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Abstract 

    The classical Cantor set discovered and introduced by the famous 
mathematicians Henery Smith and George Cantor has many interesting 
properties in the field of set theory, Topology and fractal geometry. One of the 
way in which the behavior of Cantor sets can be specified is through the use of 
Iterated Function System. In (2008), Gerald Edgar in his book gave a systematic 
study of classical Cantor ternary set in iterated function system and introduced 
some beautiful properties. Our goal in this paper is to present two new examples 
of Cantor variants using iterated function system.  

     Keywords: Cantor one-fifth set, Cantor middle one-half set, Iterated function 
system (IFS), Self- similarity, Invariant sets.      
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1      Introduction 
  
Cantor set is a classical example of perfect subset of the closed interval [0, 1], 
which has the same cardinality as the real line but whose Lebesgue measure is 
zero [12]. It was discovered in 1875 by Henry John Stephen Smith [27] and first 
introduced by German mathematician George Cantor (1845 - 1918) that became 
known as Cantor ternary set [4-9]. Later on, Devil’s and other researchers gave 
graphical representation of Cantor set in the form of staircases [17, 18, 23].  
 
In the words of the mathematician David Hilbert, “No one shall expel us from the 
paradise that Cantor has created for us” [12]. For detailed study on Cantor set and 
on its applications, one may refer to Beardon [3], Devaney [10], Falconer [13] and 
Peitgen, Jurgen & Saupe [21]. The Cantor set has many interesting properties and 
consequences in the field of set theory, topology, and fractal theory [15, 16, 17, 
18, 28]. In 1999, P. Mendes, showed that the sum of two homogenous Cantor set 
is often a uniformly contracting self-similar set under some conditions [20]. 
Dovgoshey et. al. [11] gave a systematic survey on the properties of the Cantor 
ternary map. In the recent years, Michael Barnsley [1, 2] gave the concept of 
iterated function system that is an efficient way of specifying many of the sets that 
we will be interested in. Also, for more applications of Cantor set in discrete 
dynamical system and mathematical analysis, one may refer to [14, 19, 22]. 
 
In 2008, Gerald Edgar in his book “Measure, Topology, and Fractal Geometry” 
[12] presented various properties of Cantor set using iterated function system. 
Furthermore, Shaver [26] studied many other general Cantor sets that were 
constructed by removing different parts of different lengths from the initiator and 
also presented some properties using iterated function system. The interesting 
point here is that some of the Cantor sets given by Rani and Prasad [23] are 
common to Cantor sets given by Shaver [26]. Recently, Rani, Ashish and Chugh 
[25] studied the variants of Cantor sets using mathematical feedback system and 
in [24] they introduced new examples of fractal string.  
 
In this paper we study some properties of variants of Cantor sets using iterated 
function system. In Section 2, we deal with some basic definitions pertaining to 
the notion of fractal string with several new ones that have been taken into sequel. 
In Section 3 and 4, the main results of our study have been presented, followed by 
the concluding remarks in Section 5. 

 
2 Preliminaries 
 
Throughout this paper we study the various properties of Cantor one-fifth set and 
Cantor middle one-half set using the iterated function system. In 2008, Gerald 
Edgar presented the following definitions of ratio list, iterated function system, 
invariants sets or attractors etc. 
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Definition 2.1: Ratio list: A finite list of positive numbers,1 2( , ,..., )nr r r , where 

1 2, ,..., ∈ℝnr r r  denote the ratios, in which the interval [0, 1] can be divided is 

called the ratio list [12].   
 
Definition 2.2: Iterated Function System: A system realizing a ratio list

1 2( , ,..., )nr r r , in a metric space X  in to a list 1 2( , ,..., )nf f f , where : →if X X is a 

similarity contraction mapping with ratio ri is called iterated function system 
[12]. 
 
Definition 2.3: Invariant set or attractor: A non-empty compact set ⊆Y X is 
called an invariant set or attractor for the iterated function system 1 2( , ,..., )nf f f  

if and only if 1 2[ ] [ ] ..... [ ]= ∪ ∪ ∪ nY f Y f Y f Y  for ∈ℕn [12]. 

 
For example, the triadic Cantor dust is invariant set for an iterated function system 
realizing the ratio list(1/ 3, 1/ 3). The Sierpinski gasket is an invariant set for an 
iterated function system realizing the ratio list(1/ 2, 1/ 2, 1/ 2). 
 
