

Gen. Math. Notes, Vol. 21, No. 1, March 2014, pp. 73-85 ISSN 2219-7184; Copyright © ICSRS Publication, 2014 www.i-csrs.org Available free online at http://www.geman.in

A Common Fixed Point Theorem for Sub Compatibility and Occasionally Weak Compatibility in Intuitionistic Fuzzy Metric Spaces

Krishnapal Singh Sisodia¹, Deepak Singh² and M.S. Rathore³

 ¹Department of Mathematics, SISTec-E, Ratibad, Bhopal E-mail: sisodiakps@gmail.com
 ²NITTTR, Bhopal, Ministry of HRD, Govt. of India E-mail: dk.singh1002@gmail.com
 ³C.S.A. Government P.G College, Sehore E-mail: dr.rathore11@gmail.com

(Received: 27-11-13 / Accepted: 18-1-14)

Abstract

In this paper, we establish a common fixed point theorem for six maps using concept of subcompatibility and occasionally weak compatibility in Intuitionistic Fuzzy metric space. S. kutukcu [10] obtained a fixed point theorem for Menger spaces; we obtain its Intuitionistic Fuzzy metric space version with more generalized conditions relaxing completeness criteria. We also justify our findings with an example.

Keywords: Intuitionistic fuzzy metric space, Subcompatible mapping, Occasionally weakly compatible mapping, Common fixed point.

1 Introduction

The concept of fuzzy sets was introduced initially by Zadeh [17] in 1965. Since, then to use this concept in topology and analysis many authors have expansively developed the theory of fuzzy sets and applications. Atanassov [4] Introduced and studied the concept of intuitionistic fuzzy sets. Intuitionistic fuzzy sets as a generalization of fuzzy sets can be useful in situations when description of a problem by a (fuzzy) linguistic variable, given in terms of a membership function only, seems too rough. Coker [6] introduced the concept of intuitionistic fuzzy topological spaces. Alaca et al. [2] proved the well known fixed point theorems of Banach [5] in the setting of intuitionistic fuzzy metric spaces. Later on, Turkoglu et al. [16] Proved Jungcks [8] common fixed point theorem in the setting of intuitionistic fuzzy metric space. Turkoglu et al. [16] further formulated the notions of weakly commuting and R-weakly commuting mappings in intuitionistic fuzzy metric space and proved the intuitionistic fuzzy version of pants theorem [12]. Gregori et al. [7], Saadati and Park [13] studied the concept of intuitionistic fuzzy metric space and its applications.

Recently, Saurabh Manro et al. [11] introduced the notion of subcompatibility and subsequential continuity in Intuitionistic Fuzzy metric space and proved some result for four self maps. Inspired by the result of Saurabh Manro et al. [11], in this paper we prove a common fixed point theorem for six self maps which is a generalization of [10].

2 Preliminaries

Definition 2.1[14] A binary operation $*: [0, 1] \times [0, 1] \rightarrow [0, 1]$ is a continuous *t*-norm, if * is satisfying the following conditions:

- (i) * is commutative and associative
- (ii) * is continuous
- (iii) a * 1 = a for all $a \in [0,1]$
- (iv) $a * b \le c * d$ whenever $a \le c$ and $b \le d$ for $a, b, c, d \in [0,1]$.

Definition 2.2[14] A binary operation $\diamond : [0,1] \times [0,1] \rightarrow [0,1]$ is a continuous t – conorm if \diamond it satisfies the following conditions:

- (i) \diamond is commutative and associative
- (ii) \diamond is continuous
- (iii) $a \diamond 0 = a \text{ for all } a \in [0, 1]$
- $(iv) \quad a \ \diamond \ b \le c \ \diamond \ d \ \text{whenever} \ a \ \le \ c \ \text{and} \ b \ \le \ d \ \text{for} \ a \ , b \ , c \ , d \ \in \ [0,1].$

Definition 2.3[2] A 5-tuple $(X, M, N, *, \diamond)$ is said to be an intuitionistic fuzzy metric space (shortly IFM-Space) if X is an arbitrary set, * is a continuous t-

norm, \diamond is a continuous t-conorm and M, N are fuzzy sets on $X^2 \times (0, \infty)$ satisfying the following conditions:

