Gen. Math. Notes, Vol. 21, No. 1, March 2014, pp. 73-85
ISSN 2219-7184; Copyright © ICSRS Publication, 2014 www.i-csrs.org
Available free online at http://www.geman.in

A Common Fixed Point Theorem for Sub Compatibility and Occasionally Weak Compatibility in Intuitionistic Fuzzy Metric Spaces

Krishnapal Singh Sisodia ${ }^{1}$, Deepak Singh ${ }^{2}$ and M.S. Rathore ${ }^{3}$
${ }^{1}$ Department of Mathematics, SISTec-E, Ratibad, Bhopal E-mail: sisodiakps@gmail.com
${ }^{2}$ NITTTR, Bhopal, Ministry of HRD, Govt. of India
E-mail: dk.singh1002@gmail.com
${ }^{3}$ C.S.A. Government P.G College, Sehore
E-mail: dr.rathore11@gmail.com

(Received: 27-11-13 / Accepted: 18-1-14)

Abstract

In this paper, we establish a common fixed point theorem for six maps using concept of subcompatibility and occasionally weak compatibility in Intuitionistic Fuzzy metric space. S. kutukcu [10] obtained a fixed point theorem for Menger spaces; we obtain its Intuitionistic Fuzzy metric space version with more generalized conditions relaxing completeness criteria. We also justify our findings with an example.

Keywords: Intuitionistic fuzzy metric space, Subcompatible mapping, Occasionally weakly compatible mapping, Common fixed point.

1 Introduction

The concept of fuzzy sets was introduced initially by Zadeh [17] in 1965. Since, then to use this concept in topology and analysis many authors have expansively developed the theory of fuzzy sets and applications. Atanassov [4] Introduced and studied the concept of intuitionistic fuzzy sets. Intuitionistic fuzzy sets as a generalization of fuzzy sets can be useful in situations when description of a problem by a (fuzzy) linguistic variable, given in terms of a membership function only, seems too rough. Coker [6] introduced the concept of intuitionistic fuzzy topological spaces. Alaca et al. [2] proved the well known fixed point theorems of Banach [5] in the setting of intuitionisitc fuzzy metric spaces. Later on, Turkoglu et al. [16] Proved Jungcks [8] common fixed point theorem in the setting of intuitionisitc fuzzy metric space. Turkoglu et al. [16] further formulated the notions of weakly commuting and R-weakly commuting mappings in intuitionistic fuzzy metric spaces and proved the intuitionistic fuzzy version of pants theorem [12]. Gregori et al. [7], Saadati and Park [13] studied the concept of intuitionistic fuzzy metric space and its applications.

Recently, Saurabh Manro et al. [11] introduced the notion of subcompatibility and subsequential continuity in Intuitionistic Fuzzy metric space and proved some result for four self maps. Inspired by the result of Saurabh Manro et al. [11], in this paper we prove a common fixed point theorem for six self maps which is a generalization of [10].

2 Preliminaries

Definition 2.1[14] A binary operation *: [0, 1] $\times[0,1] \rightarrow[0,1]$ is a continuous t-norm, if $*$ is satisfying the following conditions:
(i) $\quad *$ is commutative and associative
(ii) $\quad *$ is continuous
(iii) $\mathrm{a} * 1=\mathrm{a}$ for all $\mathrm{a} \in[0,1]$
(iv) $\quad \mathrm{a} * \mathrm{~b} \leq \mathrm{c} * \mathrm{~d}$ whenever $\mathrm{a} \leq \mathrm{c}$ and $\mathrm{b} \leq \mathrm{d}$ for $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in[0,1]$.

Definition 2.2[14] A binary operation $\diamond:[0,1] \times[0,1] \rightarrow[0,1]$ is a continuous t - conorm if \diamond it satisfies the following conditions:
(i) $\quad \diamond$ is commutative and associative
(ii) \diamond is continuous
(iii) $\mathrm{a} \diamond 0=\mathrm{a}$ for all $\mathrm{a} \in[0,1]$
(iv) $\mathrm{a} \diamond \mathrm{b} \leq \mathrm{c} \diamond \mathrm{d}$ whenever $\mathrm{a} \leq \mathrm{c}$ and $\mathrm{b} \leq \mathrm{d}$ for $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in[0,1]$.

Definition 2.3[2] A 5-tuple ($X, M, N, *, \diamond$) is said to be an intuitionistic fuzzy metric space (shortly IFM-Space) if X is an arbitrary set, * is a continuous t -
norm, \diamond is a continuous t-conorm and M, N are fuzzy sets on $X^{2} \times(0, \infty)$ satisfying the following conditions:

For all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$ and $\mathrm{s}, \mathrm{t}>0$,
(IFM-1) M $(x, y, t)+N(x, y, t) \leq 1$
(IFM-2) $M(x, y, 0)=0$
(IFM-3) $M(x, y, t)=1$ if and only if $x=y$
(IFM-4) $M(x, y, t)=M(y, x, t)$
(IFM-5) M $(x, y, t) * M(y, z, s) \leq M(x, z, t+s)$
(IFM-6) M $(x, y, \bullet):[0, \infty) \rightarrow[0,1]$ is left continuous
(IFM-7) $\lim _{\mathrm{t} \rightarrow \infty} \mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{t})=1$
(IFM-8) $N(x, y, 0)=1$
(IFM-9) $N(x, y, t)=0$ if and only if $x=y$
$(\operatorname{IFM}-10) N(x, y, t)=N(y, x, t)$
$($ IFM-11 $) N(x, y, t) \diamond N(y, z, s) \geq N(x, z, t+s)$
$($ IFM-12 $) N(x, y, \bullet):[0, \infty) \rightarrow[0,1]$ is right continuous.
(IFM-13) $\lim _{t \rightarrow \infty} N(x, y, t)=0$
Then (M, N) is called an intuitionistic fuzzy metric on X. The functions $M(x, y, t)$ and $N(x, y, t)$ denote the degree of nearness and degree of non-nearness between x and y with respect to t , respectively.

Remark 2.1([1], [3]) Every fuzzy metric space ($\mathrm{X}, \mathrm{M}, *$) is an intuitionistic fuzzy metric space if X is of the form ($X, M, 1-M, *, \diamond$) such that $t-$ norm * and t conorm \diamond are associated, that is, $\mathrm{x} \diamond \mathrm{y}=1-((1-\mathrm{x}) *(1-\mathrm{y}))$ for any $x, y \in X$. But the converse is not true.

Example 2.1 Let (X, d) be a metric space. Define $\mathrm{a} * \mathrm{~b}=\min \{\mathrm{a}, \mathrm{b}\}$ and $\mathrm{t}-$ conorm $a \diamond b=\max \{a, b\}$ for all $x, y \in X$ and $t>0, M_{d}(x, y, t)=\frac{t}{t+d(x, y)}$ and $N_{d}(x, y, t)=\frac{d(x, y)}{t+d(x, y)}$.

