau\left(\mathrm{x}_{1}\right) \mathrm{d}\left(\mathrm{x}_{1}{ }^{\prime} \mathrm{x}_{1}{ }^{\prime \prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
& =\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}{ }^{\prime}\right) \sigma\left(\mathrm{x}_{1}^{\prime \prime}\right)+\tau\left(\mathrm{x}_{1}\right) \mathrm{d}\left(\mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}{ }^{\prime \prime}\right)+ \\
& \quad \tau\left(\mathrm{x}_{1}\right) \tau\left(\mathrm{x}_{1}{ }^{\prime}\right) \mathrm{d}\left(\mathrm{x}_{1}{ }^{\prime \prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) . \tag{4}
\end{align*}
$$

Combining relations (3) and (4), we get

$$
\begin{aligned}
& \left(\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}^{\prime}\right)+\tau\left(\mathrm{x}_{1}\right) \mathrm{d}\left(\mathrm{x}_{1}^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\right) \sigma\left(\mathrm{x}_{1}^{\prime \prime}\right)= \\
& \quad \mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}^{\prime}\right) \sigma\left(\mathrm{x}_{1}^{\prime \prime}\right)+\tau\left(\mathrm{x}_{1}\right) \mathrm{d}\left(\mathrm{x}_{1}^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}^{\prime \prime}\right)
\end{aligned}
$$

for all $\mathrm{x}_{1}, \mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{1}{ }^{\prime \prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \in \mathrm{N}$. Since $\sigma$ is an automorphism, putting y in place of $\sigma\left(x_{1}{ }^{\prime \prime}\right)$, we find that

$$
\begin{aligned}
& \left(\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}^{\prime}\right)+\tau\left(\mathrm{x}_{1}\right) \mathrm{d}\left(\mathrm{x}_{1}^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\right) \mathrm{y}= \\
& \quad \mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}^{\prime}\right) \mathrm{y}+\tau\left(\mathrm{x}_{1}\right) \mathrm{d}\left(\mathrm{x}_{1}^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{y}
\end{aligned}
$$

for all $\mathrm{x}_{1}, \mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, y \in \mathrm{~N}$.
Similarly other ( $\mathrm{n}-1$ ) relations can be proved.

Lemma 2.9 Let $N$ be a near-ring admitting a generalized ( $\sigma, \tau$ )-n-derivation $f$ associated with $(\sigma, \tau)$-n-derivation $d$ of $N$, then

$$
\begin{aligned}
& \left(\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}^{\prime}\right)+\tau\left(\mathrm{x}_{1}\right) \mathrm{f}\left(\mathrm{x}_{1}^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\right) \mathrm{y}= \\
& \mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}^{\prime}\right) \mathrm{y}+\tau\left(\mathrm{x}_{1}\right) \mathrm{f}\left(\mathrm{x}_{1}^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{y}, \\
& \left(\mathrm{~d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{2}^{\prime}\right)+\tau\left(\mathrm{x}_{2}\right) \mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}^{\prime}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\right) \mathrm{y}= \\
& \mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{2}^{\prime}\right) \mathrm{y}+\tau\left(\mathrm{x}_{2}\right) \mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}^{\prime}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{y} \\
& \vdots \\
& \left(\mathrm{~d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{\mathrm{n}}^{\prime}\right)+\tau\left(\mathrm{x}_{\mathrm{n}}\right) \mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}^{\prime}\right)\right) \mathrm{y}= \\
& \mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{\mathrm{n}}^{\prime}\right) \mathrm{y}+\tau\left(\mathrm{x}_{\mathrm{n}}\right) \mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}^{\prime}\right) \mathrm{y}
\end{aligned}
$$

hold for all $\mathrm{x}_{1}, \mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \mathrm{x}_{2}{ }^{\prime}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}{ }^{\prime}, \mathrm{y} \in \mathrm{N}$.
Proof: for all $\mathrm{x}_{1}, \mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{1}{ }^{\prime \prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \in \mathrm{N}$, we have

$$
\begin{align*}
& \mathrm{f}\left(\left(\mathrm{x}_{1} \mathrm{x}_{1}{ }^{\prime}\right) \mathrm{x}_{1}^{\prime \prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
& =\mathrm{f}\left(\mathrm{x}_{1} \mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}^{\prime \prime}\right)+\tau\left(\mathrm{x}_{1} \mathrm{x}_{1}{ }^{\prime}\right) \mathrm{d}\left(\mathrm{x}_{1}^{\prime \prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
& =\left(\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}^{\prime}\right)+\tau\left(\mathrm{x}_{1}\right) \mathrm{f}\left(\mathrm{x}_{1}^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\right) \sigma\left(\mathrm{x}_{1}^{\prime \prime}\right)+ \\
& \quad \tau\left(\mathrm{x}_{1}\right) \tau\left(\mathrm{x}_{1}{ }^{\prime}\right) \mathrm{d}\left(\mathrm{x}_{1}^{\prime \prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) . \tag{5}
\end{align*}
$$

Also

$$
\begin{align*}
& \mathrm{f}\left(\mathrm{x}_{1}\left(\mathrm{x}_{1}{ }^{\prime} \mathrm{x}_{1}{ }^{\prime}\right), \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
& =\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}{ }^{\prime} \mathrm{x}_{1}^{\prime \prime}\right)+\tau\left(\mathrm{x}_{1}\right) \mathrm{f}\left(\mathrm{x}_{1}{ }^{\prime} \mathrm{x}_{1}{ }^{\prime \prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
& =\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}^{\prime}\right) \sigma\left(\mathrm{x}_{1}^{\prime \prime}\right)+\tau\left(\mathrm{x}_{1}\right) \mathrm{f}\left(\mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}^{\prime \prime}\right)+ \\
& \tau\left(\mathrm{x}_{1}\right) \tau\left(\mathrm{x}_{1}\right) \mathrm{d}\left(\mathrm{x}_{1}^{\prime \prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) . \tag{6}
\end{align*}
$$

Combining relations (5) and (6), we get

$$
\begin{aligned}
& \left(\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}^{\prime}\right)+\tau\left(\mathrm{x}_{1}\right) \mathrm{f}\left(\mathrm{x}_{1}^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\right) \sigma\left(\mathrm{x}_{1}{ }^{\prime \prime}\right)= \\
& \mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}^{\prime}\right) \sigma\left(\mathrm{x}_{1}^{\prime \prime}\right)+\tau\left(\mathrm{x}_{1}\right) \mathrm{f}\left(\mathrm{x}_{1}^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}^{\prime \prime}\right)
\end{aligned}
$$

for all $\mathrm{x}_{1}, \mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{1}{ }^{\prime \prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \in \mathrm{N}$.