For all $x, y, z \in X$ and s, t > 0,

 $(IFM-1) M (x, y, t) + N(x, y, t) \leq 1$ (IFM-2) M (x, y, 0) = 0 (IFM-3) M (x, y, t) = 1 if and only if x = y (IFM-4) M (x, y, t) = M (y, x, t) $(IFM-5) M (x, y, t) * M(y, z, s) \leq M (x, z, t + s)$ $(IFM-6) M (x, y, t) * M(y, z, s) \leq M (x, z, t + s)$ $(IFM-7) \lim_{t \to \infty} M (x, y, t) = 1$ (IFM-8) N (x, y, 0) = 1 (IFM-9) N (x, y, t) = 0 if and only if x = y (IFM-10) N (x, y, t) = N (y, x, t) $(IFM-11) N (x, y, t) \Rightarrow N(y, z, s) \geq N (x, z, t + s)$ $(IFM-12) N(x, y, \cdot): [0, \infty) \to [0,1] \text{ is right continuous.}$ $(IFM-13) \lim_{t \to \infty} N (x, y, t) = 0$

Then (M, N) is called an intuitionistic fuzzy metric on X. The functions M(x, y, t) and N(x, y, t) denote the degree of nearness and degree of non-nearness between x and y with respect to t, respectively.

Remark 2.1([1], [3]) Every fuzzy metric space (X, M, *) is an intuitionistic fuzzy metric space if X is of the form $(X, M, 1 - M, *, \diamond)$ such that t- norm * and t- conorm \diamond are associated, that is, $x \diamond y = 1 - ((1 - x) * (1 - y))$ for any $x, y \in X$. But the converse is not true.

Example 2.1 Let (X, d) be a metric space. Define $a * b = \min \{a, b\}$ and t-conorm $a \diamond b = \max \{a, b\}$ for all $x, y \in X$ and t > 0, $M_d(x, y, t) = \frac{t}{t+d(x,y)}$ and $N_d(x, y, t) = \frac{d(x,y)}{t+d(x,y)}$.

Then $(X, M, N, * \diamond)$ is an intuitionistic fuzzy metric space. We call this intuitionistic fuzzy metric (M, N) induced by the metric d the standard intuitionistic fuzzy metric.

Definition 2.4[2] *Let* $(X, M, N, *, \diamond)$ *be an Intuitionistic Fuzzy metric space, then*

- (a) A sequence $\{x_n\}$ in X is said to be convergent to x in X if for all t > 0, $\lim_{n \to \infty} M(x_n, x, t) = 1$ and $\lim_{n \to \infty} N(x_n, x, t) = 0$.
- (b) A sequence $\{x_n\}$ in X is said to be Cauchy if for all t > 0 and p > 0, $\lim_{n \to \infty} M(x_{n+p}, x_n, t) = 1$ and $\lim_{n \to \infty} N(x_{n+p}, x_n, t) = 0$.
- (c) An Intuitionistic Fuzzy metric space in which every Cauchy sequence is convergent is said to be complete.

Definition 2.5[15] Self mappings A and B of an intuitionistic fuzzy metric space $(X, M, N, *, \diamond)$ are said to be compatible if for all t > 0, $\lim_{n \to \infty} M(ABx_n, BAx_n, t) = 1$ and $\lim_{n \to \infty} N(ABx_n, BAx_n, t) = 0$ whenever $\{x_n\}$ is a sequence in X such that $\lim_{n \to \infty} Ax_n = \lim_{n \to \infty} Bx_n = z$ for some $z \in X$.

Definition 2.6[9] Self mappings A and B of an intuitionistic fuzzy metric space $(X, M, N, *, \diamond)$ are said to be weakly compatible if ABx = BAx when Ax = Bx for some $x \in X$.

Definition 2.7[11] Self mappings A and B of an intuitionistic fuzzy metric space $(X, M, N, *, \diamond)$ are said to be occasionally weakly compatible (owc) iff there is point $x \in X$ which is a coincidence point of A and B at which A and B commute.

Definition 2.8[11] Self mappings A and B of an intuitionistic fuzzy metric space $(X, M, N, *, \diamond)$ are said to be sub compatible iff there exists a sequence $\{x_n\}$ in X such that $\lim_{n\to\infty} Ax_n = \lim_{n\to\infty} Bx_n = z$ for some $z \in X$ and satisfy $\lim_{n\to\infty} M(ABx_n, BAx_n, t) = 1$ and $\lim_{n\to\infty} N(ABx_n, BAx_n, t) = 0$ for all t > 0.

Lemma 2.1[1] Let $(X, M, N, *, \diamond)$ be an intuitionistic fuzzy metric space and for all $x, y \in X$ and t > 0 and if for a number $k \in (0, 1)$, $M(x, y, kt) \ge M(x, y, t)$ and $N(x, y, kt) \le N(x, y, t)$. Then x = y.