Then ($\mathrm{X}, \mathrm{M}, \mathrm{N}, * \diamond$) is an intuitionistic fuzzy metric space. We call this intuitionistic fuzzy metric (M, N) induced by the metric d the standard intuitionistic fuzzy metric.

Definition 2.4[2] Let $(X, M, N, *, \diamond)$ be an Intuitionistic Fuzzy metric space, then
(a) A sequence $\left\{x_{n}\right\}$ in X is said to be convergent to x in X if for all $t>0$, $\lim _{n \rightarrow \infty} M\left(x_{n}, x, t\right)=1$ and $\lim _{n \rightarrow \infty} N\left(x_{n}, x, t\right)=0$.
(b) A sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ in X is said to be Cauchy if for allt >0 and $\mathrm{p}>$ $0, \lim _{n \rightarrow \infty} M\left(x_{n+p}, x_{n}, t\right)=1$ and $\lim _{n \rightarrow \infty} N\left(x_{n+p}, x_{n}, t\right)=0$.
(c) An Intuitionistic Fuzzy metric space in which every Cauchy sequence is convergent is said to be complete.

Definition 2.5[15] Self mappings A and B of an intuitionistic fuzzy metric space $(X, M, N, *, \diamond)$ are said to be compatible if for all $t>0, \lim _{n \rightarrow \infty} M\left(A B x_{n}\right.$, $\left.B A x_{n}, t\right)=1$ and $\lim _{n \rightarrow \infty} N\left(A B x_{n}, B A x_{n}, t\right)=0$ whenever $\left\{x_{n}\right\}$ is a sequence in X such that $\lim _{n \rightarrow \infty} A x_{n}=\lim _{n \rightarrow \infty} B x_{n}=z$ for some $z \in X$.

Definition 2.6[9] Self mappings A and B of an intuitionistic fuzzy metric space $(X, M, N, *, \diamond)$ are said to be weakly compatible if $A B x=B A x$ when $A x=B x$ for some $x \in X$.

Definition 2.7[11] Self mappings A and B of an intuitionistic fuzzy metric space $(X, M, N, *, \diamond)$ are said to be occasionally weakly compatible (owc) iff there is point $x \in X$ which is a coincidence point of A and B at which A and B commute.

Definition 2.8[11] Self mappings A and B of an intuitionistic fuzzy metric space $(X, M, N, *, \diamond)$ are said to be sub compatible iff there exists a sequence $\left\{x_{n}\right\}$ in X such that $\lim _{n \rightarrow \infty} A x_{n}=\lim _{n \rightarrow \infty} B x_{n}=z$ for some $z \in X$ and satisfy $\lim _{n \rightarrow \infty} M\left(A B x_{n}, B A x_{n}, t\right)=1$ and $\lim _{n \rightarrow \infty} N\left(A B x_{n}, B A x_{n}, t\right)=0$ for all $t>0$.

Lemma 2.1[1] Let $(X, M, N, *, \diamond)$ be an intuitionistic fuzzy metric space and for all $x, y \in X \quad$ and $t>0$ and if for a number $k \in(0,1), M(x, y, k t) \geq M(x, y, t)$ and $N(x, y, k t) \leq N(x, y, t)$. Then $x=y$.

Lemma 2.2 [1] Let $(X, M, N, *, \diamond)$ be an intuitionistic fuzzy metric space and $\left\{y_{n}\right\}$ be a sequence in X. If there exists a number $k \in[0,1]$ such that $M\left(y_{n}, y_{n+1}, k t\right) \geq$ $M\left(y_{n-1}, y_{n}, t\right), N\left(y_{n}, y_{n+1}, k t\right) \leq N\left(y_{n-1}, y_{n}, t\right)$ for all $t>0$ and $n \in N$, then $\left\{y_{n}\right\}$ is a Cauchy sequence in X.

3 Main Result

Theorem 3.1 Let A, B, S, T, P and Q be self maps on an intuitionistic fuzzy metric space $(X, M, N, *, \diamond)$ with $t * t \geq t$ and $(1-t) \diamond(1-t) \leq(1-t)$ for some $t \in[0,1]$ such that
(i) There exists a number $\mathrm{k} \in(0,1)$ such that

$$
\begin{aligned}
& M^{2}(P x, Q y, k t) *[M(A B x, P x, k t) \cdot M(S T y, Q y, k t)] \\
& \geq {[p M(A B x, P x, t)+q M(A B x, S T y, t)] . M(A B x, Q y, 2 k t) } \\
& \text { and } N^{2}(P x, Q y, k t) \diamond[N(A B x, P x, k t) \cdot N(S T y, Q y, k t)] \\
& \leq[p N(A B x, P x, t)+q N(A B x, S T y, t)] . N(A B x, Q y, 2 k t)
\end{aligned}
$$

for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ and $\mathrm{t}>0$, where $0<\mathrm{p}, \mathrm{q}<1$ such that $\mathrm{p}+\mathrm{q}=1$.
(ii) $\mathrm{AB}=\mathrm{BA}, \mathrm{ST}=\mathrm{TS}, \mathrm{PB}=\mathrm{BP}, \mathrm{QT}=\mathrm{TQ}$
(iii) AB is continuous.
(iv) The pair (P, AB) is subcompatible and (Q, ST) is occasionally weakly compatible (owc).

Then A, B, S, T, P and Q have a unique common fixed point in X.
Proof: Since the pair $(P, A B)$ is subcompatible, then there exists a sequence $\left\{x_{n}\right\}$ in X such that $\lim _{n \rightarrow \infty} P x_{n}=\lim _{n \rightarrow \infty} A B x_{n}=z$ for some $z \in X$ and satisfy $\lim _{n \rightarrow \infty} P(A B) x_{n}=\lim _{n \rightarrow \infty} A B(P) x_{n}$.

Since $A B$ is continuous, $A B(A B) x_{n} \rightarrow A B z$ and (AB)P $x_{n} \rightarrow A B z$.
Since $(P, A B)$ is subcompatible, $P(A B) x_{n} \rightarrow A B z$.
Since (Q, ST) is occasionally weakly compatible, then there exists a point $\mathrm{v} \in \mathrm{X}$ such that $\mathrm{Qv}=\mathrm{STv}$ and $\mathrm{QSTv}=\mathrm{STQv}$.