Definition 2.4: Similarity value of ratio list 1 2( , ,..., )nr r r , is the positive number ' 's  

such that 1 2 ..... 1+ + + =s s s
nr r r [12]. 

 
Definition 2.5: The number ' 's  is called the similarity dimension of a non-empty 
compact set Y if and only if Y satisfies a self-referential equation of the type 
  

     
1

[ ]
=

=∪
n

i
i

Y f Y ,  

 
where 1 2( , ,..., )nf f f is a hyperbolic iterated function system of similarities whose 

ratio list has similarity value ' 's . 
 
For example, let us take the Sierpinski gasket. The ratio list is (1/ 2, 1/ 2, 1/ 2). So, 
we get 
    (1/ 2) (1/ 2) (1/ 2) 1+ + =s s s  
 
Thus, the similarity dimension is log 3 / log 2 1.585≈ . 
 
Proposition 2.1: [12, p. 6] The triadic Cantor dust C satisfies the self – 
referential equation 1 2[ ] [ ]C f C f C= ∪ . 

 
Throughout this paper, F  be a Cantor one-fifth set and P  a Cantor middle one-
half set. 
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3 Cantor One-Fifth Set 
 
In this section we consider, F  be a Cantor one-fifth set having ratio 1/ 5=r , 
center ∈ℝa  and : →ℝ ℝf  be a similarity contraction mapping on ℝ  with ratio 
‘ r’, defined by ( ) (1 )= + −f x rx r a . Also, throughout this section, we call the 

ordered pair 1 2 3( , , )f f f  as iterated function system. 

 
The Cantor one-fifth set is a subset of the interval [0, 1]. That is constructed by, 
dividing the initiator [0, 1] into five line segments with dividing ratio 1/5 and by 
dropping  the second and fourth line segment i.e. (1/5, 2/5) and (3/5, 4/5), we call 
them Holes (i.e. the parts that are removed). Then, the set 1F  is obtained by 

leaving[0,1/ 5] [2 / 5,3 / 5] [4 / 5,1]∪ ∪ . Again, after repeating the same process 
with the remaining closed line segments, we get the set of holes that have been 
removed during the process. Then, the set 2F is obtained by leaving 

  

1

2

( )

[0,1/ 25] [2 / 25,3 / 25] [4 / 25,1/ 5]= ∪ ∪
�����������������

f x

F

 

 

2 ( )

[2 / 5,11/ 25] [12 / 25,13 / 25] [14 / 25,3 / 5]∪ ∪ ∪
�������������������

f x

    

 

3 ( )

[4 / 5,21/ 25] [22 / 25,23 / 25] [24 / 25,1]∪ ∪ ∪
�������������������

f x

    

 
Further, repeating the same process over and over again, by removing the holes of 
second and fourth position at each step from each closed interval, we obtain a 
sequence nH of holes. The number of holes nH consists of 12.3 −n  for n = 1, 2, 

3,… open interval and nF consists of 3n disjoint closed interval. Thus, the Cantor 

one-fifth set would be the limit ' 'F  of the sequence nF  of sets. We also analyze 

that 0 1 2 ......⊇ ⊇ ⊇F F F . So, we define limit ' 'F  as the intersection of the sets nF  

i.e. 
     

∈

=
ℕ

∩ n
n

F F . 

 
Fig. 1 shows the graphical representation of Cantor one-fifth set constructed as 
above. 
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Fig. 1: Cantor One-Fifth Set 

In the following theorem, we state without proof the well-known result of quinary 
Cantor one-fifth set (see [24]). 
 
Theorem 3.1: Let [0,1]∈x , then x belongs to the Cantor one-fifth set F  if and 
only if x has a base 5 expansion using the digits 0, 2 and 4.  
 
Now, we prove the main theorem of this section which satisfies the self-referential 
equation of Cantor one-fifth set using functions 1 2,f f  and 3f . 

 
Theorem 3.2: Let 1 2,f f  and 3f  be the similarity contraction mappings on ℝ

defined by  
   1( ) / 5=f x x , 2 ( ) ( 2) / 5= +f x x , 3( ) ( 4) / 5= +f x x ,        (1) 

 
where all the mappings have the ratio 1/ 5. Then, the Cantor one-fifth set F
satisfies the self - referential equation   
 
                           1 2 3[ ] [ ] [ ]= ∪ ∪F f F f F f F            (2) 

 
for the iterated function system 1 2 3( , , )f f f . 