Lemma 2.2 [1] Let $(X, M, N, *, \diamond)$ be an intuitionistic fuzzy metric space and $\{y_n\}$ be a sequence in X. If there exists a number $k \in [0, 1]$ such that $M(y_n, y_{n+1}, kt) \ge M(y_{n-1}, y_n, t)$, $N(y_n, y_{n+1}, kt) \le N(y_{n-1}, y_n, t)$ for all t>0 and $n \in N$, then $\{y_n\}$ is a Cauchy sequence in X.

3 Main Result

Theorem 3.1 Let A, B, S, T, P and Q be self maps on an intuitionistic fuzzy metric space $(X, M, N, *, \diamond)$ with $t * t \ge t$ and $(1 - t) \diamond (1 - t) \le (1 - t)$ for some $t \in [0,1]$ such that

(i) There exists a number $k \in (0,1)$ such that

 $M^{2}(Px, Qy, kt) * [M(ABx, Px, kt). M(STy, Qy, kt)] \\ \geq [pM(ABx, Px, t) + qM(ABx, STy, t)]. M(ABx, Qy, 2kt)$

and N²(Px, Qy, kt) \diamond [N(ABx, Px, kt). N(STy, Qy, kt)] \leq [pN(ABx, Px, t) + qN(ABx, STy, t)]. N(ABx, Qy, 2kt)

for all x, y \in X and t>0, where 0<p, q<1 such that p+q=1.

- (ii) AB=BA, ST=TS, PB=BP, QT=TQ
- (iii) AB is continuous.
- (iv) The pair (P,AB) is subcompatible and (Q, ST) is occasionally weakly compatible (owc).

Then A, B, S, T, P and Q have a unique common fixed point in X.

Proof: Since the pair (P, AB) is subcompatible, then there exists a sequence $\{x_n\}$ in X such that $\lim_{n \to \infty} Px_n = \lim_{n \to \infty} ABx_n = z$ for some $z \in X$ and satisfy $\lim_{n \to \infty} P(AB)x_n = \lim_{n \to \infty} AB(P)x_n$.

Since AB is continuous, $AB(AB)x_n \rightarrow ABz$ and $(AB)Px_n \rightarrow ABz$. Since (P, AB) is subcompatible, $P(AB)x_n \rightarrow ABz$.

Since (Q, ST) is occasionally weakly compatible, then there exists a point $v \in X$ such that Qv = STv and QSTv = STQv.

Step-1: By taking $x = x_n$ and y = v in (i), we have

 $M^{2}(Px_{n}, Qv, kt) * [M(ABx_{n}, Px_{n}, kt). M(STv, Qv, kt)] \\ \geq [pM(ABx_{n}, Px_{n}, t) + qM(ABx_{n}, STv, t)]. M(ABx_{n}, Qv, 2kt)$

and N²(Px_n, Qv, kt) \diamond [N(ABx_n, Px_n, kt). N(STv, Qv, kt)] \leq [pN(ABx_n, Px_n, t) + qN(ABx_n, STv, t)]. N(ABx_n, Qv, 2kt)

Taking limit as $n \rightarrow \infty$ and using Qv = STv, we have

$$M^{2}(z, Qv, kt) * [M(z, z, kt). M(Qv, Qv, kt)] \\\geq [pM(z, z, t) + qM(z, Qv, t)]. M(z, Qv, 2kt)$$

- $\Rightarrow M^{2}(z, Qv, kt) \ge [p + qM(z, Qv, t)]. M(z, Qv, 2kt)$ $\Rightarrow M^{2}(z, Qv, kt) \ge [p + qM(z, Qv, t)]. M(z, Qv, kt)$ $\Rightarrow M(z, Qv, kt) \ge \frac{p}{1 q} = 1.$ and N²(z, Qv, kt) $\diamond [N(z, z, kt). N(Qv, Qv, kt)]$ $\ge [pN(z, z, t) + qN(z, Qv, t)]. N(z, Qv, 2kt)$ $\Rightarrow N^{2}(z, Qv, kt) \le qN(z, Qv, t). N(z, Qv, 2kt)$ $\le qN(z, Qv, t). N(z, Qv, kt)$
 - $\Rightarrow N(z, Qv, kt) \le 0 \text{ for } k \in (0,1) and all t > 0.$

Therefore, we have z = Qv and so z = Qv = STv, then we get Qz = STz.

