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Abstract
In this paper we study the asymptotic behavior for the tail probability of

the randomly weighted sums and their maximum where the usual assumption
of independence of random variable X and indepedence between the variable
X and the weighted θ are relaxed. We suppose that, the variable X follows a
conditional dependence intoduced by Geluk and Tang [6] and the pair (X, θ)
follows a certain dependence structure proposed by Asimit and Badescu [1].
This result appears as a direct extension of the results of [7],[11] and [10].
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1 Introduction

Let X1, . . . , Xn be n real-valued random variables (r.v.s) with distribution
functions (d.f.s) F1, . . . , Fn, and the random weights θ1, . . . , θn are nonnegative
and nondegenerate at zero r.v.s with d.f.s G1, . . . , Gn respectively. In this
paper, we discuss the tail probabilities of the randomly weighted sums

Sθn =
n∑
k=1

θkXk, (1)

and their maxima
M θ

n = max
1≤m≤n

Sθm. (2)
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The randomly weighted sums and their maximums are frequently encoun-
tered in various areas, especially in actuarial and economic situations. For
example, in the actuarial context, the r.v.s Xi, i = 1, . . . , n can be interpreted
as the liability risks, and the weights θi, i = 1, . . . , n stand for the financial
risks, such as the discount factors. Specifically, if we regard Xi as the net loss,
i.e. the total amount of premium incomes minus the total amount of claims
for an insurance company during period i, then the sum Sθn is the discounted
losses accumulated from time 0 to time n. M θ

n is the maximal discounted net
loss during the first n periods.

Before discussing the asymptotic properties of probabilities P
(
Sθn > x

)
and

P
(
M θ

n > x
)

we first recall some concepts of heavy-tailed distributions.
We say that a distribution F belongs to the long-tailed class, denoted by
F ∈ L, if F (x) > 0 for all c ∈ (−∞,+∞) and F (x + t) ∼ F (x) for any
t ∈ (−∞,+∞); belongs to the subexponential class, denoted by F ∈ S, if
F ∈ L and F ∗2(x) ∼ 2F̄ (x), where F ∗2 is 2-fold convolution of F , belongs
to the dominatedly-varying-tailed class, denoted F ∈ D if F̄ (x) > 0 for all
x ∈ (−∞,+∞) and F (x) = 0(F̄ (xt)) for all (or some ) t > 1. It is known that
D ∩ L ⊂ S ⊂ L. For more details about heavy-tailed distributions and their
applications, the reader is referred to [4].

In this paper, all limit relationships are for x→∞ unless mentioned other-
wise. For two positive functions a(.) and b(.) satisfying lim sup a(x)/b(x) = c,
we write a(x) = 0(b(x)) if c < ∞, write a(x) � b(x) if a(x) = 0(b(x)) and
b(x) = 0(a(x)), write a(x) . b(x) if c ≤ 1, write a(x) ∼ b(x) if a(x) . b(x)
and b(x) . a(x) and write a(x) = o(b(x)) if c = 0. We shall use the symbole
x+ = max{x,O} for a real number x and F = 1− F .

The standing assumptions of this paper are that :
Firstly, for each i = 1, . . . , n the pair sequence (Xi, θi) follows the dependence
structure defined in assumption 1. This dependence was introduced by Asimit
and Badescu [1].
Assumption 1
For each fixed i = 1, . . . there exists a measurable function hi : [0,∞) −→
(0,∞) such that

P (Xi > x/θi = t) ∼ F i(x)hi(t), (3)

uniformly for t ≥ 0, where the uniformity is understood as

lim
x→∞

sup
t≥0

∣∣∣∣P (Xi > x/θi = t)

F̄i(x)hi(t)
− 1

∣∣∣∣ = 0, (4)

when t is not a possible value of some θi, the conditional probability in (3) is
understood as unconditional and therefore hi(t) = 1 for such t.
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Some examples of the r.v.s satisfying dependence condition (3) can be found
in [1] and [8].

Secondly, as for the conditional dependence structure among nonnegative
r.v.s X1, . . . , Xn we suppose this assumption introduced by Ko and Tang [7].
Assumption 2
for n ≥ 2 and D = [0,∞) there exist some large constants x0 = x0(n) > 0 and
C = C(n) such that for every 2 ≤ j ≤ n,

lim sup
x0≤t≤x−x0

P(Sj−1 > x− t/Xj = t)

P(Sj−1 > x− t)
≤ C. (5)

Our objective in this work is to establish the following result under Assump-
tion1, Assumption 2.