 
Proof: In the starting of this section, we study the Cantor one-fifth set by simply 
removing the one-fifth open intervals (holes) from the initiator [0, 1]. Now, using 
the iterated function system1 2 3( , , )f f f , we generate the Cantor one-fifth set which 

is quite different from above said method. The geometrical representation of 
Cantor one-fifth set using IFS is as follows:  
 
  

 

Fig. 2: Representation of IFS 1 2 3( , , )f f f  
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In Fig. 2, by using the mappings 1 2,f f  and 3f  on the initiator 0 [0,1]=F , we study 

the Cantor one-fifth set in the following way, such that 
 
  [ ]1 [0,1] [0,1/ 5]=f , [ ]2 [0,1] [2 / 5,3 / 5]=f , [ ]3 [0,1] [4 / 5,1]=f  

Thus, 
  1 1 0 2 0 3 0[0,1 / 5] [2 / 5,3 / 5] [4 / 5,1] [ ] [ ] [ ]= ∪ ∪ = ∪ ∪F f F f F f F        (3) 

 
Further, repeating the same process and substituting the value of 1F  in the 

mappings 1 2,f f  and 3f , we obtain Table 1, 2 and 3. 

 

1 1( ) ,
5

= ∈x
f x x F  

 
2 1

2
( ) ,

5

+= ∈x
f x x F  

 
3 1

4
( ) ,

5

+= ∈x
f x x F  

 1(0)f  0   2(0)f  2 / 5   3(0)f  4 / 5 

1(1/ 5)f  1/ 25  
2(1/ 5)f  11/ 25  

3(1/ 5)f  21/ 25 

1(2 / 5)f  2 / 25  
2(2 / 5)f  12 / 25  

3(2 / 5)f  22 / 25 

 1(3 / 5)f  3 / 25   2(3 / 5)f  13/ 25   3(3 / 5)f  23 / 25 

1(4 / 5)f  4 / 25  
2(4 / 5)f  14 / 25  

3(4 / 5)f  24 / 25 

1(1)f  1/ 5  
2(1)f  3/ 5  

3(1)f  1 

    Table 1         Table 2   Table 3 
 
Thus, 
  

1

2

( )

[0,1/ 25] [2 / 25,3 / 25] [4 / 25,1/ 5]= ∪ ∪
�����������������

f x

F

 
 

          

2 ( )

[2 / 5,11/ 25] [12 / 25,13 / 25] [14 / 25,3 / 5]∪ ∪ ∪
�������������������

f x  
 
              

3 ( )

[4 / 5,21/ 25] [22 / 25,23 / 25] [24 / 25,1]∪ ∪ ∪
�������������������

f x  
 

2 1 1 2 1 3 1[ ] [ ] [ ]= ∪ ∪F f F f F f F                        (4) 
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Now, by using induction on [0, 1], we obtain 
 
  1 1 2 3[ ] [ ] [ ]+ = ∪ ∪n n n nF f F f F f F            (5) 

for n = 0, 1, 2, …. .  
 
To prove Eq. (2), we will first prove that 1 2 3[ ] [ ] [ ]⊆ ∪ ∪F f F f F f F  and then 

converse. Let ∈x F , which implies 1∈x F . Then, either [0,1 / 5]∈x , [2 / 5,3 / 5]∈x  

or [4 / 5,1]∈x . In order to prove the above inequality 1 2 3[ ] [ ] [ ]⊆ ∪ ∪F f F f F f F , 

we study these three cases one by one. 
 
First, let [4/5, 1]x∈ . Now, using Eq. (5) for any n, 1 1 2 3[ ] [ ] [ ].+∈ = ∪ ∪n n n nx F f F f F f F   

 
But we know that 
 

[ ]1 1[ ] [0, 1] [0, 1/ 5]nf F f⊆ =  and [ ]2 2[ ] [0, 1] [2 / 5, 3 / 5]nf F f⊆ = . 

 
So that, it implies 3[ ]∈ nx f F or 5 4− ∈ nx F , for each n = 1, 2, 3,… 

 
Hence, 5 4

∈

− ∈ =
ℕ

∩ n
n

x F F . Thus, we get 

  
    3[ ]∈x f F             (6) 

     
Secondly, let [2 / 5,3 / 5]∈x  and using Eq. (5) for any n, 
 

1 1 2 3[ ] [ ] [ ]+∈ = ∪ ∪n n n nx F f F f F f F .  