Step-2: By taking $x = ABx_n$ and y = v in (i), we have

$$\begin{split} M^{2}(P(AB)x_{n}, Qv, kt) &* [M(AB(AB)x_{n}, P(AB)x_{n}, kt). M(STv, Qv, kt)] \\ &\geq [pM(AB(AB)x_{n}, P(AB)x_{n}, t) \\ &+ qM(AB(AB)x_{n}, STv, t)]. M(AB(AB)x_{n}, Qv, 2kt) \end{split}$$

and N²(P(AB)x_n, Qv, kt) \diamond [N(AB(AB)x_n, P(AB)x_n, kt). N(STv, Qv, kt)] \leq [pN(AB(AB)x_n, P(AB)x_n, t) + qN(AB(AB)x_n, STv, t)]. N(AB(AB)x_n, Qv, 2kt)

Taking limit as $n \to \infty$ and using z = Qv = STv, we have

 $M^{2}(ABz, z, kt) * [M(ABz, ABz, kt). M(z, z, kt)] \ge [pM(ABz, ABz, t) + qM(ABz, z, t)]. M(ABz, z, 2kt)$

 $\Rightarrow M^{2}(ABz, z, kt) \geq [p + qM(ABz, z, t)]. M(ABz, z, 2kt)$

 \geq [p + qM(ABz, z, t)]. M(ABz, z, kt)

 \Rightarrow M(ABz, z, kt) \geq [p + qM(ABz, z, t)]

 $\geq [p + qM(ABz, z, kt)]$

$$\Rightarrow M(ABz, z, kt) \ge \frac{p}{1-q} = 1.$$

and N²(ABz, z, kt) \diamond [N(ABz, ABz, kt). N(z, z, kt)] \leq [pN(ABz, ABz, t) + qN(ABz, z, t)]. N(ABz, z, 2kt) $N^{2}(ABz, z, kt) \leq qN(ABz, z, t). N(ABz, z, 2kt)$ $\leq qN(ABz, z, t). N(ABz, z, kt)$

 $N(ABz, z, kt) \le qN(ABz, z, t) \le qN(ABz, z, kt)$

 $N(ABz, z, kt) \leq 0$ for $k \in (0,1)$ and all t > 0.

Thus, we have z = ABz.

Step-3: By taking x = z and y = v in (i), we have

 $M^{2}(Pz, Qv, kt) * [M(ABz, Pz, kt). M(STv, Qv, kt)] \\ \geq [pM(ABz, Pz, t) + qM(ABz, STv, t)]. M(ABz, Qv, 2kt)$

and N²(Pz, Qv, kt) \diamond [N(ABz, Pz, kt). N(STv, Qv, kt)] \leq [pN(ABz, Pz, t) + qN(ABz, STv, t)]. N(ABz, Qv, 2kt)

Using z = Qv = STv = ABz; we have

 $\begin{aligned} \mathsf{M}^2(\mathsf{Pz},\mathsf{z},\mathsf{kt}) &* \left[\mathsf{M}(\mathsf{z},\mathsf{Pz},\mathsf{kt}).\,\mathsf{M}(\mathsf{z},\mathsf{z},\mathsf{kt})\right] \\ &\geq \left[\mathsf{p}\mathsf{M}(\mathsf{z},\mathsf{Pz},\mathsf{t}) + \mathsf{q}\mathsf{M}(\mathsf{z},\mathsf{z},\mathsf{t})\right].\,\mathsf{M}(\mathsf{z},\mathsf{z},\mathsf{2kt}) \end{aligned}$

$$\Rightarrow M^{2}(z, Pz, kt) * M(z, Pz, kt) \geq [pM(z, Pz, t) + q]$$

Since $M^2(Pz, z, kt) \le 1$ and using (iii) in definition 2.1, we have

 $M(z, Pz, kt) \ge [pM(z, Pz, t) + q] \ge pM(z, Pz, kt) + q$

 $\Rightarrow M(z, Pz, kt) \ge \frac{q}{1-p} = 1.$

and N²(Pz, z, kt) \diamond [N(z, Pz, kt). N(z, z, kt)] \leq [pN(z, Pz, t) + qN(z, z, t)]. N(z, z, 2kt)

 $\Rightarrow N^2(Pz, z, kt) \leq 0$

 \Rightarrow N(Pz, z, kt) \leq 0 for k \in (0,1)*and all* t > 0.

Thus, we have z = Pz = ABz.