Since $\sigma$ is an automorphism, putting y in place of $\sigma\left(\mathrm{x}_{1}{ }^{\prime \prime}\right)$, in previous equation we find that
$\left(\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}^{\prime}\right)+\tau\left(\mathrm{x}_{1}\right) \mathrm{f}\left(\mathrm{x}_{1}^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\right) \mathrm{y}=$

$$
\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}^{\prime}\right) \mathrm{y}+\tau\left(\mathrm{x}_{1}\right) \mathrm{f}\left(\mathrm{x}_{1}^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{y}
$$

for all $\mathrm{x}_{1}, \mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{1}{ }^{\prime \prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \in \mathrm{N}$.
Similarly other ( $\mathrm{n}-1$ ) relations can be proved.
Lemma 2.10 Let $N$ be a prime near-ring admitting a generalized ( $\sigma, \tau$ )-nderivation $f$ with associated nonzero $(\sigma, \tau)-n$-derivation $d$ of $N$ and $x \in N$.
(i) If $\mathrm{f}(\mathrm{N}, \mathrm{N}, \ldots, \mathrm{N}) \mathrm{x}=\{0\}$, then $\mathrm{x}=0$.
(ii) If $\operatorname{xf}(\mathrm{N}, \mathrm{N}, \ldots, \mathrm{N})=\{0\}$, then $\mathrm{x}=0$

Proof:
(i) By our hypothesis we have
$f\left(x_{1}, x_{2}, \ldots, x_{n}\right) x=0$, for all $x_{1}, x_{2}, \ldots, x_{n} \in N$
Putting $\mathrm{x}_{1} \mathrm{x}_{1}{ }^{\prime}$ in place of $\mathrm{x}_{1}$, where $\mathrm{x}_{1}{ }^{\prime} \in \mathrm{N}$, in equation (7) and using Lemma 2.9 we get
$\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}\right) \mathrm{x}+\tau\left(\mathrm{x}_{1}\right) \mathrm{f}\left(\mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{x}=0$ for all $\mathrm{x}_{1}, \mathrm{x}_{1}^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \in \mathrm{N}$.
Using (7) again we get $\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}\right) \mathrm{x}=0$ for all $\mathrm{x}_{1}, \mathrm{x}_{1}^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \in \mathrm{N}$.
Since $\sigma$ is an automorphism, then we have $d\left(x_{1}, x_{2}, \ldots, x_{n}\right) N x=\{0\}$ for all $x_{1}, x_{2}$, $\ldots, x_{n} \in N$. Since $d \neq 0$, primeness of $N$ implies that $x=0$.
(ii) It can be proved in a similar way.

## 3 Commutativity Results for Prime Near-Rings with Generalized ( $\sigma, \tau$ )-n-Derivation

In [3, Theorem 3.1] M. Ashraf and M. A. Siddeeque proved that if a prime nearring N admits a nonzero $(\sigma, \tau)$-n-derivation $d$ such that $\mathrm{d}(\mathrm{N}, \mathrm{N}, \ldots, \mathrm{N}) \subseteq \mathrm{Z}$, then N is a commutative ring. We have extended this result in the setting of generalized $(\sigma, \tau)$-n-derivation f of N .

Theorem 3.1 Let $N$ be a prime near-ring admitting a nonzero generalized ( $\sigma, \tau$ )-nderivation $f$ with associated ( $\sigma, \tau$ )-n-derivation d of $N$. If $f(N, N, \ldots, N) \subseteq Z$, then $N$ is a commutative ring.

Proof: Since $f(N, N, \ldots, N) \subseteq Z$ and $f$ is a nonzero generalized $(\sigma, \tau)$-n-derivation, there exist nonzero elements $x_{1}, x_{2}, \ldots, x_{n} \in N$, such that $f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in$ $\mathrm{Z} \backslash\{0\}$. We have $\mathrm{f}\left(\mathrm{x}_{1}+\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \in \mathrm{Z}$. By Lemma 1.1 we obtain that $(\mathrm{N},+$ ) is abelain. By hypothesis we get
$f\left(y_{1}, y_{2}, \ldots, y_{n}\right) y=y f\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ for all $y, y_{1}, y_{2}, \ldots, y_{n} \in N$.
Now replacing $\mathrm{y}_{1}$ by $\mathrm{y}_{1} \mathrm{y}_{1}{ }^{\prime}$, where $\mathrm{y}_{1}{ }^{\prime} \in \mathrm{N}$, in previous equation we have

$$
\begin{align*}
& \left(\mathrm{d}\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right) \sigma\left(\mathrm{y}_{1}^{\prime}\right)+\tau\left(\mathrm{y}_{1}\right) \mathrm{f}\left(\mathrm{y}_{1}^{\prime}, \mathrm{y}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right)\right) \mathrm{y}= \\
& \quad \mathrm{y}\left(\mathrm{~d}\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right) \sigma\left(\mathrm{y}_{1}^{\prime}\right)+\tau\left(\mathrm{y}_{1}\right) \mathrm{f}\left(\mathrm{y}_{1}^{\prime}, \mathrm{y}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right)\right) \tag{8}
\end{align*}
$$

for all $\mathrm{y}, \mathrm{y}_{1}, \mathrm{y}_{1}^{\prime}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}} \in \mathrm{N}$.
Putting $\tau\left(\mathrm{y}_{1}\right)$ for y in (8) and using Lemma 2.9 we get

$$
\begin{aligned}
\mathrm{d}\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right) \sigma\left(\mathrm{y}_{1}^{\prime}\right) & \tau\left(\mathrm{y}_{1}\right)+\tau\left(\mathrm{y}_{1}\right) \mathrm{f}\left(\mathrm{y}_{1}^{\prime}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right) \tau\left(\mathrm{y}_{1}\right) \\
& =\tau\left(\mathrm{y}_{1}\right) \mathrm{d}\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right) \sigma\left(\mathrm{y}_{1}^{\prime}\right)+\tau\left(\mathrm{y}_{1}\right) \tau\left(\mathrm{y}_{1}\right) \mathrm{f}\left(\mathrm{y}_{1}^{\prime}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right)
\end{aligned}
$$