Step-1: By taking $x=x_{n}$ and $y=v$ in (i), we have

$$
\begin{aligned}
& M^{2}\left(\mathrm{Px}_{\mathrm{n}}, \mathrm{Qv}, \mathrm{kt}\right) *\left[\mathrm{M}\left(\mathrm{ABx}_{\mathrm{n}}, \mathrm{Px} \mathrm{x}_{\mathrm{n}}, \mathrm{kt}\right) . \mathrm{M}(\mathrm{STv}, \mathrm{Qv}, \mathrm{kt})\right] \\
& \geq\left[\mathrm{pM}\left(\mathrm{ABx}_{\mathrm{n}}, \mathrm{Px}_{\mathrm{n}}, \mathrm{t}\right)+\mathrm{qM}\left(\mathrm{ABx}_{\mathrm{n}}, \mathrm{STv}, \mathrm{t}\right)\right] \cdot \mathrm{M}\left(\mathrm{ABx}_{\mathrm{n}}, \mathrm{Qv}, 2 \mathrm{kt}\right) \\
& \text { and } N^{2}\left(\mathrm{Px}_{\mathrm{n}}, \mathrm{Qv}, \mathrm{kt}\right) \diamond\left[\mathrm{N}\left(\mathrm{ABx}_{\mathrm{n}}, \mathrm{Px} \mathrm{x}_{\mathrm{n}}, \mathrm{kt}\right) . \mathrm{N}(\mathrm{STv}, \mathrm{Qv}, \mathrm{kt})\right] \\
& \leq\left[p N\left(A B x_{n}, P x_{n}, t\right)+q N\left(A B x_{n}, S T v, t\right)\right] . N\left(A B x_{n}, Q v, 2 k t\right)
\end{aligned}
$$

Taking limit as $\mathrm{n} \rightarrow \infty$ and using $\mathrm{Qv}=\mathrm{STv}$, we have

$$
\begin{aligned}
\mathrm{M}^{2}(\mathrm{z}, \mathrm{Qv}, \mathrm{kt}) & *[\mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{kt}) \cdot \mathrm{M}(\mathrm{Qv}, \mathrm{Qv}, \mathrm{kt})] \\
& \geq[\mathrm{pM}(\mathrm{z}, \mathrm{z}, \mathrm{t})+\mathrm{qM}(\mathrm{z}, \mathrm{Qv}, \mathrm{t})] . \mathrm{M}(\mathrm{z}, \mathrm{Qv}, 2 \mathrm{kt})
\end{aligned}
$$

$$
\begin{gathered}
\Rightarrow M^{2}(\mathrm{z}, \mathrm{Qv}, \mathrm{kt}) \geq[\mathrm{p}+\mathrm{qM}(\mathrm{z}, \mathrm{Qv}, \mathrm{t})] \cdot \mathrm{M}(\mathrm{z}, \mathrm{Qv}, 2 \mathrm{kt}) \\
\Rightarrow \mathrm{M}^{2}(\mathrm{z}, \mathrm{Qv}, \mathrm{kt}) \geq[\mathrm{p}+\mathrm{qM}(\mathrm{z}, \mathrm{Qv}, \mathrm{t})] \cdot \mathrm{M}(\mathrm{z}, \mathrm{Qv}, \mathrm{kt}) \\
\Rightarrow M(\mathrm{z}, \mathrm{Qv}, \mathrm{kt}) \geq \frac{\mathrm{p}}{1-q}=1 .
\end{gathered}
$$

$$
\begin{aligned}
& \text { and } N^{2}(z, Q v, k t) \diamond[N(z, z, k t) \cdot N(Q v, Q v, k t)] \\
& \quad \geq[p N(z, z, t)+q N(z, Q v, t)] \cdot N(z, Q v, 2 k t) \\
& \Rightarrow N^{2}(z, Q v, k t) \leq q N(z, Q v, t) \cdot N(z, Q v, 2 k t) \\
& \leq q N(z, Q v, t) \cdot N(z, Q v, k t) \\
& \Rightarrow N(z, Q v, k t) \leq 0 \text { for } k \in(0,1) \text { and all } t>0 .
\end{aligned}
$$

Therefore, we have $\mathrm{z}=\mathrm{Qv}$ and so $\mathrm{z}=\mathrm{Qv}=\mathrm{STv}$, then we get $\mathrm{Qz}=\mathrm{STz}$.
Step-2: By taking $x=A B x_{n}$ and $y=v$ in (i), we have

$$
\begin{aligned}
M^{2}\left(P(A B) x_{n}\right. & , Q v, k t) *\left[M\left(A B(A B) x_{n}, P(A B) x_{n}, k t\right) \cdot M(S T v, Q v, k t)\right] \\
& \geq\left[p M\left(A B(A B) x_{n}, P(A B) x_{n}, t\right)\right. \\
& \left.+q M\left(A B(A B) x_{n}, S T v, t\right)\right] \cdot M\left(A B(A B) x_{n}, Q v, 2 k t\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { and } N^{2}\left(P(A B) x_{n}, Q v, k t\right) \diamond\left[N\left(A B(A B) x_{n}, P(A B) x_{n}, k t\right) \cdot N(S T v, Q v, k t)\right] \\
& \leq\left[p N\left(A B(A B) x_{n}, P(A B) x_{n}, t\right)\right. \\
&\left.+q N\left(A B(A B) x_{n}, S T v, t\right)\right] . N\left(A B(A B) x_{n}, Q v, 2 k t\right)
\end{aligned}
$$

Taking limit as $n \rightarrow \infty$ and using $\mathrm{z}=\mathrm{Qv}=\mathrm{STv}$, we have

$$
\begin{aligned}
& \begin{aligned}
& M^{2}(\mathrm{ABz}, \mathrm{z}, \mathrm{kt}) *[\mathrm{M}(\mathrm{ABz}, \mathrm{ABz}, \mathrm{kt}) \cdot \mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{kt})] \\
& \geq {[\mathrm{pM}(\mathrm{ABz}, \mathrm{ABz}, \mathrm{t})+\mathrm{qM}(\mathrm{ABz}, \mathrm{z}, \mathrm{t})] \cdot \mathrm{M}(\mathrm{ABz}, \mathrm{z}, 2 \mathrm{kt}) } \\
& \Rightarrow \mathrm{M}^{2}(\mathrm{ABz}, \mathrm{z}, \mathrm{kt}) \geq[\mathrm{p}+\mathrm{qM}(\mathrm{ABz}, \mathrm{z}, \mathrm{t})] \cdot \mathrm{M}(\mathrm{ABz}, \mathrm{z}, 2 \mathrm{kt}) \\
& \geq {[\mathrm{p}+\mathrm{qM}(\mathrm{ABz}, \mathrm{z}, \mathrm{t})] \cdot \mathrm{M}(\mathrm{ABz}, \mathrm{z}, \mathrm{kt}) } \\
& \Rightarrow \mathrm{M}(\mathrm{ABz}, \mathrm{z}, \mathrm{kt}) \geq[\mathrm{p}+\mathrm{qM}(\mathrm{ABz}, \mathrm{z}, \mathrm{t})] \\
& \geq {[\mathrm{p}+\mathrm{qM}(\mathrm{ABz}, \mathrm{z}, \mathrm{kt})] } \\
& \Rightarrow \mathrm{M}(\mathrm{ABz}, \mathrm{z}, \mathrm{kt}) \geq \frac{\mathrm{p}}{1-\mathrm{q}}=1 . \\
& \operatorname{andN}^{2}(\mathrm{ABz}, \mathrm{z}, \mathrm{kt}) \diamond \diamond[\mathrm{N}(\mathrm{ABz}, \mathrm{ABz}, \mathrm{kt}) \cdot \mathrm{N}(\mathrm{z}, \mathrm{z}, \mathrm{kt})] \\
& \leq {[\mathrm{pN}(\mathrm{ABz}, \mathrm{ABz}, \mathrm{t})+\mathrm{qN}(\mathrm{ABz}, \mathrm{z}, \mathrm{t})] . \mathrm{N}(\mathrm{ABz}, \mathrm{z}, 2 \mathrm{kt}) }
\end{aligned}
\end{aligned}
$$