Step-4: By taking $x = x_n$ and y = z in (i), we have

$$M^{2}(Px_{n}, Qz, kt) * [M(ABx_{n}, Px_{n}, kt). M(STz, Qz, kt)] \\\geq [pM(ABx_{n}, Px_{n}, t) + qM(ABx_{n}, STz, t)]. M(ABx_{n}, Qz, 2kt)$$

and N²(Px_n, Qz, kt)
$$\diamond$$
 [N(ABx_n, Px_n, kt). N(STz, Qz, kt)]
 \leq [pN(ABx_n, Px_n, t) + qN(ABx_n, STz, t)]. N(ABx_n, Qz, 2kt)

Taking limit as $n \rightarrow \infty$ and using Qz = STz, we have

$$\begin{split} \mathsf{M}^{2}(\mathsf{z},\mathsf{Qz},\mathsf{kt}) &* [\mathsf{M}(\mathsf{z},\mathsf{z},\mathsf{kt}).\mathsf{M}(\mathsf{Qz},\mathsf{Qz},\mathsf{kt})] \\ &\geq [\mathsf{p}\mathsf{M}(\mathsf{z},\mathsf{z},\mathsf{t}) + \mathsf{q}\mathsf{M}(\mathsf{z},\mathsf{Qz},\mathsf{t})].\mathsf{M}(\mathsf{z},\mathsf{Qz},\mathsf{2kt}) \\ &\Rightarrow \mathsf{M}^{2}(\mathsf{z},\mathsf{Qz},\mathsf{kt}) \geq [\mathsf{p} + \mathsf{q}\mathsf{M}(\mathsf{z},\mathsf{Qz},\mathsf{t})].\mathsf{M}(\mathsf{z},\mathsf{Qz},\mathsf{2kt}) \\ &\geq [\mathsf{p} + \mathsf{q}\mathsf{M}(\mathsf{z},\mathsf{Qz},\mathsf{t})]\mathsf{M}(\mathsf{z},\mathsf{Qz},\mathsf{kt}) \\ &\Rightarrow \mathsf{M}(\mathsf{z},\mathsf{Qz},\mathsf{kt}) \geq [\mathsf{p} + \mathsf{q}\mathsf{M}(\mathsf{z},\mathsf{Qz},\mathsf{t})] \geq [\mathsf{p} + \mathsf{q}\mathsf{M}(\mathsf{z},\mathsf{Qz},\mathsf{kt})]. \\ &\Rightarrow \mathsf{M}(\mathsf{z},\mathsf{Qz},\mathsf{kt}) \geq [\mathsf{p} + \mathsf{q}\mathsf{M}(\mathsf{z},\mathsf{Qz},\mathsf{kt})] \geq [\mathsf{p} + \mathsf{q}\mathsf{M}(\mathsf{z},\mathsf{Qz},\mathsf{kt})]. \\ &\Rightarrow \mathsf{M}(\mathsf{z},\mathsf{Qz},\mathsf{kt}) \geq [\mathsf{p} + \mathsf{q}\mathsf{M}(\mathsf{z},\mathsf{Qz},\mathsf{kt})] \geq [\mathsf{p} + \mathsf{q}\mathsf{M}(\mathsf{z},\mathsf{Qz},\mathsf{kt})]. \\ &\Rightarrow \mathsf{M}(\mathsf{z},\mathsf{Qz},\mathsf{kt}) \leq [\mathsf{p} + \mathsf{q}\mathsf{M}(\mathsf{z},\mathsf{Qz},\mathsf{kt})].\mathsf{N}(\mathsf{Qz},\mathsf{Qz},\mathsf{kt})] \\ &\geq \mathsf{M}(\mathsf{z},\mathsf{Qz},\mathsf{kt}) \leq \mathsf{M}(\mathsf{z},\mathsf{Qz},\mathsf{kt}).\mathsf{N}(\mathsf{Qz},\mathsf{Qz},\mathsf{kt})] \\ &\Rightarrow \mathsf{N}^{2}(\mathsf{z},\mathsf{Qz},\mathsf{kt}) \leq \mathsf{q}\mathsf{N}(\mathsf{z},\mathsf{Qz},\mathsf{t}).\mathsf{N}(\mathsf{z},\mathsf{Qz},\mathsf{2kt}) \\ &\leq \mathsf{q}\mathsf{N}(\mathsf{z},\mathsf{Qz},\mathsf{t}).\mathsf{N}(\mathsf{z},\mathsf{Qz},\mathsf{kt}) \\ &\Rightarrow \mathsf{N}(\mathsf{z},\mathsf{Qz},\mathsf{kt}) \leq \mathsf{q}\mathsf{N}(\mathsf{z},\mathsf{Qz},\mathsf{t}) \leq \mathsf{q}\mathsf{N}(\mathsf{z},\mathsf{Qz},\mathsf{kt}) \\ &\Rightarrow \mathsf{N}(\mathsf{z},\mathsf{Qz},\mathsf{kt}) \leq \mathsf{q}\mathsf{N}(\mathsf{z},\mathsf{Qz},\mathsf{t}) \leq \mathsf{q}\mathsf{N}(\mathsf{z},\mathsf{Qz},\mathsf{kt}) \\ &\Rightarrow \mathsf{N}(\mathsf{z},\mathsf{Qz},\mathsf{kt}) \leq \mathsf{0} \text{ for } \mathsf{k} \in (\mathsf{0},\mathsf{1}) \text{ and } \mathsf{all} \mathsf{t} > \mathsf{0}. \end{split}$$