for all $y, y_{1}, y_{1}^{\prime}, y_{2}, \ldots, y_{n} \in N$.
By using hypothesis again the preceding equation reduces to
$\mathrm{d}\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right) \sigma\left(\mathrm{y}_{1}{ }^{\prime}\right) \tau\left(\mathrm{y}_{1}\right)=\tau\left(\mathrm{y}_{1}\right) \mathrm{d}\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right) \sigma\left(\mathrm{y}_{1}{ }^{\prime}\right)$
for all $\mathrm{y}_{1}, \mathrm{y}_{1}{ }^{\prime}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}} \in \mathrm{N}$.
Replacing $y_{1}{ }^{\prime}$ by $y_{1}{ }^{\prime} \mathrm{x}$, where $\mathrm{x} \in \mathrm{N}$, in previous equation and using it again we get $\mathrm{d}\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right) \sigma\left(\mathrm{y}_{1}{ }^{\prime}\right)\left[\tau\left(\mathrm{y}_{1}\right), \sigma(\mathrm{x})\right]=0$ for all $\mathrm{x}, \mathrm{y}_{1}, \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}} \in \mathrm{N}$. Since $\sigma$ is an auotomorphism we conclude that
$\mathrm{d}\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right) \mathrm{N}\left[\tau\left(\mathrm{y}_{1}\right), \sigma(\mathrm{x})\right]=\{0\}$ for all $\mathrm{x}, \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}} \in \mathrm{N}$. Primeness of N implies that for each $\mathrm{y}_{1} \in \mathrm{~N}$ either $\left[\tau\left(\mathrm{y}_{1}\right), \sigma(\mathrm{x})\right]=0$ for all $\mathrm{x} \in \mathrm{N}$ or $\mathrm{d}\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots\right.$, $\left.y_{n}\right)=0$ for all $y_{2}, \ldots, y_{n} \in N$.

If $\mathrm{d}\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right)=0$ for all $\mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}} \in \mathrm{N}$, then equation (8) takes the form $\mathrm{f}\left(\mathrm{y}_{1}{ }^{\prime}\right.$, $\left.y_{2}, \ldots, y_{n}\right) N\left[y, \tau\left(y_{1}\right)\right]=\{0\}$. Since $f \neq 0$, primeness of $N$ implies that $\left[y, \tau\left(y_{1}\right)\right]=$ $\{0\}$ for all $\mathrm{y} \in \mathrm{N}$. But $\tau$ is an automorphism, we conclude that $\mathrm{y}_{1} \in \mathrm{Z}$. On the other hand if $\left[\tau\left(\mathrm{y}_{1}\right), \sigma(\mathrm{x})\right]=0$ for all $\mathrm{x} \in \mathrm{N}$, then again $\mathrm{y}_{1} \in \mathrm{Z}$, hence we find that $\mathrm{N}=\mathrm{Z}$, and N is a commutative ring.

Corollary 3.1 [4, Theorem 3.1] Let $N$ be a prime near-ring and $f$ a nonzero generalized n-derivation with associated n-derivation d of $N$. If $f(N, N, \ldots, N) \subseteq Z$, then $N$ is a commutative ring.

Corollary 3.2 [3, Theorem 3.1] Let $N$ be a prime near-ring and $d$ a nonzero $(\sigma, \tau)$-n-derivation d of $N$. If $d(N, N, \ldots, N) \subseteq Z$, then $N$ is a commutative ring.

Theorem 3.2 Let $N$ be a prime near-ring and $f_{1}$ and $f_{2}$ be any two generalized $(\sigma, \tau)$-n-derivations with associated nonzero ( $\sigma, \tau$ )-n-derivations $d_{1}, d_{2}$ respectively. If $\left[f_{1}(N, N, \ldots, N), f_{2}(N, N, \ldots, N)\right]=\{0\}$, then $(N,+)$ is abelian.

Proof: Assume that $\left[f_{1}(N, N, \ldots, N), f_{2}(N, N, \ldots, N)\right]=\{0\}$. If both $z$ and $z+z$ commute element wise with $f_{2}(N, N, \ldots, N)$, then for all $x_{1}, x_{2}, \ldots, x_{n} \in N$ we have
$\mathrm{zf}_{2}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\mathrm{f}_{2}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{z}$
and
$(z+z) f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right)(z+z)$
Substituting $\mathrm{x}_{1}+\mathrm{x}_{1}{ }^{\prime}$ instead of $\mathrm{x}_{1}$ in (10) we get
$(z+z) f_{2}\left(x_{1}+x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right)=f_{2}\left(x_{1}+x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right)(z+z)$ for all $x_{1}, x_{2}, \ldots, x_{n} \in N$.
From (9) and (10) the previous equation can be reduced to

$$
\mathrm{zf}_{2}\left(\mathrm{x}_{1}+\mathrm{x}_{1}^{\prime}-\mathrm{x}_{1}-\mathrm{x}_{1}^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=0 \text { for all } \mathrm{x}_{1}, \mathrm{x}_{1}^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \in \mathrm{~N} .
$$

Which means that
$\mathrm{zf}_{2}\left(\left(\mathrm{x}_{1}, \mathrm{x}_{1}{ }^{\prime}\right), \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=0$ for all $\mathrm{x}_{1}, \mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \in \mathrm{N}$.
Putting $\mathrm{z}=\mathrm{f}_{1}\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right)$, in previous equation, we get
$f_{1}\left(y_{1}, y_{2}, \ldots, y_{n}\right) f_{2}\left(\left(x_{1}, x_{1}\right), x_{2}, \ldots, x_{n}\right)=0$
for all $\mathrm{x}_{1}, \mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}} \in \mathrm{N}$.
By Lemma 2.10 (i) we conclude that
$\mathrm{f}_{2}\left(\left(\mathrm{x}_{1}, \mathrm{x}_{1}{ }^{\prime}\right), \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=0$ for all $\mathrm{x}_{1}, \mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \in \mathrm{N}$.
Since we know that for each $w \in N, w\left(x_{1}, x_{1}{ }^{\prime}\right)=w\left(x_{1}+x_{1}{ }^{\prime}-\mathrm{x}_{1}-\mathrm{x}_{1}{ }^{\prime}\right)=\mathrm{wx}_{1}+\mathrm{wx}_{1}{ }^{\prime}-$ $\mathrm{wx}_{1}-\mathrm{wx}_{1}{ }^{\prime}=\left(\mathrm{wx}_{1}, \mathrm{wx}_{1}{ }^{\prime}\right)$ which is again an additive commutator, putting $\mathrm{w}\left(\mathrm{x}_{1}\right.$, $\mathrm{x}_{1}$ ) instead of ( $\mathrm{x}_{1}, \mathrm{x}_{1}{ }^{\prime}$ ) in (11) we get
$\mathrm{f}_{2}\left(\mathrm{w}\left(\mathrm{x}_{1}, \mathrm{x}_{1}{ }^{\prime}\right), \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=0$ for all $\mathrm{x}_{1}, \mathrm{x}_{1^{\prime}}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{w} \in \mathrm{N}$.
Therefore
$\mathrm{d}_{2}\left(\mathrm{w}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}, \mathrm{x}_{1}{ }^{\prime}\right)+\tau(\mathrm{w}) \mathrm{f}_{2}\left(\left(\mathrm{x}_{1}, \mathrm{x}_{1}{ }^{\prime}\right), \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=0$ for all $\mathrm{x}_{1}, \mathrm{x}_{1}{ }^{\prime}$ $, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{w} \in \mathrm{N}$.