 
But we know that 
  

[ ]1 1[ ] [0, 1] [0, 1/ 5]nf F f⊆ =  and [ ]3 3[ ] [0, 1] [4 / 5, 1]nf F f⊆ =  

 
So that, it implies that 2[ ]∈ nx f F or 5 2− ∈ nx F , for each n = 1, 2, 3, …,     

 
whence, 5 2

∈

− ∈ =
ℕ

∩ n
n

x F F . Thus, we get  

    2[ ]∈x f F             (7) 

         
Last, consider [0,1 / 5]∈x  and using Eq. (5) for any n,  
 

1 1 2 3[ ] [ ] [ ]+∈ = ∪ ∪n n n nx F f F f F f F  
 
But we know that 
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[ ]2 2[ ] [0, 1] [2 / 3, 3 / 5]nf F f⊆ =  and [ ]3 3[ ] [0, 1] [4 / 5, 1]nf F f⊆ =  

 
So that, it implies 1[ ]∈ nx f F or 5 ∈ nx F , for each n = 1, 2, …, hence, 5 .

∈

∈ =
ℕ

∩ n
n

x F F
 

Thus, we get  
    1[ ]∈x f F             (8) 

 
Hence, using Eq. (6), (7) and (8) the inequality 1 2 3[ ] [ ] [ ]⊆ ∪ ∪F f F f F f F  holds 

true. 
 
Conversely, 
 
To prove that 1 2 3[ ] [ ] [ ]⊇ ∪ ∪F f F f F f F , let x be any number, such that

1 2 3[ ] [ ] [ ]∈ ∪ ∪x f F f F f F . Then, either 1[ ],∈x f F 2[ ]∈x f F or 3[ ]∈x f F . We take 

the case 3[ ]∈x f F , other two cases are similar. Thus, 5 4− ∈x F . Also, we can 

write 5 4− ∈ nx F or 3 1[ ] +∈ ⊆n nx f F F . Thus, 

  
     1+

∈ ∈

∈ = =
ℕ ℕ

∩ ∩n n
n n

x F F F  

 
This implies that the inequality 1 2 3[ ] [ ] [ ]⊇ ∪ ∪F f F f F f F  holds true.  Hence, this 

completes the proof of the theorem.  
 
Remark 3.1: By using Proposition 2.1 and Theorem 3.2, the Cantor one-fifth set 
is unique non-empty compact invariant set for the iterated function system

1 2 3( , , )f f f . 

 
Proposition 3.1: There also exits some sets ≠M F  that also satisfy the inequality

1 2 3[ ] [ ] [ ]= ∪ ∪M f M f M f M . 

 
Self - Similarity 
 
As discussed in Fig. 2, the first step of division of initiator [0, 1] is 

1 [0,1/ 5] [2 / 5,3 / 5] [4 / 5,1]F = ∪ ∪  corresponding to the ratio list(1/ 5,1/ 5,1/ 5). 

Then from the Definition 2.4, the similarity value of a ratio list 1 2( , ,..., )nr r r is the 

value ' 's  such that 1 2 ..... 1+ + + =s s s
nr r r . Thus, 

  
    (1/ 5) (1/ 5) (1/ 5) 1+ + =s s s

 
 

         
log1/ 3

0.6867
log1/ 5

= ≈s  
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Thus, 0.6867≈s . Hence, from Definition 2.5 and Theorem 3.2, the similarity 
dimension of Cantor one-fifth set is also0.6867≈s . 
 

4 Cantor Middle One-Half Set 
 
Throughout this section we consider, P  be a Cantor middle one-half set  having 
ratio 1/ 2=r , center ∈ℝa  and : →ℝ ℝg  be a mapping on ℝ  with ratio ‘r’, 

defined by ( ) (1 )= + −g x rx r a. Here, we call the ordered pair 1 2( , )g g  as iterated 

function system. 
 
Under the construction of Cantor middle one-half set, we begin with the interval 
0 1≤ ≤x .  First, remove the middle one half interval 1/ 4 3/ 4< <x , call as holes, 
from the initiator that gives rise to two closed intervals 0 1/ 4≤ ≤x and 
3/ 4 1≤ ≤x , denote as 1P . Again, repeating the same process with the remaining 

closed intervals, the set 2P  is obtained by leaving 

  

1 2

2

( ) ( )

[0,1/16] [3 /16,1/ 4] [3 / 4,13 /16] [15 /16,1]= ∪ ∪ ∪
����������� �����������

g x g x

P   

 
Further, repeating the same process again, at each step removing the holes from 
the middle of each successive closed interval, we get the sequence nS  of holes. 