Thus, we have z = Qz and therefore z = ABz = Pz = Qz = STz.

Step-5: By taking x = Bz and y = z in (i), we have

 $M^{2}(P(B)z, Qz, kt) * [M(AB(B)z, P(B)z, kt). M(STz, Qz, kt)]$ $\geq [pM(AB(B)z, P(B)z, t)$ + qM(AB(B)z, STz, t)]. M(AB(B)z, Qz, 2kt)

and N²(P(B)z, Qz, kt) \diamond [N(AB(B)z, P(B)z, kt). N(STz, Qz, kt)] \leq [pN(AB(B)z, P(B)z, t) + qN(AB(B)z, STz, t)]. N(AB(B)z, Qz, 2kt)

Since AB=BA and PB=BP, we have P(B)z = B(P)z = Bz and AB(B)z = B(AB)z = Bz and using Qz = STz = z; we have

$$M^{2}(Bz, z, kt) * [M(Bz, Bz, kt). M(z, z, kt)]$$

$$\geq [pM(Bz, Bz, t) + qM(Bz, z, t)]. M(Bz, z, 2kt)$$

$$\Rightarrow M^{2}(Bz, z, kt) \ge [p + qM(Bz, z, t)]. M(Bz, z, 2kt)$$

$$\ge [p + qM(Bz, z, t)]. M(Bz, z, kt)$$

$$M(Bz, z, kt) \ge [p + qM(Bz, z, t)] \ge [p + qM(Bz, z, kt)]$$

$$\Rightarrow M(Bz, z, kt) \ge \frac{p}{1 - q} = 1.$$
and N²(Bz, z, kt) \\$ [N(Bz, Bz, kt). N(z, z, kt)]

$$\le [pN(Bz, Bz, t) + qN(Bz, z, t)]. N(Bz, z, 2kt)$$

$$\Rightarrow N^{2}(Bz, z, kt) \le qN(Bz, z, t). N(Bz, z, 2kt)$$

$$\le qN(Bz, z, t). N(Bz, z, kt)$$

$$\Rightarrow N(Bz, z, kt) \le qN(Bz, z, t) \le qN(Bz, z, kt)$$

$$\Rightarrow N(Bz, z, kt) \le 0 \text{ for } k \in (0,1) \text{ and all } t > 0.$$

Thus, we have z = Bz. since z = ABz, we also have z = Az, therefore z = Az = Bz = Pz = Qz = STz.

Step-6: By taking $x = x_n$ and y = Tz in (i), we have

$$\begin{aligned} M^{2}(Px_{n}, Q(Tz), kt) &* [M(ABx_{n}, Px_{n}, kt). M(ST(Tz), Q(Tz), kt)] \\ &\geq [pM(ABx_{n}, Px_{n}, t) \\ &+ qM(ABx_{n}, ST(Tz), t)]. M(ABx_{n}, Q(Tz), 2kt) \end{aligned}$$

and N²(Px_n, Q(Tz), kt) \diamond [N(ABx_n, Px_n, kt). N(ST(Tz), Q(Tz), kt)] \leq [pN(ABx_n, Px_n, t) + qN(ABx_n, ST(Tz), t)]. N(ABx_n, Q(Tz), 2kt)

Since QT = TQ and ST = TS, we have QTz = TQz = Tz and ST(Tz) = T(STz) = Tz.