Using (11) in previous equation yields
$\mathrm{d}_{2}\left(\mathrm{w}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}, \mathrm{x}_{1}{ }^{\prime}\right)=0$ for all $\mathrm{x}_{1}, \mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{w} \in \mathrm{N}$. Since $\sigma$ is an automorphism, using Lemma 1.6 (i) we conclude that $\left(\mathrm{x}_{1}, \mathrm{x}_{1}{ }^{\prime}\right)=0$. Hence ( $\mathrm{N},+$ ) is abelain.

Corollary 3.3 [4, Theorem 3.16] Let $N$ be a prime near-ring and $f_{1}$ and $f_{2}$ be any two generalized $n$-derivations with associated nonzero $n$-derivations $d_{1}, d_{2}$ respectively such that $\left[f_{1}(N, N, \ldots, N), f_{2}(N, N, \ldots, N)\right]=\{0\}$. Then $(N,+)$ is abelian.

Corollary 3.4 [3, Theorem 3.2] Let $N$ be a prime near-ring and $d_{1}$ and $d_{2}$ be any two nonzero $(\sigma, \tau)$-n-derivations. If $\left[d_{l}(N, N, \ldots, N), d_{2}(N, N, \ldots, N)\right]=\{0\}$ then $(N,+)$ is abelian.

Theorem 3.3 Let $N$ be a prime near-ring and $f_{1}$ and $f_{2}$ be any two generalized $(\sigma, \tau)$-n-derivations with associated nonzero $(\sigma, \tau)$-n-derivations $d_{1}, d_{2}$ respectively. If $f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) f_{2}\left(y_{1}, y_{2}, \ldots, y_{n}\right)+f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right) f_{1}\left(y_{1}, y_{2}, \ldots, y_{n}\right)=0$ for all $x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n} \in N$, then $(N,+)$ is abelian.

Proof: By our hypothesis we have,
$f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) f_{2}\left(y_{1}, y_{2}, \ldots, y_{n}\right)+f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right) f_{1}\left(y_{1}, y_{2}, \ldots, y_{n}\right)=0$
for all $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}} \in \mathrm{N}$.
Substituting $y_{1}+y_{1}{ }^{\prime}$ instead of $y_{1}$ in (12) we get
$f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) f_{2}\left(y_{1}+y_{1}^{\prime}, y_{2}, \ldots, y_{n}\right)+f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right) f_{1}\left(y_{1}+y_{1}{ }^{\prime}, y_{2}, \ldots, y_{n}\right)=0$
for all $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}_{1}, \mathrm{y}_{1}{ }^{\prime}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}} \in \mathrm{N}$. So we get

$$
\begin{aligned}
& f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) f_{2}\left(y_{1}, y_{2}, \ldots, y_{n}\right)+f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) f_{2}\left(y_{1}^{\prime}, y_{2}, \ldots, y_{n}\right)+ \\
& \quad f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right) f_{1}\left(y_{1}, y_{2}, \ldots, y_{n}\right)+f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right) f_{1}\left(y_{1}^{\prime}, y_{2}, \ldots, y_{n}\right)=0
\end{aligned}
$$

for all $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}_{1}, \mathrm{y}_{1}{ }^{\prime}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}} \in \mathrm{N}$.
Using (12) again in last equation we get

$$
\begin{aligned}
& f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) f_{2}\left(y_{1}, y_{2}, \ldots, y_{n}\right)+f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) f_{2}\left(y_{1}^{\prime}, y_{2}, \ldots, y_{n}\right) \\
& \quad+f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) f_{2}\left(-y_{1}, y_{2}, \ldots, y_{n}\right)+f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) f_{2}\left(-y_{1}, y_{2}, \ldots, y_{n}\right)=0
\end{aligned}
$$

for all $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}_{1}, \mathrm{y}_{1}{ }^{\prime}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}} \in \mathrm{N}$. Thus, we get
$f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) f_{2}\left(\left(y_{1}, y_{1}{ }^{\prime}\right), y_{2}, \ldots, y_{n}\right)=0$ for all $x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{1}{ }^{\prime}, y_{2}, \ldots, y_{n} \in N$.
By Lemma 2.10 (i) we obtain
$f_{2}\left(\left(y_{1}, y_{1}{ }^{\prime}\right), y_{2}, \ldots, y_{n}\right)=0$ for all $y_{1}, y_{1}{ }^{\prime}, y_{2}, \ldots, y_{n} \in N$.
Now pitting $w\left(y_{1}, y_{1}{ }^{\prime}\right)$ instead of $\left(y_{1}, y_{1}\right)$, where $w \in N$, in previous equation and using it again we get
$\mathrm{d}_{2}\left(\mathrm{w}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right) \sigma\left(\mathrm{y}_{1}, \mathrm{y}_{1}{ }^{\prime}\right)=0$ for all $\mathrm{w}, \mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}_{1}, \mathrm{y}_{1}{ }^{\prime}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}} \in \mathrm{N}$, using Lemma 1.6 (i); as used in the Theorem 3.2, we conclude that $(\mathrm{N},+$ ) is abelain.

Corollary 3.5 Let $N$ be a prime near-ring and $f_{1}$ and $f_{2}$ be any two generalized $n$ derivations with associated nonzero $n$-derivations $d_{1}, d_{2}$ respectively.