$$
\left.\begin{array}{c}
\mathrm{N}^{2}(\mathrm{ABz}, \mathrm{z}, \mathrm{kt}) \leq \mathrm{qN}(\mathrm{ABz}, \mathrm{z}, \mathrm{t}) \cdot \mathrm{N}(\mathrm{ABz}, \mathrm{z}, 2 \mathrm{kt}) \\
\leq \mathrm{qN}(\mathrm{ABz}, \mathrm{z}, \mathrm{t}) \cdot \mathrm{N}(\mathrm{ABz}, \mathrm{z}, \mathrm{kt}) \\
\mathrm{N}(\mathrm{ABz}, \mathrm{z}, \mathrm{kt}) \leq \mathrm{qN}(\mathrm{ABz}, \mathrm{z}, \mathrm{t}) \leq \mathrm{qN}(\mathrm{ABz}, \mathrm{z}, \mathrm{kt}) \\
\mathrm{N}(\mathrm{ABz}, \mathrm{z}, \mathrm{kt})
\end{array}\right) \leq 0 \text { for } \mathrm{k} \in(0,1) \text { and all } t>0 . ~ \$
$$

Thus, we have $z=A B z$.
Step-3: By taking $x=z$ and $y=v$ in (i), we have

$$
\begin{aligned}
\mathrm{M}^{2}(\mathrm{Pz}, \mathrm{Qv}, \mathrm{kt}) & *[\mathrm{M}(\mathrm{ABz}, \mathrm{Pz}, \mathrm{kt}) \cdot \mathrm{M}(\mathrm{STv}, \mathrm{Qv}, \mathrm{kt})] \\
\geq & \geq[\mathrm{pM}(\mathrm{ABz}, \mathrm{Pz}, \mathrm{t})+\mathrm{qM}(\mathrm{ABz}, \mathrm{STv}, \mathrm{t})] \cdot \mathrm{M}(\mathrm{ABz}, \mathrm{Qv}, 2 \mathrm{kt}) \\
\text { and } \mathrm{N}^{2}(\mathrm{Pz}, \mathrm{Qv}, \mathrm{kt}) & \diamond[\mathrm{N}(\mathrm{ABz}, \mathrm{Pz}, \mathrm{kt}) \cdot \mathrm{N}(\mathrm{STv}, \mathrm{Qv}, \mathrm{kt})] \\
& \leq[\mathrm{pN}(\mathrm{ABz}, \mathrm{Pz}, \mathrm{t})+\mathrm{qN}(\mathrm{ABz}, \mathrm{STv}, \mathrm{t})] . \mathrm{N}(\mathrm{ABz}, \mathrm{Qv}, 2 \mathrm{kt})
\end{aligned}
$$

Using $\mathrm{z}=\mathrm{Qv}=\mathrm{STv}=\mathrm{ABz}$; we have

$$
\begin{aligned}
& M^{2}(\mathrm{Pz}, \mathrm{z}, \mathrm{kt}) *[\mathrm{M}(\mathrm{z}, \mathrm{Pz}, \mathrm{kt}) \cdot \mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{kt})] \\
& \geq[\mathrm{pM}(\mathrm{z}, \mathrm{Pz}, \mathrm{t})+\mathrm{qM}(\mathrm{z}, \mathrm{z}, \mathrm{t})] \cdot \mathrm{M}(\mathrm{z}, \mathrm{z}, 2 \mathrm{kt}) \\
& \Rightarrow \mathrm{M}^{2}(\mathrm{z}, \mathrm{Pz}, \mathrm{kt}) * \mathrm{M}(\mathrm{z}, \mathrm{Pz}, \mathrm{kt}) \geq[\mathrm{pM}(\mathrm{z}, \mathrm{Pz}, \mathrm{t})+\mathrm{q}]
\end{aligned}
$$

Since $\mathrm{M}^{2}(\mathrm{Pz}, \mathrm{z}, \mathrm{kt}) \leq 1$ and using (iii) in definition 2.1, we have

$$
\begin{aligned}
& \begin{aligned}
& \mathrm{M}(\mathrm{z}, \mathrm{Pz}, \mathrm{kt}) \geq[\mathrm{pM}(\mathrm{z}, \mathrm{Pz}, \mathrm{t})+\mathrm{q}] \geq \mathrm{pM}(\mathrm{z}, \mathrm{Pz}, \mathrm{kt})+\mathrm{q} \\
& \Rightarrow \mathrm{M}(\mathrm{z}, \mathrm{Pz}, \mathrm{kt}) \geq \frac{\mathrm{q}}{1-\mathrm{p}}=1 . \\
& \text { and } \mathrm{N}^{2}(\mathrm{Pz}, \mathrm{z}, \mathrm{kt}) \diamond[\mathrm{N}(\mathrm{z}, \mathrm{Pz}, \mathrm{kt}) \cdot \mathrm{N}(\mathrm{z}, \mathrm{z}, \mathrm{kt})] \\
& \leq[\mathrm{pN}(\mathrm{z}, \mathrm{Pz}, \mathrm{t})+\mathrm{qN}(\mathrm{z}, \mathrm{z}, \mathrm{t})] \cdot \mathrm{N}(\mathrm{z}, \mathrm{z}, 2 \mathrm{kt}) \\
& \Rightarrow \mathrm{N}^{2}(\mathrm{Pz}, \mathrm{z}, \mathrm{kt}) \leq 0
\end{aligned} \\
& \Rightarrow \mathrm{~N}(\mathrm{Pz}, \mathrm{z}, \mathrm{kt}) \leq 0 \text { for } \mathrm{k} \in(0,1) \text { and all } t>0 .
\end{aligned}
$$