P
(
Sθn > x

)
∼ P

(
M θ

n > x
)
∼ P

(
max
1≤i≤n

θiXi > x

)
∼

n∑
i=1

P (θiXi) . (6)

The motivation behind our assumption is given by the fact that in the last
years, several works we can cite [2],[9], establish the tail behavior of the ran-
domly weighted sums by assuming the sequence {Xi, 1 ≤ i ≤ n} to be indepen-
dent, and some of them example [5],[6] even require the mutually independent
between {Xi, 1 ≤ i ≤ n} and {θi, 1 ≤ i ≤ n}. We remark that the assump-
tion of independence among the underlying random variables appears far too
unrealistic in most practical situations especially in insurance and economic
situations, it considerably limits the usefulness of obtained resuls.
Note that Yang and al [12] obtained relation (6) in the case of dependence (3),
when the sequence r.v.s {Xi, 1 ≤ i ≤ n} are i.i.d with common distribution
Fi ∈ L and {θi, 1 ≤ i ≤ n} are bounded i.e P (0 ≤ θk ≤ b) = 1 for all 1 ≤ k ≤ n
and some positive constant b.
Yang and al [11] in the case of dependence (3) consider more general case
where {Xi, 1 ≤ i ≤ n} are note identically distributed, {θi, 1 ≤ i ≤ n} can be
unbounded but (X1, θ1), . . . , (Xn, θn) are mutually independent random vec-
tors.

In this paper, inspired by those of [7], [10] and [11], we suppose that, for
each i = 1, . . . , n, the pair (Xi, θi) satisfies (3), and the r.v.s {Xi, 1 ≤ i ≤ n}
follows the dependence structure defined by relation (5). The mutually inde-
pendence between (X1, θ1), . . . , (Xn, θn) are relaxed. Then this paper appears
as a direct extension of the results of [7], [10] and [11].
The main contribution of this paper is the following:
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2 Main result

Recall the randomly weighted sums (1), and their maximum defined by (2),
where X1, . . . , Xn are n real-valued r.v.s with d.f.s F1, . . . , Fn, and the random
weights θ1, . . . , θn are nonnegative and nondegenerate at zero r.v.s with d.f.s
G1, . . . , Gn respectively. The main result of this work is the following:

Theorem 2.1 Assume that X1, . . . , Xn are real-valued r.v.s with d.f.s F1, . . . , Fn,
satisfy Assumption 2. Suppose that θ1, . . . , θn are positive r.v.s with d.f.s
G1, . . . , Gn respectively and for each fixed i = 1, . . . , n, the pair (Xi, θi) satisfies
Assumption 1.
Then the relation

P
(
Sθn > x

)
∼ P

(
M θ

n > x
)
∼ P

(
max
1≤i≤n

θiXi > x

)
∼

n∑
i=1

P (θiXi) , (7)

holds if one of the following conditions is valid

1. Fi ∈ L ∩ D, for each i = 1, . . . , n,

2. Fi ∈ S for all i = 1, . . . , n and either Gi(x) = 0(F i(x)).

During the proof of Theorem 2.1, we shall need the following series of lemmas.
The first is due to [12].

Lemma 2.2 Let ξ be a real-valued r.v. with distribution Fξ and let η be a
nonnegative and nondegenerate at zero r.v. with distribution Fη. Assume that
there exists a measurable function h : [0,∞) −→ (0,∞) such that

P (ξ > x/η = t) ∼ F ξ(x)h(t) (8)

uniformly for t ≥ 0.If Fξ ∈ L and F η(x) = 0(F ξ(cx)) for some c > 0 then the
d.f Fξη of the product ξη belongs to L.

We have this similar Lemma for the class L ∩ D due to [11].

Lemma 2.3 Let ξ be a real-valued r.v. with distribution Fξ and let η be a
nonnegative and nondegenerate at zero r.v. with distribution Fη. Assume that
the relation (3) holds. If Fξ ∈ D and F̄η(x) = 0(F ξ(x)), then Fξη ∈ D.

The following Lemma is due to [3] and shows that the class S is closed under
convolution of different d.f.s.