If $f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) f_{2}\left(y_{1}, y_{2}, \ldots, y_{n}\right)+f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right) f_{1}\left(y_{1}, y_{2}, \ldots, y_{n}\right)=0$
for all $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}} \in \mathrm{N}$, then ( $\mathrm{N},+$ ) is abelian.
Corollary 3.6 [3, Theorem 3.3] Let $N$ be a prime near-ring and $d_{1}$ and $d_{2}$ be any two nonzero ( $\sigma, \tau$ )-n-derivations.

If $d_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) d_{2}\left(y_{1}, y_{2}, \ldots, y_{n}\right)+d_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right) d_{1}\left(y_{1}, y_{2}, \ldots, y_{n}\right)=0$
for all $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}} \in \mathrm{N}$, then $(\mathrm{N},+)$ is abelian.
Theorem 3.4 Let $N$ be a prime near-ring, let $f_{1}$ and $f_{2}$ be any two generalized $(\sigma, \tau)$-n-derivations with associated nonzero $(\sigma, \tau)$-n-derivations $d_{1}, d_{2}$ respectively.

If $f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sigma f_{2}\left(y_{1}, y_{2}, \ldots, y_{n}\right)+\tau f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right) f_{1}\left(y_{1}, y_{2}, \ldots, y_{n}\right)=0$ for all $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}} \in \mathrm{N}$, then ( $\mathrm{N},+$ ) is abelian.

Proof: By our hypothesis we have,
$\mathrm{f}_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{f}_{2}\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right)\right)+\tau\left(\mathrm{f}_{2}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\right) \mathrm{f}_{1}\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right)=0$
for all $x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n} \in N$.
Substituting $y_{1}+y_{1}{ }^{\prime}$, where $y_{1}{ }^{\prime} \in \mathrm{N}$, for $\mathrm{y}_{1}$ in (13) we get

$$
\begin{aligned}
& \mathrm{f}_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{f}_{2}\left(\mathrm{y}_{1}+\mathrm{y}_{1}{ }^{\prime}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right)\right)+ \\
& \\
& \tau\left(\mathrm{f}_{2}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\right) \mathrm{f}_{1}\left(\mathrm{y}_{1}+\mathrm{y}_{1}^{\prime}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right)=0
\end{aligned}
$$

for all $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}_{1}, \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}} \in \mathrm{N}$. Thus, we get

$$
\begin{aligned}
& \mathrm{f}_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{f}_{2}\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right)\right)+\mathrm{f}_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{f}_{2}\left(\mathrm{y}_{1},, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right)\right)+ \\
& \quad \tau\left(\mathrm{f}_{2}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\right) \mathrm{f}_{1}\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right)+\tau\left(\mathrm{f}_{2}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\right) \mathrm{f}_{1}\left(\mathrm{y}_{1}^{\prime}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right)=0
\end{aligned}
$$

for all $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}_{1}, \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}} \in \mathrm{N}$.
Using (13) in previous equation implies

$$
\begin{aligned}
& \mathrm{f}_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{f}_{2}\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right)\right)+\mathrm{f}_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{f}_{2}\left(\mathrm{y}_{1},, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right)\right)+ \\
& \quad \mathrm{f}_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{f}_{2}\left(-\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right)\right)+\mathrm{f}_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots,, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{f}_{2}\left(-\mathrm{y}_{1}^{\prime}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right)\right)=0
\end{aligned}
$$

for all $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}_{1}, \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}} \in \mathrm{N}$.
which means that
$\mathrm{f}_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{f}_{2}\left(\left(\mathrm{y}_{1}, \mathrm{y}_{1}{ }^{\prime}\right), \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right)\right)=0$
for all $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}_{1}, \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}} \in \mathrm{N}$.
Now using Lemma 2.10, in previous equation, we conclude that
$\sigma\left(\mathrm{f}_{2}\left(\left(\mathrm{y}_{1}, \mathrm{y}_{1}{ }^{\prime}\right), \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right)\right)=0$ for all $\mathrm{y}_{1}, \mathrm{y}_{1}{ }^{\prime}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}} \in \mathrm{N}$. Since $\sigma$ is an automorphism of N , we conclude that $\left.\mathrm{f}_{2}\left(\left(\mathrm{y}_{1}, \mathrm{y}_{1}\right)^{\prime}\right), \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right)=0$ for all $\mathrm{y}_{1}$, $y_{1}{ }^{\prime}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}} \in \mathrm{N}$. Now putting $\mathrm{w}\left(\mathrm{y}_{1}, \mathrm{y}_{1}{ }^{\prime}\right)$ instead of $\left(\mathrm{y}_{1}, \mathrm{y}_{1}{ }^{\prime}\right)$, where $\mathrm{w} \in \mathrm{N}$ in last equation and using it again, we get
$\mathrm{d}_{2}\left(\mathrm{w}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right) \sigma\left(\mathrm{y}_{1}, \mathrm{y}_{1}{ }^{\prime}\right)=0$ for all $\mathrm{y}_{1}, \mathrm{y}_{1}{ }^{\prime}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}, \mathrm{w} \in \mathrm{N}$. Using Lemma 12.6 (i) as used in the Theorem 3.2, we conclude that $(\mathrm{N},+$ ) is abelain.

Corollary 3.7 Let $N$ be a prime near-ring, let $f_{1}$ and $f_{2}$ be any two generalized $n$ derivations with associated nonzero $n$-derivations $d_{1}, d_{2}$ respectively.

If $f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) f_{2}\left(y_{1}, y_{2}, \ldots, y_{n}\right)+f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right) f_{1}\left(y_{1}, y_{2}, \ldots, y_{n}\right)=0$
for all $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}} \in \mathrm{N}$, then $(\mathrm{N},+)$ is abelian.
Corollary 3.8 [3, Theorem 3.4] Let $N$ be a prime near-ring, let $d_{1}$ and $d_{2}$ be any two nonzero ( $\sigma, \tau$ )-n-derivations.

If $d_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sigma\left(d_{2}\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right)+\tau\left(d_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right) d_{1}\left(y_{1}, y_{2}, \ldots, y_{n}\right)=0$
for all $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}} \in \mathrm{N}$, then $(\mathrm{N},+)$ is abelian.
Theorem 3.5 Let $N$ be a prime near-ring, let $f_{1}$ be a generalized ( $\sigma, \tau$ )-n-derivation with associated nonzero ( $\sigma, \tau)$-n-derivation $d_{1}$ and $f_{2}$ be a generalized $n$-derivation with associated nonzero n-derivation $d_{2}$.
(i) If $\mathrm{f}_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{f}_{2}\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right)\right)+\tau\left(\mathrm{f}_{2}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\right) \mathrm{f}_{1}\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right)=0$ for all $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}} \in \mathrm{N}$, then $(\mathrm{N},+)$ is abelian.
(ii) If $f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sigma\left(f_{1}\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right)+\tau\left(f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) f_{2}\left(y_{1}, y_{2}, \ldots, y_{n}\right)=0\right.$ for all $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}} \in \mathrm{N}$, then $(\mathrm{N},+)$ is abelian.