Thus, we have $z=P z=A B z$.
Step-4: By taking $x=x_{n}$ and $y=z$ in (i), we have

$$
\begin{aligned}
\mathrm{M}^{2}\left(\mathrm{Px}_{\mathrm{n}}, \mathrm{Qz}, \mathrm{kt}\right) & *\left[\mathrm{M}\left(\mathrm{ABx}_{\mathrm{n}}, \mathrm{Px}_{\mathrm{n}}, \mathrm{kt}\right) \cdot \mathrm{M}(\mathrm{STz}, \mathrm{Qz}, \mathrm{kt})\right] \\
& \geq\left[\mathrm{pM}^{\left.\left(\mathrm{ABx}_{n}, \mathrm{Px}_{n}, \mathrm{t}\right)+\mathrm{qM}\left(\mathrm{ABx}_{\mathrm{n}}, \mathrm{STz}, \mathrm{t}\right)\right] . \mathrm{M}\left(\mathrm{ABx}_{\mathrm{n}}, \mathrm{Qz}, 2 \mathrm{kt}\right)}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { and } N^{2}\left(\mathrm{Px}_{\mathrm{n}}, \mathrm{Qz}, \mathrm{kt}\right) \diamond\left[\mathrm{N}\left(\mathrm{ABx}_{\mathrm{n}}, \mathrm{Px}_{\mathrm{n}}, \mathrm{kt}\right) . \mathrm{N}(\mathrm{STz}, \mathrm{Qz}, \mathrm{kt})\right] \\
& \leq\left[p N\left(A B x_{n}, P x_{n}, t\right)+q N\left(A B x_{n}, S T z, t\right)\right] . N\left(A B x_{n}, Q z, 2 k t\right)
\end{aligned}
$$

Taking limit as $\mathrm{n} \rightarrow \infty$ and using $\mathrm{Qz}=\mathrm{STz}$, we have

$$
\begin{aligned}
& M^{2}(\mathrm{z}, \mathrm{Qz}, \mathrm{kt}) *[\mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{kt}) \cdot \mathrm{M}(\mathrm{Qz}, \mathrm{Qz}, \mathrm{kt})] \\
& \geq[\mathrm{pM}(\mathrm{z}, \mathrm{z}, \mathrm{t})+\mathrm{qM}(\mathrm{z}, \mathrm{Qz}, \mathrm{t})] \cdot \mathrm{M}(\mathrm{z}, \mathrm{Qz}, 2 \mathrm{kt}) \\
& \Rightarrow M^{2}(\mathrm{z}, \mathrm{Qz}, \mathrm{kt}) \geq[\mathrm{p}+\mathrm{qM}(\mathrm{z}, \mathrm{Qz}, \mathrm{t})] . \mathrm{M}(\mathrm{z}, \mathrm{Qz}, 2 \mathrm{kt}) \\
& \geq[p+q M(z, Q z, t)] M(z, Q z, k t) \\
& \Rightarrow M(z, Q z, k t) \geq[p+q M(z, Q z, t)] \geq[p+q M(z, Q z, k t)] . \\
& \Rightarrow \mathrm{M}(\mathrm{z}, \mathrm{Qz}, \mathrm{kt}) \geq \frac{\mathrm{p}}{1-\mathrm{q}}=1 . \\
& \text { and } \mathrm{N}^{2}(\mathrm{z}, \mathrm{Qz}, \mathrm{kt}) \diamond[\mathrm{N}(\mathrm{z}, \mathrm{z}, \mathrm{kt}) . \mathrm{N}(\mathrm{Qz}, \mathrm{Qz}, \mathrm{kt})] \\
& \geq[\mathrm{pN}(\mathrm{z}, \mathrm{z}, \mathrm{t})+\mathrm{qN}(\mathrm{z}, \mathrm{Qz}, \mathrm{t})] . \mathrm{N}(\mathrm{z}, \mathrm{Qz}, 2 \mathrm{kt}) \\
& \Rightarrow \mathrm{N}^{2}(\mathrm{z}, \mathrm{Qz}, \mathrm{kt}) \leq \mathrm{qN}(\mathrm{z}, \mathrm{Qz}, \mathrm{t}) \cdot \mathrm{N}(\mathrm{z}, \mathrm{Qz}, 2 \mathrm{kt}) \\
& \leq \mathrm{qN}(\mathrm{z}, \mathrm{Qz}, \mathrm{t}) \cdot \mathrm{N}(\mathrm{z}, \mathrm{Qz}, \mathrm{kt}) \\
& \Rightarrow \mathrm{N}(\mathrm{z}, \mathrm{Qz}, \mathrm{kt}) \leq \mathrm{qN}(\mathrm{z}, \mathrm{Qz}, \mathrm{t}) \leq \mathrm{qN}(\mathrm{z}, \mathrm{Qz}, \mathrm{kt}) \\
& \Rightarrow \mathrm{N}(\mathrm{z}, \mathrm{Qz}, \mathrm{kt}) \leq 0 \text { for } \mathrm{k} \in(0,1) \text { and all } \mathrm{t}>0 \text {. }
\end{aligned}
$$

Thus, we have $\mathrm{z}=\mathrm{Qz}$ and therefore $\mathrm{z}=\mathrm{ABz}=\mathrm{Pz}=\mathrm{Qz}=\mathrm{STz}$.
Step-5: By taking $x=B z$ and $y=z$ in (i), we have

$$
\begin{gathered}
M^{2}(P(B) z, Q z, k t) *[M(A B(B) z, P(B) z, k t) \cdot M(S T z, Q z, k t)] \\
\geq[p M(A B(B) z, P(B) z, t) \\
\\
+q M(A B(B) z, S T z, t)] \cdot M(A B(B) z, Q z, 2 k t)
\end{gathered}
$$

and $N^{2}(P(B) z, Q z, k t) \diamond[N(A B(B) z, P(B) z, k t) . N(S T z, Q z, k t)]$

$$
\begin{aligned}
& \leq[\mathrm{pN}(\mathrm{AB}(\mathrm{~B}) \mathrm{z}, \mathrm{P}(\mathrm{~B}) \mathrm{z}, \mathrm{t}) \\
& +\mathrm{qN}(\mathrm{AB}(\mathrm{~B}) \mathrm{z}, \mathrm{STz}, \mathrm{t})] \cdot \mathrm{N}(\mathrm{AB}(\mathrm{~B}) \mathrm{z}, \mathrm{Qz}, 2 \mathrm{kt})
\end{aligned}
$$

Since $A B=B A$ and $P B=B P$, we have $P(B) z=B(P) z=B z$ and $A B(B) z=$ $B(A B) z=B z$ and using $Q z=S T z=z$; we have

$$
\begin{aligned}
\mathrm{M}^{2}(\mathrm{Bz}, \mathrm{z}, \mathrm{kt}) & *[\mathrm{M}(\mathrm{Bz}, \mathrm{Bz}, \mathrm{kt}) . \mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{kt})] \\
& \geq[\mathrm{pM}(\mathrm{Bz}, \mathrm{Bz}, \mathrm{t})+\mathrm{qM}(\mathrm{Bz}, \mathrm{z}, \mathrm{t})] . \mathrm{M}(\mathrm{Bz}, \mathrm{z}, 2 \mathrm{kt})
\end{aligned}
$$