Letting $n \to \infty$, we have

$$\begin{split} M^{2}(z, Tz, kt) &* [M(z, z, kt). M(Tz, Tz, kt)] \\ &\geq [pM(z, z, t) + qM(z, Tz, t)]. M(z, Tz, 2kt) \\ &\Rightarrow M^{2}(z, Tz, kt) \geq [p + qM(z, Tz, t)]. M(z, Tz, 2kt) \\ &\geq [p + qM(z, Tz, t)]M(z, Tz, kt) \\ &\Rightarrow M(z, Tz, kt) \geq [p + qM(z, Tz, t)] \geq [p + qM(z, Tz, kt)]. \end{split}$$

$$\Rightarrow M(z, Tz, kt) \ge \frac{p}{1-q} = 1.$$

and N²(z, Tz, kt) \diamond [N(z, z, kt). N(Tz, Tz, kt)] \geq [pN(z, z, t) + qN(z, Tz, t)]. N(z, Tz, 2kt) \Rightarrow N²(z, Tz, kt) \leq qN(z, Tz, t). N(z, Tz, 2kt) \leq qN(z, Tz, t). N(z, Tz, kt) \Rightarrow N(z, Tz, kt) \leq qN(z, Tz, t) \leq qN(z, Tz, kt) \Rightarrow N(z, Tz, kt) \leq 0 for k \in (0,1)and all t > 0.

Thus, we have z = Tz. Since Tz = STz, we also have z = Sz. Therefore z = Az = Bz = Pz = Qz = Sz = Tz, that is, z is the common fixed point of the six maps.

Step-7: For uniqueness, let w, $(w \neq z)$ be another common fixed point of A, B, S, T, P and Q.

By taking x = z and y = w in (i), we have

$$M^{2}(Pz, Qw, kt) * [M(ABz, Pz, kt). M(STw, Qw, kt)] \\ \geq [pM(ABz, Pz, t) + qM(ABz, STw, t)]. M(ABz, Qw, 2kt)$$

and N²(Pz, Qw, kt) \diamond [N(ABz, Pz, kt). N(STw, Qw, kt)] \leq [pN(ABz, Pz, t) + qN(ABz, STw, t)]. N(ABz, Qw, 2kt)

Which implies that

$$M^{2}(z, w, kt) * [M(z, z, kt). M(w, w, kt)] \\\geq [pM(z, z, t) + qM(z, w, t)]. M(z, w, 2kt)$$

 $\Rightarrow M^{2}(z, w, kt) \geq [p + qM(z, w, t)].M(z, w, 2kt)$

$$\geq [p + qM(z, w, t)]. M(z, w, kt)$$

 $\Rightarrow M(z, w, kt) \ge p + qM(z, w, t) \ge p + qM(z, w, kt)$

$$\Rightarrow M(z, w, kt) \ge \frac{p}{1-q} = 1.$$

and $N^2(z, w, kt) \diamond [N(z, z, kt). N(w, w, kt)]$ $\geq [pN(z, z, t) + qN(z, w, t)]. N(z, w, 2kt)$

$$\Rightarrow$$
 N²(z, w, kt) \leq qN(z, w, t). N(z, w, 2kt)

$$\leq qN(z, w, t). N(z, w, kt)$$
$$\Rightarrow N(z, w, kt) \leq qN(z, w, t)q \leq N(z, w, kt)$$
$$\Rightarrow N(z, w, kt) \leq 0 \text{ for } k \in (0,1) \text{ and all } t > 0$$

Thus, we have z = w. This completes the proof of the theorem.

If we take $B=T=I_X$ (the identity map on X) in the main theorem, we have the following:

Corollary 3.2: Let A, S, P and Q be self maps on an intuitionistic fuzzy metric space $(X, M, N, *, \diamond)$ with $t * t \ge t$ and $(1-t) \diamond (1-t) \le (1-t)$ for some $t \in [0,1]$ such that

(i) There exists a number $k \in (0,1)$ such that

$$M^{2}(Px, Qy, kt) * [M(Ax, Px, kt). M(Sy, Qy, kt)]$$

$$\geq [pM(Ax, Px, t) + qM(Ax, Sy, t)]. M(Ax, Qy, 2kt)$$

$$N^{2}(Px, Qy, kt) \diamond [N(Ax, Px, kt). N(Sy, Qy, kt)]$$

$$\leq [pN(Ax, Px, t) + qN(Ax, Sy, t)]. N(Ax, Qy, 2kt)$$

for all x, y ϵ X and t>0, where 0<p, q<1 such that p+q=1.

- (ii) A is continuous.
- (iii) The pair (P, A) is subcompatible and (Q, S) is occasionally weakly compatible (owc).

Then A, S, P and Q have a unique common fixed point in X.