Proof: (i) By our hypothesis we have,
$\mathrm{f}_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{f}_{2}\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right)\right)+\tau\left(\mathrm{f}_{2}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\right) \mathrm{f}_{1}\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right)=0$
for all $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}} \in \mathrm{N}$.
Substituting $y_{1}+y_{1}{ }^{\prime}$, where $y_{1}{ }^{\prime} \in \mathrm{N}$, for $\mathrm{y}_{1}$ in (14) we get
$\mathrm{f}_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{f}_{2}\left(\mathrm{y}_{1}+\mathrm{y}_{1}{ }^{\prime}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right)\right)+$

$$
\tau\left(\mathrm{f}_{2}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\right) \mathrm{f}_{1}\left(\mathrm{y}_{1}+\mathrm{y}_{1}^{\prime}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right)=0
$$

for all $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}_{1}, \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}} \in \mathrm{N}$.
So we have
$\mathrm{f}_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{f}_{2}\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right)\right)+\mathrm{f}_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{f}_{2}\left(\mathrm{y}_{1}{ }^{\prime}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right)\right)+$

$$
\tau\left(\mathrm{f}_{2}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\right) \mathrm{f}_{1}\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right)+\tau\left(\mathrm{f}_{2}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\right) \mathrm{f}_{1}\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right)=0
$$

for all $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}_{1}, \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}} \in \mathrm{N}$.
Using (14) in previous equation implies

$$
\begin{aligned}
& \mathrm{f}_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{f}_{2}\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right)\right)+\mathrm{f}_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{f}_{2}\left(\mathrm{y}_{1},, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right)\right)+ \\
& \quad \mathrm{f}_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{f}_{2}\left(-\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right)\right)+\mathrm{f}_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{f}_{2}\left(-\mathrm{y}_{1}^{\prime}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right)\right)=0
\end{aligned}
$$

for all $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}_{1}, \mathrm{y}_{1}{ }^{\prime}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}} \in \mathrm{N}$. Thus, we get
$\mathrm{f}_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{f}_{2}\left(\left(\mathrm{y}_{1}, \mathrm{y}_{1}{ }^{\prime}\right), \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right)\right)=0$
for all $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}_{1}, \mathrm{y}_{1}{ }^{\prime}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}} \in \mathrm{N}$.

Now, using Lemma 2.10 we conclude that $\sigma\left(\mathrm{f}_{2}\left(\left(\mathrm{y}_{1}, \mathrm{y}_{1}{ }^{\prime}\right), \mathrm{y}_{2}, \ldots\right.\right.$., $\left.\left.\mathrm{y}_{\mathrm{n}}\right)\right)=0$ for all $\mathrm{y}_{1}, \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}} \in \mathrm{N}$.

Since $\sigma$ is an automorphism of N, we conclude that
$f_{2}\left(\left(y_{1}, y_{1}{ }^{\prime}\right), y_{2}, \ldots, y_{n}\right)=0$ for all $y_{1}, y_{1}{ }^{\prime}, y_{2}, \ldots, y_{n} \in N$. Treating $f_{2}$ as generalized (I,I)-n-derivation of N and $\mathrm{d}_{2}$ as (I,I)-n-derivation, where I is the identity automorphism of N and arguing on similar lines as in case of Theorem 3.2; we conclude that $(\mathrm{N},+)$ is an abelain group.
(ii) Use same arguments as used in the proof of (i).

Corollary 3.9 Let $N$ be a prime near-ring, let $d_{1}$ be a nonzero ( $\left.\sigma, \tau\right)$-n-derivation and $d_{2}$ be a nonzero $n$-derivation.
(i) If $\mathrm{d}_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{d}_{2}\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right)\right)+\tau\left(\mathrm{d}_{2}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\right) \mathrm{d}_{1}\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right)$ $=0$ for all $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}} \in \mathrm{N}$, then ( $\mathrm{N},+$ ) is abelian.
(ii) If $\mathrm{d}_{2}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{d}_{1}\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right)+\tau\left(\mathrm{d}_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\right) \mathrm{d}_{2}\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right)\right.$ $=0$ for all $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}} \in \mathrm{N}$, then ( $\mathrm{N},+$ ) is abelian.

Theorem 3.6 Let $N$ be a semiprime near-ring. Let $f$ be a generalized ( $\sigma, \tau$ )-nderivation associated with the ( $\sigma, \tau$ )-n-derivation $d$,

If $\tau\left(x_{1}\right) f\left(y_{1}, y_{2}, \ldots, y_{n}\right)=f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sigma\left(y_{1}\right)$ for all $x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n} \in N$, then $\mathrm{d}=0$.

Proof: By our hypothesis we have,
$\tau\left(x_{1}\right) f\left(y_{1}, y_{2}, \ldots, y_{n}\right)=f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sigma\left(y_{1}\right)$ for all $x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n} \in N$.

Substituting $\mathrm{z}_{1} \mathrm{x}_{1}$ for $\mathrm{x}_{1}$ in (13), where $\mathrm{z}_{1} \in \mathrm{~N}$, and using Lemma 2.11 we get

$$
\begin{aligned}
\tau\left(\mathrm{z}_{1} \mathrm{x}_{1}\right) \mathrm{f}\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right) & =\mathrm{f}\left(\mathrm{z}_{1} \mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{y}_{1}\right) \\
& =\mathrm{d}\left(\mathrm{z}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}\right) \sigma\left(\mathrm{y}_{1}\right)+\tau\left(\mathrm{z}_{1}\right) \mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{y}_{1}\right)
\end{aligned}
$$

for all $\mathrm{x}_{1}, \mathrm{z}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}} \in \mathrm{N}$.
Using (13) in previous equation we get