$$
\begin{gathered}
\Rightarrow M^{2}(\mathrm{Bz}, \mathrm{z}, \mathrm{kt}) \geq[\mathrm{p}+\mathrm{qM}(\mathrm{Bz}, \mathrm{z}, \mathrm{t})] \cdot \mathrm{M}(\mathrm{Bz}, \mathrm{z}, 2 \mathrm{kt}) \\
\geq[\mathrm{p}+\mathrm{qM}(\mathrm{Bz}, \mathrm{z}, \mathrm{t})] \cdot \mathrm{M}(\mathrm{Bz}, \mathrm{z}, \mathrm{kt}) \\
\mathrm{M}(\mathrm{Bz}, \mathrm{z}, \mathrm{kt}) \geq[\mathrm{p}+\mathrm{qM}(\mathrm{Bz}, \mathrm{z}, \mathrm{t})] \geq[\mathrm{p}+\mathrm{qM}(\mathrm{Bz}, \mathrm{z}, \mathrm{kt})] \\
\Rightarrow \mathrm{M}(\mathrm{Bz}, \mathrm{z}, \mathrm{kt}) \geq \frac{\mathrm{p}}{1-\mathrm{q}}=1 . \\
\text { and } \mathrm{N}^{2}(\mathrm{Bz}, \mathrm{z}, \mathrm{kt}) \diamond[\mathrm{N}(\mathrm{Bz}, \mathrm{Bz}, \mathrm{kt}) \cdot \mathrm{N}(\mathrm{z}, \mathrm{z}, \mathrm{kt})] \\
\leq[\mathrm{pN}(\mathrm{Bz}, \mathrm{Bz}, \mathrm{t})+\mathrm{qN}(\mathrm{Bz}, \mathrm{z}, \mathrm{t})] \cdot \mathrm{N}(\mathrm{Bz}, \mathrm{z}, 2 \mathrm{kt}) \\
\Rightarrow \mathrm{N}^{2}(\mathrm{Bz}, \mathrm{z}, \mathrm{kt}) \leq \mathrm{qN}(\mathrm{Bz}, \mathrm{z}, \mathrm{t}) \cdot \mathrm{N}(\mathrm{Bz}, \mathrm{z}, 2 \mathrm{kt}) \\
\quad \leq \mathrm{qN}(\mathrm{Bz}, \mathrm{z}, \mathrm{t}) \cdot \mathrm{N}(\mathrm{Bz}, \mathrm{z}, \mathrm{kt})
\end{gathered}
$$

Thus, we have $\mathrm{z}=\mathrm{Bz}$. since $\mathrm{z}=\mathrm{ABz}$, we also have $\mathrm{z}=\mathrm{Az}$, therefore $\mathrm{z}=\mathrm{Az}=$ $\mathrm{Bz}=\mathrm{Pz}=\mathrm{Qz}=\mathrm{STz}$.

Step-6: By taking $\mathrm{x}=\mathrm{x}_{\mathrm{n}}$ and $\mathrm{y}=\mathrm{Tz}$ in (i), we have

$$
\begin{aligned}
& \mathrm{M}^{2}\left(\mathrm{Px}_{\mathrm{n}}, \mathrm{Q}(\mathrm{Tz}), \mathrm{kt}\right) *\left[\mathrm{M}_{\left.\left(\mathrm{ABx}_{\mathrm{n}}, \mathrm{Px}_{\mathrm{n}}, \mathrm{kt}\right) \cdot \mathrm{M}(\mathrm{ST}(\mathrm{Tz}), \mathrm{Q}(\mathrm{Tz}), \mathrm{kt})\right]}\right. \\
& \geq\left[\mathrm{pM}\left(\mathrm{ABx}_{\mathrm{n}}, \mathrm{Px}_{\mathrm{n}}, \mathrm{t}\right)\right. \\
&\left.+\mathrm{qM}\left(\mathrm{ABx}_{\mathrm{n}}, \mathrm{ST}(\mathrm{Tz}), \mathrm{t}\right)\right] \cdot \mathrm{M}\left(\mathrm{ABx}_{\mathrm{n}}, \mathrm{Q}(\mathrm{Tz}), 2 \mathrm{kt}\right)
\end{aligned}
$$

and $N^{2}\left(\mathrm{Px}_{\mathrm{n}}, \mathrm{Q}(\mathrm{Tz}), \mathrm{kt}\right) \diamond\left[\mathrm{N}\left(\mathrm{ABx}_{\mathrm{n}}, \mathrm{Px}_{\mathrm{n}}, \mathrm{kt}\right) . \mathrm{N}(\mathrm{ST}(\mathrm{Tz}), \mathrm{Q}(\mathrm{Tz}), \mathrm{kt})\right]$

$$
\leq\left[\mathrm{pN}\left(\mathrm{ABx}_{\mathrm{n}}, \mathrm{Px}_{\mathrm{n}}, \mathrm{t}\right)+\mathrm{qN}\left(\mathrm{ABx}_{\mathrm{n}}, \mathrm{ST}(\mathrm{Tz}), \mathrm{t}\right)\right] . \mathrm{N}\left(\mathrm{ABx}_{\mathrm{n}}, \mathrm{Q}(\mathrm{Tz}), 2 \mathrm{kt}\right)
$$

Since $\mathrm{QT}=\mathrm{TQ}$ and $\mathrm{ST}=\mathrm{TS}$, we have $\mathrm{QTz}=\mathrm{TQz}=\mathrm{Tz}$ and $\mathrm{ST}(\mathrm{Tz})=\mathrm{T}(\mathrm{STz})=$ Tz.

Letting $n \rightarrow \infty$, we have

$$
\begin{aligned}
& M^{2}(\mathrm{z}, \mathrm{Tz}, \mathrm{kt}) * {[\mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{kt}) \cdot \mathrm{M}(\mathrm{Tz}, \mathrm{Tz}, \mathrm{kt})] } \\
& \geq \geq[\mathrm{pM}(\mathrm{z}, \mathrm{z}, \mathrm{t})+\mathrm{qM}(\mathrm{z}, \mathrm{Tz}, \mathrm{t})] \cdot \mathrm{M}(\mathrm{z}, \mathrm{Tz}, 2 \mathrm{kt}) \\
& \Rightarrow \mathrm{M}^{2}(\mathrm{z}, \mathrm{Tz}, \mathrm{kt}) \geq[\mathrm{p}+\mathrm{qM}(\mathrm{z}, \mathrm{Tz}, \mathrm{t})] \cdot \mathrm{M}(\mathrm{z}, \mathrm{Tz}, 2 \mathrm{kt}) \\
& \geq {[\mathrm{p}+\mathrm{qM}(\mathrm{z}, \mathrm{Tz}, \mathrm{t})] \mathrm{M}(\mathrm{z}, \mathrm{Tz}, \mathrm{kt}) } \\
& \Rightarrow M(\mathrm{z}, \mathrm{Tz}, \mathrm{kt}) \geq[\mathrm{p}+\mathrm{qM}(\mathrm{z}, \mathrm{Tz}, \mathrm{t})] \geq[\mathrm{p}+\mathrm{qM}(\mathrm{z}, \mathrm{Tz}, \mathrm{kt})] .
\end{aligned}
$$