Example 3.3 Let $X = \{\frac{1}{n}: n \in N\} \cup \{0\}$ with metric d defined by d(x, y) = |x - y|. For all $x, y \in X$ and $t \in (0, \infty)$, define

$$M(x, y, t) = \frac{t}{t+|x-y|}, N(x, y, t) = \frac{|x-y|}{t+|x-y|}, M(x, y, 0) = 0, N(x, y, 0) = 1.$$

Clearly (X, M, N, $*, \diamond$) is an Intuitionistic Fuzzy metric space, where * and \diamond are defined by $a * b = \min\{a, b\}$ and $a \diamond b = \min\{1, a + b\}$.

Let A, B, S, T, P and Q be maps from X into itself defined as $Ax = x, Bx = \frac{x}{2}, Sx = \frac{x}{5}, Tx = \frac{x}{3}, Px = 0, Qx = \frac{x}{6}$ for all $x \in X$.

Clearly AB=BA, ST=TS, PB=BP, QT=TQ and AB is continuous. If we take k = 0.5 and t = 1, we see that the condition (i) of the main theorem is also satisfied.

Moreover, the maps P and AB are subcompatible if $\lim_{n\to\infty} x_n = 0$, where $\{x_n\}$ is a sequence in X such that $\lim_{n\to\infty} Px_n = \lim_{n\to\infty} ABx_n = 0$ for $0 \in X$. The maps Q and ST are occasionally weakly compatible at 0. Thus, all conditions of the main theorem are satisfied and 0 is the unique common fixed point of A, B, S, T, P and Q.

References

- [1] C. Alaca, I. Altun and D. Turkoglu, On compatible mappings of type (I) and type (II) in intuitionistic fuzzy metric spaces, *Commun. Korean Math. Soc.*, 23(3) (2008), 427-446.
- [2] C. Alaca, C. Turkoglu and C. Yildiz, Fixed points in intuitionistic fuzzy metric spaces, *Chaos. Solitons and Frectals*, 29(2006), 1073-1078.
- [3] C. Alaca, D. Turkoglu and C. Yildiz, Common fixed points of compatible maps in intuitionistic fuzzy metric spaces, *Southeast Asian Bulletin of Mathematics*, 32(2008), 21-33.
- [4] K. Atanassov, Intuitionistic fuzzy sets, *Fuzzy Sets and Systems*, 20(1986), 87-96.
- [5] S. Banach, *Theorie les Operations Linearies*, Manograie Mathematyezne Warsaw Poland, (1932).
- [6] A. Coker, An inroduction to intuitionistic fuzzy topological spaces, *Fuzzy Sets and Systems*, 88(1997), 81-99.
- [7] V. Gregori, S. Romaguera and P. Veeramani, A note on intuitionistic fuzzy metric spaces, *Chaos, Solitions and Fractals*, 28(2006), 902-905.
- [8] G. Jungck, Commuting mappings and fixed points, *Amer. Math. Monthly*, 83(1976), 261-263.
- [9] G. Jungck and B.E. Rhoades, Fixed point for set valued functions without continuity, *Ind. J. Pure Appl. Maths*, 29(3) (1998), 227-238.
- [10] S. Kutucku, A fixed point theorem in Menger spaces, *International Mathematical Forum*, 1(32) (2006), 1543-1554.
- [11] S. Manro, H. Bouharjera and S. Singh, A common fixed point theorem in intuitionistic fuzzy metric by using sub-compatible maps, *Int. J. Contemp. Math. Sciences*, 5(55) (2010), 2699-2707.
- [12] R.P. Pant, Common fixed points of non commuting mappings, J. Math. Anal. Appl., 188(1994), 436-440.
- [13] R. Sadati and J.H. Park, On the intuitionistic topological spaces, *Chaos. Solutions Fractals*, 27(2006), 331-344.
- [14] B. Schweizer and A. Sklar, Statistical metric spaces, *Pacific. J. Math.*, 10(1960), 313-334.
- [15] D. Turkoglu, C. Alaca and C. Yildiz, Compatible maps and compatible maps of types (α) and (β) in intuitionistic fuzzy metric spaces, *Demonstration Math.*, 39(2006), 671-684.

- [16] D. Turkoglu, C. Alaca, Y.J. Cho and C. Yildiz, Common fixed point theorems in intuitionistic fuzzy metric spaces, *J. Appl. Math. Computing*, 22(2006), 411-424.
- [17] L.A. Zadeh, Fuzzy sets, Inform Contr., 8(1965), 338-353.