$$
\begin{aligned}
\tau\left(\mathrm{z}_{1} \mathrm{x}_{1}\right) \mathrm{f}\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right) & =\mathrm{d}\left(\mathrm{z}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}\right) \sigma\left(\mathrm{y}_{1}\right)+\tau\left(\mathrm{z}_{1}\right) \tau\left(\mathrm{x}_{1}\right) \mathrm{f}\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right) \\
& =\mathrm{d}\left(\mathrm{z}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}\right) \sigma\left(\mathrm{y}_{1}\right)+\tau\left(\mathrm{z}_{1} \mathrm{x}_{1}\right) \mathrm{f}\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right)
\end{aligned}
$$

for all $\mathrm{x}_{1}, \mathrm{z}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}} \in \mathrm{N}$. This yields that
$d\left(z_{1}, x_{2}, \ldots, x_{n}\right) \sigma\left(x_{1}\right) \sigma\left(y_{1}\right)=0$ for all $x_{1}, z_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n} \in N$. Since $\sigma$ is an automorphism of N , we get
$\mathrm{d}\left(\mathrm{z}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{uv}=0$ for all $\mathrm{z}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{u}, \mathrm{v} \in \mathrm{N}$. Now replacing v by $\mathrm{d}\left(\mathrm{z}_{1}, \mathrm{x}_{2}, \ldots\right.$, $\mathrm{x}_{\mathrm{n}}$ ) in previous equation we get
$d\left(z_{1}, x_{2}, \ldots, x_{n}\right) N d\left(z_{1}, x_{2}, \ldots, x_{n}\right)=\{0\}$ for all $z_{1}, x_{2}, \ldots, x_{n} \in N$.
Semiprimeness of N implies that $\mathrm{d}=0$.
Corollary 3.10 Let $N$ be a semiprime near-ring, let $f$ be a generalized $n$ derivation associated with the n-derivation d, If $x_{1} f\left(y_{1}, y_{2}, \ldots, y_{n}\right)=f\left(x_{1}, x_{2}, \ldots\right.$, $\left.x_{n}\right) y_{1}$ for all $x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n} \in N$. Then $d=0$.

Corollary 3.11 [3, Theorem 3.8] Let $N$ be a semiprime near-ring, let d be a $(\sigma, \tau)$ -n-derivation,

If $\tau\left(\mathrm{x}_{1}\right) \mathrm{d}\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right)=\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{y}_{1}\right)$ for all $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}} \epsilon$ N . Then $\mathrm{d}=0$.

Example 3.1 Let $S$ be a zero-symmetric left near-ring. Let us define
$\mathrm{N}=\left\{\left(\begin{array}{lll}0 & \mathrm{x} & \mathrm{y} \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right), \mathrm{x}, \mathrm{y} \in \mathrm{S}\right\}$ is zero symmetric near-ring with regard to matrix addition and matrix multiplication .

Define $f_{1}, f_{2}, d_{1}, d_{2}: \underbrace{N \times N \times \ldots \times N}_{n \text {-times }} \rightarrow N$ such that
$\mathrm{f}_{1}\left(\left(\begin{array}{ccc}0 & \mathrm{x}_{1} & \mathrm{y}_{1} \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right),\left(\begin{array}{ccc}0 & \mathrm{x}_{2} & \mathrm{y}_{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right), \ldots,\left(\begin{array}{ccc}0 & \mathrm{x}_{\mathrm{n}} & \mathrm{y}_{\mathrm{n}} \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)\right)=\left(\begin{array}{ccc}0 & \mathrm{x}_{1} \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{n}} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
$d_{1}\left(\left(\begin{array}{ccc}0 & x_{1} & y_{1} \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right),\left(\begin{array}{ccc}0 & x_{2} & y_{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right), \ldots,\left(\begin{array}{ccc}0 & x_{n} & y_{n} \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)\right)=\left(\begin{array}{ccc}0 & 0 & y_{1} y_{2} \ldots y_{n} \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
$\mathrm{f}_{2}\left(\left(\begin{array}{ccc}0 & \mathrm{x}_{1} & \mathrm{y}_{1} \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right),\left(\begin{array}{ccc}0 & \mathrm{x}_{2} & \mathrm{y}_{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right), \ldots,\left(\begin{array}{ccc}0 & \mathrm{x}_{\mathrm{n}} & \mathrm{y}_{\mathrm{n}} \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)\right)=\left(\begin{array}{ccc}0 & 0 & \mathrm{y}_{1} \mathrm{y}_{2} \ldots \mathrm{y}_{\mathrm{n}} \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
$d_{2}\left(\left(\begin{array}{ccc}0 & x_{1} & y_{1} \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right),\left(\begin{array}{ccc}0 & x_{2} & y_{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right), \ldots,\left(\begin{array}{ccc}0 & x_{n} & y_{n} \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)\right)=\left(\begin{array}{ccc}0 & x_{1} x_{2} \ldots x_{n} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
Now we define $\sigma, \tau: \mathrm{N} \rightarrow \mathrm{N}$ by

$$
\tau\left(\begin{array}{ccc}
0 & \mathrm{x} & \mathrm{y} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
0 & y & x \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

It can be easily seen $\tau$ are automorphism of near-rings N which is not semiprime, having $d_{1}, d_{2}$ as a nonzero $(\sigma, \tau)$-n-derivations and $f_{1}$ and $f_{2}$ are nonzero generalized ( $\sigma, \tau$ )-n-derivations associated with the ( $\sigma, \tau$ )-n-derivations $d_{1}, d_{2}$ respectively where $\sigma=\mathrm{I}$, the identity outomorphism of N . We also have
(i) $f_{1}(N, N, \ldots, N) \subseteq Z$
(ii) $\left[\mathrm{f}_{1}(\mathrm{~N}, \mathrm{~N}, \ldots, \mathrm{~N}), \mathrm{f}_{2}(\mathrm{~N}, \mathrm{~N}, \ldots, \mathrm{~N})\right]=\{0\}$,
(iii) $f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) f_{2}\left(y_{1}, y_{2}, \ldots, y_{n}\right)=-f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right) f_{1}\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ for all $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}} \in \mathrm{N}$,
(iv) $\mathrm{f}_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{f}_{2}\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right)\right)+\tau\left(\mathrm{f}_{2}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\right) \mathrm{f}_{1}\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right)=$ 0 for all $x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n} \in N$. However ( $N,+$ ) is non abelain.
(v) $\tau\left(\mathrm{x}_{1}\right) \mathrm{f}_{1}\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right)=\mathrm{f}_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{y}_{1}\right)$ for all $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}} \epsilon$ $N$. However $\mathrm{d} \neq 0$.