$$
\begin{gathered}
\Rightarrow \mathrm{M}(\mathrm{z}, \mathrm{Tz}, \mathrm{kt}) \geq \frac{\mathrm{p}}{1-\mathrm{q}}=1 \\
\operatorname{and} \mathrm{~N}^{2}(\mathrm{z}, \mathrm{Tz}, \mathrm{kt}) \diamond[\mathrm{N}(\mathrm{z}, \mathrm{z}, \mathrm{kt}) \cdot \mathrm{N}(\mathrm{Tz}, \mathrm{Tz}, \mathrm{kt})] \\
\geq[\mathrm{pN}(\mathrm{z}, \mathrm{z}, \mathrm{t})+\mathrm{qN}(\mathrm{z}, \mathrm{Tz}, \mathrm{t})] \cdot \mathrm{N}(\mathrm{z}, \mathrm{Tz}, 2 \mathrm{kt}) \\
\Rightarrow \mathrm{N}^{2}(\mathrm{z}, \mathrm{Tz}, \mathrm{kt}) \leq \mathrm{qN}(\mathrm{z}, \mathrm{Tz}, \mathrm{t}) \cdot \mathrm{N}(\mathrm{z}, \mathrm{Tz}, 2 \mathrm{kt}) \\
\leq \mathrm{qN}(\mathrm{z}, \mathrm{Tz}, \mathrm{t}) \cdot \mathrm{N}(\mathrm{z}, \mathrm{Tz}, \mathrm{kt}) \\
\Rightarrow \mathrm{N}(\mathrm{z}, \mathrm{Tz}, \mathrm{kt}) \leq \mathrm{qN}(\mathrm{z}, \mathrm{Tz}, \mathrm{t}) \leq \mathrm{qN}(\mathrm{z}, \mathrm{Tz}, \mathrm{kt}) \\
\Rightarrow \mathrm{N}(\mathrm{z}, \mathrm{Tz}, \mathrm{kt}) \leq 0 \text { for } \mathrm{k} \in(0,1) \text { and all } \mathrm{t}>0
\end{gathered}
$$

Thus, we have $\mathrm{z}=\mathrm{Tz}$. Since $\mathrm{Tz}=\mathrm{STz}$, we also have $\mathrm{z}=$ Sz. Therefore $\mathrm{z}=\mathrm{Az}=$ $\mathrm{Bz}=\mathrm{Pz}=\mathrm{Qz}=\mathrm{Sz}=\mathrm{Tz}$, that is, z is the common fixed point of the six maps.

Step-7: For uniqueness, let $w,(w \neq z)$ be another common fixed point of A, B, S, T, P and Q.

By taking $x=z$ and $y=w$ in (i), we have

$$
\begin{aligned}
\mathrm{M}^{2}(\mathrm{Pz}, \mathrm{Qw}, \mathrm{kt}) & *[\mathrm{M}(\mathrm{ABz}, \mathrm{Pz}, \mathrm{kt}) \cdot \mathrm{M}(\mathrm{STw}, \mathrm{Qw}, \mathrm{kt})] \\
& \geq[\mathrm{pM}(\mathrm{ABz}, \mathrm{Pz}, \mathrm{t})+\mathrm{qM}(\mathrm{ABz}, \mathrm{STw}, \mathrm{t})] . \mathrm{M}(\mathrm{ABz}, \mathrm{Qw}, 2 \mathrm{kt})
\end{aligned}
$$

$$
\text { and } \mathrm{N}^{2}(\mathrm{Pz}, \mathrm{Qw}, \mathrm{kt}) \diamond[\mathrm{N}(\mathrm{ABz}, \mathrm{Pz}, \mathrm{kt}) . \mathrm{N}(\mathrm{STw}, \mathrm{Qw}, \mathrm{kt})]
$$

$$
\leq[\mathrm{pN}(\mathrm{ABz}, \mathrm{Pz}, \mathrm{t})+\mathrm{qN}(\mathrm{ABz}, \mathrm{STw}, \mathrm{t})] \cdot \mathrm{N}(\mathrm{ABz}, \mathrm{Qw}, 2 \mathrm{kt})
$$

Which implies that

$$
\begin{aligned}
& M^{2}(\mathrm{z}, \mathrm{w}, \mathrm{kt}) * {[\mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{kt}) \cdot \mathrm{M}(\mathrm{w}, \mathrm{w}, \mathrm{kt})] } \\
& \geq {[\mathrm{pM}(\mathrm{z}, \mathrm{z}, \mathrm{t})+\mathrm{qM}(\mathrm{z}, \mathrm{w}, \mathrm{t})] \cdot \mathrm{M}(\mathrm{z}, \mathrm{w}, 2 \mathrm{kt}) } \\
& \Rightarrow \mathrm{M}^{2}(\mathrm{z}, \mathrm{w}, \mathrm{kt}) \geq[\mathrm{p}+\mathrm{qM}(\mathrm{z}, \mathrm{w}, \mathrm{t})] \cdot \mathrm{M}(\mathrm{z}, \mathrm{w}, 2 \mathrm{kt}) \\
& \geq {[\mathrm{p}+\mathrm{qM}(\mathrm{z}, \mathrm{w}, \mathrm{t})] \cdot \mathrm{M}(\mathrm{z}, \mathrm{w}, \mathrm{kt}) } \\
& \Rightarrow \mathrm{M}(\mathrm{z}, \mathrm{w}, \mathrm{kt}) \geq \mathrm{p}+\mathrm{qM}(\mathrm{z}, \mathrm{w}, \mathrm{t}) \geq \mathrm{p}+\mathrm{qM}(\mathrm{z}, \mathrm{w}, \mathrm{kt}) \\
& \Rightarrow \mathrm{M}(\mathrm{z}, \mathrm{w}, \mathrm{kt}) \geq \frac{\mathrm{p}}{1-\mathrm{q}}=1 . \\
& \text { and } \mathrm{N}^{2}(\mathrm{z}, \mathrm{w}, \mathrm{kt}) \diamond[\mathrm{N}(\mathrm{z}, \mathrm{z}, \mathrm{kt}) \cdot \mathrm{N}(\mathrm{w}, \mathrm{w}, \mathrm{kt})] \\
& \geq\geq \mathrm{pN}(\mathrm{z}, \mathrm{z}, \mathrm{t})+\mathrm{qN}(\mathrm{z}, \mathrm{w}, \mathrm{t})] \cdot \mathrm{N}(\mathrm{z}, \mathrm{w}, 2 \mathrm{kt}) \\
& \Rightarrow \mathrm{N}^{2}(\mathrm{z}, \mathrm{w}, \mathrm{kt}) \leq \mathrm{qN}(\mathrm{z}, \mathrm{w}, \mathrm{t}) \cdot \mathrm{N}(\mathrm{z}, \mathrm{w}, 2 \mathrm{kt})
\end{aligned}
$$

$$
\begin{gathered}
\leq \mathrm{qN}(\mathrm{z}, \mathrm{w}, \mathrm{t}) \cdot \mathrm{N}(\mathrm{z}, \mathrm{w}, \mathrm{kt}) \\
\Rightarrow \mathrm{N}(\mathrm{z}, \mathrm{w}, \mathrm{kt}) \leq \mathrm{qN}(\mathrm{z}, \mathrm{w}, \mathrm{t}) \mathrm{q} \leq \mathrm{N}(\mathrm{z}, \mathrm{w}, \mathrm{kt}) \\
\Rightarrow \mathrm{N}(\mathrm{z}, \mathrm{w}, \mathrm{kt}) \leq 0 \text { for } \mathrm{k} \in(0,1) \text { and all } \mathrm{t}>0 .
\end{gathered}
$$

Thus, we have $\mathrm{z}=\mathrm{w}$. This completes the proof of the theorem.