Lemma 2.4 Let F1 and F2 be two d.f.s on [0,∞). If F1 ∈ S and F̄2(x) =
0(F̄1(x)), then F1 ∗ F2 ∈ S and F1 ∗ F2(x) = F1(x) + F2(x)

The next lemma follows from Theorem 3.1 in [7].
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Lemma 2.5 Let X1, . . . , Xn be a n real-valued random with distributions
F1, . . . , Fn, concentrated on [0,∞) satisfy Assumption 2, let X(n) = max{X1, . . . , Xn}.
Then the ralations

P

(
n∑
i=1

Xi > x

)
∼ P

(
X(n) > x

)
∼

n∑
i=1

F i(x) (9)

holds if one of the following conditions is valid

1. If Fi ∈ L ∩ D for all i = 1, . . . , n,

2. Fi ∈ S for all i = 1, . . . , n and either F i(x) = 0(F j(x)) or F̄j(x) =
0(F i(x)) for all 1 ≤ i < j ≤ n.

Lemma 2.6 Assume that X1, . . . , Xn are real-valued r.v.s with d.f.s F1, . . . , Fn,
satisfy Assumption 2. Suppose that θ1, . . . , θn are positive r.v.s with d.f.s
G1, . . . , Gn respectively and for each fixed i = 1, . . . , n, the pair (Xi, θi) satisfies
Assumption 1. Then for each i, Xiθi satisfies Assumption 2.

Proof: With x0 > O sufficiently large, it holds, for every j = 2, . . . , n, that

sup
x0≤t≤x

P(Sθj−1 > x− t/Xjθj = t)

P(Sθj−1 > x− t)
≤ sup

x0≤t≤x

j−1∑
i=1

P(θiXi >
x−t
j−1/Xjθj = t)

P(θiXi > x− t)

≤
j−1∑
i=1

sup
x0≤t≤x

E

[
P(θiXi >

x−t
j−1/Xjθj = t/θi = ti/θj = tj)

P(θiXi > x− t/θi = ti)

]

≤
j−1∑
i=1

sup
x0≤t≤x

E

 P(Xi >
t−1
i (x−t)
j−1 /Xj = t−1j t)

P(Xi > t−1i (x− t))P(θj = tj)


≤

j−1∑
i=1

sup
x0≤t≤x

E

P(Xi >
t−1
i (x−t)
j−1 /Xj = t−1j t)

P(Xi >
t−1
i (x−t)
j−1 )P(θj = tj)

F̄i(
t−1
i (x−t)
j−1 )

F̄i(t
−1
i (x− t))


= C

This prove Lemma 2.6.

Proof of Theorem2.1

1. First in the case Fi ∈ L∩D, combining Lemma 2.2, Lemma 2.3, Lemma
2.5 and Lemma 2.6, it follows that

P
(
Sθn > x

)
∼ P

(
max
1≤i≤n

θiXi > x

)
∼

n∑
i=1

P (θiXi > x) (10)
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For proving (7) it suffices to show that

P
(
M θ

n > x
)
∼

n∑
i=1

P (θiXi > x) . (11)

Since

Sθn ≤M θ
n ≤

n∑
i=1

θiX
+
i (12)

it suffices to prove

P

(
n∑
i=1

θiX
+
i > x

)
∼

n∑
i=1

P (θiXi > x) . (13)

By Lemma 2.2 and Lemma 2.3, for each i, θiX
+
i belongs to L ∩ D. By

Lemma 2.6, θiX
+
i satisfies Assumption 2, then from Lemma 2.5 we get

P

(
n∑
i=1

θiX
+
i > x

)
∼

n∑
i=1

P
(
θiX

+
i > x

)
. (14)

combining (14) and the fact that for x ≥ 0 P
(
θiX

+
i > x

)
= P (θiXi > x)

we obtain (13).
From (12), (13), and (10) we get (11).

2. In the case Fi ∈ S from Lemma 2.2 and Lemma 2.4, we get for each
i = 1, . . . , n the random variable θiXi belongs to S.
From Lemma 2.5, it follows that (10) holds. It suffices now to prove (11).
θiX

+
i belongs to S, from Lemma 2.4, we have (14), combining (14) and

the fact that for x ≥ 0, P
(
θiX

+
i > x

)
= P (θiXi > x) it follows that (11)

holds.

This ends the proof of Theorem 2.1.
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