Theorem 3.7 Let $N$ be a prime near-ring, let $f$ be a generalized ( $\sigma, \tau)$-n-derivation associated with the ( $\sigma, \tau$ )-n-derivation $d$,

If $K=\left\{a \in N \mid[f(N, N, \ldots, N), \tau(a)]=\{0\}\right.$, then $a \in K$ implies either $d\left(a, x_{2}, \ldots\right.$, $\left.x_{n}\right)=0$ for all $x_{2}, \ldots, x_{n} \in N$ or $a \in Z$.

Proof: Assume that a $\epsilon$ K, we have
$f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \tau(a)=\tau(a) f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ for all $x_{1}, x_{2}, \ldots, x_{n} \in N$.
Putting $\mathrm{ax}_{1}$ in place of $\mathrm{x}_{1}$ in (14) and using Lemma 2.9 we get
$\mathrm{d}\left(\mathrm{a}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}\right) \tau(\mathrm{a})+\tau(\mathrm{a}) \mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \tau(\mathrm{a})=$

$$
\tau(\mathrm{a}) \mathrm{d}\left(\mathrm{a}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}\right)+\tau(\mathrm{a}) \tau(\mathrm{a}) \mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)
$$

for all $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \in \mathrm{N}$. Using (14) in previous equation we get
$d\left(a, x_{2}, \ldots, x_{n}\right) \sigma\left(x_{1}\right) \tau(a)=\tau(a) d\left(a, x_{2}, \ldots, x_{n}\right) \sigma\left(x_{1}\right)$ for all $x_{1}, x_{2}, \ldots, x_{n} \in N$
Putting $\mathrm{x}_{1} \mathrm{y}_{1}$, where $\mathrm{y}_{1} \in \mathrm{~N}$, for $\mathrm{x}_{1}$ in (15) and using it again
$d\left(a, x_{2}, \ldots, x_{n}\right) \sigma\left(x_{1}\right)\left[\sigma\left(y_{1}\right), \tau(a)\right]=0$. Since $\sigma$ is an automorphism, we get
$d\left(a, x_{2}, \ldots, x_{n}\right) N\left[\sigma\left(y_{1}\right), \tau(a)\right]=\{0\}$ for all $x_{1}, x_{2}, \ldots, x_{n} \in N$. Since $\sigma$ and $\tau$ are automorphisms, primeness of N yields either $\mathrm{d}\left(\mathrm{a}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=0$ for all $\mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \in$ N or $\mathrm{a} \in \mathrm{Z}$.

Theorem 3.8 Let $N$ be a prime near-ring, let $f$ be a generalized ( $\sigma, \tau)$-n-derivation associated with the ( $\sigma, \tau$ )-n-derivation $d$.

If $[f(N, N, \ldots, N), a]_{\sigma, \tau}=\{0\}$, then either $d\left(a, x_{2}, \ldots, x_{n}\right)=0$ for all $x_{2}, \ldots, x_{n} \in N$ or $\mathrm{a} \in \mathrm{Z}$.

Proof: For all $x_{1}, x_{2}, \ldots, x_{n} \in N$ we have
$f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sigma(a)=\tau(a) f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.
Putting $\mathrm{ax}_{1}$ in place of $\mathrm{x}_{1}$ in (16) and using Lemma 2.9 we get
$\mathrm{d}\left(\mathrm{a}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}\right) \sigma(\mathrm{a})+\tau(\mathrm{a}) \mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma(\mathrm{a})=$

$$
\tau(\mathrm{a}) \mathrm{d}\left(\mathrm{a}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}\right)+\tau(\mathrm{a}) \tau(\mathrm{a}) \mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)
$$

for all $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \in \mathrm{N}$. Using (16) in previous equation we get
$\mathrm{d}\left(\mathrm{a}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}\right) \sigma(\mathrm{a})=\tau(\mathrm{a}) d\left(\mathrm{a}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}\right)$
Putting $\mathrm{x}_{1} \mathrm{y}_{1}$, where $\mathrm{y}_{1} \in \mathrm{~N}$, for $\mathrm{x}_{1}$ in (17) and using it again
$\mathrm{d}\left(\mathrm{a}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sigma\left(\mathrm{x}_{1}\right)\left[\sigma\left(\mathrm{y}_{1}\right), \sigma(\mathrm{a})\right]=0$. Since $\sigma$ is an automorphism, we have
$\mathrm{d}\left(\mathrm{a}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{N}\left[\sigma\left(\mathrm{y}_{1}\right), \sigma(\mathrm{a})\right]=\{0\}$.
Since $\sigma$ is an automorphisms, Primeness of $N$ yields either $d\left(a, x_{2}, \ldots, x_{n}\right)=0$ for all $\mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \in \mathrm{N}$ or $\mathrm{a} \in \mathrm{Z}$.

Acknowledgements: The author is thankful to the referee for his valuable suggestions.

## References

[1] M. Ashraf, A. Ali and S. Ali, ( $\sigma, \tau$ )-Derivations of prime near-rings, Arch. Math. (BRNO), 40(2004), 281-286.
[2] M. Ashraf and M.A. Siddeeque, On permuting n-derivations in near-rings, Commun. Korean Math. Soc., 28(4) (2013), 697-707.
[3] M. Ashraf and M.A. Siddeeque, On ( $\sigma, \tau$ )- n-derivations in near-rings, Asian-European Journal of Mathematics, 6(4) (2013), 14 pages.
[4] M. Ashraf and M.A. Siddeeque, On generalized $n$-derivations in nearrings, Palestine Journal of Mathematics, 3(1) (Special) (2014), 468-480.
[5] H.E. Bell and G. Mason, On derivations in near-rings, In: Near-Rings and Near-Felds, G. Betsch (Ed.), North-Holland/American Elsevier, Amsterdam, 137(1987), 31-35.
[6] Y. Ceven and M.A. Öztürk, Some properties of symmetric bi-( $\sigma, \tau)$ derivations in near-rings, Commun. Korean Math. Soc., 22(4) (2007), 487491.
[7] M.A. Öztürk and H. Yazarli, A note on permuting tri-derivation in nearring, Gazi Uni. J. Science, 24(4) (2011), 723-729.
[8] K.H. Park, On prime and semiprime rings with symmetric n-derivations, $J$. Chungcheong Math. Soc., 22(3) (2009), 451-458.
[9] G. Pilz, Near-Rings (Second Edition), North Holland/American Elsevier, Amsterdam, (1983).
[10] X.K. Wang, Derivations in prime near-rings, Proc. Amer. Math. Soc., 121(2) (1994), 361-366.