If we take $B=T=I_{X}$ (the identity map on X) in the main theorem, we have the following:

Corollary 3.2: Let A, S, P and Q be self maps on an intuitionistic fuzzy metric space $(X, M, N, *, \diamond)$ with $t * t \geq t$ and $(1-t) \diamond(1-t) \leq(1-t)$ for some $t \in[0,1]$ such that
(i) There exists a number $k \in(0,1)$ such that

$$
\begin{aligned}
M^{2}(P x, Q y, k t) & *[M(A x, P x, k t) \cdot M(S y, Q y, k t)] \\
& \geq[p M(A x, P x, t)+q M(A x, S y, t)] \cdot M(A x, Q y, 2 k t) \\
N^{2}(P x, Q y, k t) & \diamond[N(A x, P x, k t) \cdot N(S y, Q y, k t)] \\
& \leq[p N(A x, P x, t)+q N(A x, S y, t)] . N(A x, Q y, 2 k t)
\end{aligned}
$$

for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ and $\mathrm{t}>0$, where $0<\mathrm{p}, \mathrm{q}<1$ such that $\mathrm{p}+\mathrm{q}=1$.
(ii) A is continuous.
(iii) The pair (P, A) is subcompatible and (Q, S) is occasionally weakly compatible (owc).

Then A, S, P and Q have a unique common fixed point in X .
Example 3.3 Let $X=\left\{\frac{1}{n}: n \in N\right\} \cup\{0\}$ with metric d defined by $d(x, y)=|x-y|$. For all $x, y \in X$ and $t \in(0, \infty)$, define

$$
M(x, y, t)=\frac{t}{t+|x-y|}, N(x, y, t)=\frac{|x-y|}{t+|x-y|}, M(x, y, 0)=0, N(x, y, 0)=1 .
$$

Clearly ($\mathrm{X}, \mathrm{M}, \mathrm{N}, *, \diamond$) is an Intuitionistic Fuzzy metric space, where $*$ and \diamond are defined by $a * \mathrm{~b}=\min \{\mathrm{a}, \mathrm{b}\}$ and $\mathrm{a} \diamond \mathrm{b}=\min \{1, \mathrm{a}+\mathrm{b}\}$.

Let $\mathrm{A}, \mathrm{B}, \mathrm{S}, \mathrm{T}, \mathrm{P}$ and Q be maps from X into itself defined as $A x=x, B x=$ $\frac{x}{2}, S x=\frac{x}{5}, T x=\frac{x}{3}, P x=0, Q x=\frac{x}{6}$ for all $x \in \mathrm{X}$.

Clearly $\mathrm{AB}=\mathrm{BA}, \mathrm{ST}=\mathrm{TS}, \mathrm{PB}=\mathrm{BP}, \mathrm{QT}=\mathrm{TQ}$ and AB is continuous. If we take $\mathrm{k}=0.5$ and $\mathrm{t}=1$, we see that the condition (i) of the main theorem is also satisfied.
Moreover, the maps P and AB are subcompatible if $\lim _{n \rightarrow \infty} x_{n}=0$, where $\left\{x_{n}\right\}$ is a sequence in X such that $\lim _{n \rightarrow \infty} P x_{n}=\lim _{n \rightarrow \infty} A B x_{n}=0$ for $0 \in \mathrm{X}$. The maps Q and ST are occasionally weakly compatible at 0 . Thus, all conditions of the main theorem are satisfied and 0 is the unique common fixed point of A, B, S, T, P and Q.

References

[1] C. Alaca, I. Altun and D. Turkoglu, On compatible mappings of type (I) and type (II) in intuitionistic fuzzy metric spaces, Commun. Korean Math. Soc., 23(3) (2008), 427-446.
[2] C. Alaca, C. Turkoglu and C. Yildiz, Fixed points in intuitionistic fuzzy metric spaces, Chaos. Solitons and Frectals, 29(2006), 1073-1078.
[3] C. Alaca, D. Turkoglu and C. Yildiz, Common fixed points of compatible maps in intuitionistic fuzzy metric spaces, Southeast Asian Bulletin of Mathematics, 32(2008), 21-33.
[4] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1986), 87-96.
[5] S. Banach, Theorie les Operations Linearies, Manograie Mathematyezne Warsaw Poland, (1932).
[6] A. Coker, An inroduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems, 88(1997), 81-99.
[7] V. Gregori, S. Romaguera and P. Veeramani, A note on intuitionistic fuzzy metric spaces, Chaos, Solitions and Fractals, 28(2006), 902-905.
[8] G. Jungck, Commuting mappings and fixed points, Amer. Math. Monthly, 83(1976), 261-263.
[9] G. Jungck and B.E. Rhoades, Fixed point for set valued functions without continuity, Ind. J. Pure Appl. Maths, 29(3) (1998), 227-238.
[10] S. Kutucku, A fixed point theorem in Menger spaces, International Mathematical Forum, 1(32) (2006), 1543-1554.
[11] S. Manro, H. Bouharjera and S. Singh, A common fixed point theorem in intuitionistic fuzzy metric by using sub-compatible maps, Int. J. Contemp. Math. Sciences, 5(55) (2010), 2699-2707.
[12] R.P. Pant, Common fixed points of non commuting mappings, J. Math. Anal. Appl., 188(1994), 436-440.
[13] R. Sadati and J.H. Park, On the intuitionistic topological spaces, Chaos. Solutions Fractals, 27(2006), 331-344.
[14] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific. J. Math., 10(1960), 313-334.
[15] D. Turkoglu, C. Alaca and C. Yildiz, Compatible maps and compatible maps of types (α) and (β) in intuitionistic fuzzy metric spaces, Demonstration Math., 39(2006), 671-684.
[16] D. Turkoglu, C. Alaca, Y.J. Cho and C. Yildiz, Common fixed point theorems in intuitionistic fuzzy metric spaces, J. Appl. Math. Computing, 22(2006), 411-424.
[17] L.A. Zadeh, Fuzzy sets, Inform Contr., 8(1965), 338-353.