The number of holes nS consists of 12 −n  open interval and nP consists of 2n

disjoint closed intervals. Further, what is left in the limit is the Cantor middle one-
half set denoted byP . Fig. 3 shows the geometrical representation of Cantor 
middle one-half set constructed as above. 
 

 

Fig. 3: Cantor Middle One-Half Set 
 
In the following results, we state without proof the well-known result of 
quarternary Cantor middle one-half set (see [25]). 
 
Proposition 4.1: Let [0,1]∈x . Then x belongs to the Cantor middle one-half set 
P  if and only if x has a quaternary expansion using the digits 0 and 3.  
 
Now, we prove the main theorem of this section, which satisfies the self 
referential equation of Cantor middle one-half set using functions 1g  and 2g . 
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Theorem 4.2: Let 1g  and 2g  be the similarity contraction mappings on ℝ defined 

by  
   1( ) / 4=g x x , and 2( ) ( 3) / 4= +g x x ,          (9) 

 
where all the mappings have the ratio 1/4. Then, the Cantor middle one-half set P  
satisfies the self – referential equation 
   
                         1 2[ ] [ ]= ∪P g P g P           (10) 

 
for the iterated function system1 2( , )g g . 

Proof. First, let us consider the geometrical representation of the Cantor middle 
one-half set for the iterated functions system 1 2( , )g g shown in Fig. 4. 

 

 

Fig. 4: Representation of IFS 1 2( , )g g  
 

In Fig. 4, using the mappings 1g  and 2g , we study the Cantor middle one-half set 

in the following way, such that 
 
   [ ]1 [0,1] [0,1/ 4]=g  and [ ]2 [0,1] [3 / 4,1]=g  

Thus, 
   1 1 0 2 0[0,1 / 4] [3 / 4,1] [ ] [ ]= ∪ = ∪P g P g P        (11) 

 
Again, repeating the process and substituting the value of 1P  in the given iterated 

function system 1 2( , )g g , we obtain Table 4 and 5. 

 

1 1( ) ,
4

= ∈x
g x x P 

 
2 1

3
( ) ,

4

+= ∈x
g x x P 

 1(0)g  0   2(0)g  3 / 4 

1(1/ 4)g  1/16  
2(1/ 4)g  13 /16 

1(3 / 4)g  3 /16  
2(3 / 4)g  15 /16 

 1(1)g  1/ 4   2(1)g  1 

    Table 4        Table 5    
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Thus,  

1 2

2

( ) ( )

[0,1/16] [3 /16,1/ 4] [3 / 4,13 /16] [15 /16,1]= ∪ ∪ ∪
����������� �����������

g x g x

P

 
 

2 1 1 2 1[ ] [ ]= ∪P g P g P                                   (12) 

 
Now, by using induction on [0, 1], we obtain 
  
   1 1 2[ ] [ ]+ = ∪n n nP g P g P           (13) 

for n = 0, 1, 2, … .  
 
To prove Eq. (10), we first prove that 1 2[ ] [ ]⊆ ∪P g P g P and then converse. Let 

∈x P, which implies 1∈x P. Then, either [0,1/ 4]∈x  or [3 / 4,1]∈x . In order to 

prove the above inequality, we prove two cases one by one. 
 
In first case, let [3 / 4,1]∈x  and using Eq. (13) for any n, 1 1 2[ ] [ ]+∈ = ∪n n nx P g P g P . 

But we know that 
  

[ ]1 1[ ] [0,1] [0,1 / 4]⊆ =ng P g   

 
So that, it implies that 2[ ]∈ nx g P or 4 3− ∈ nx P , for each n = 1, 2, 3, …, hence, 

4 3
∈

− ∈ =
ℕ

∩ n
n

x P P. Thus, we get  

   2[ ]∈x g P            (14) 

 
Secondly, let [0,1/ 4]∈x , and using Eq. (13) for any n, 1 1 2[ ] [ ]+∈ = ∪n n nx P g P g P . But 

we know that 
  

[ ]2 2[ ] [0,1] [3 / 4,1]⊆ =ng P g  . 

 
So that, it implies that 1[ ]∈ nx g P or 4 ∈ nx P , this holds for each n = 1, 2, 3, …,      

whence, 4
∈

∈ =
ℕ

∩ n
n

x P P. Thus, we get 

   1[ ]∈x g P            (15) 

 
Hence, from Eq. (14) and (15) the inequality 1 2[ ] [ ]⊆ ∪P g P g P  holds true. 

Conversely,  
 
To prove that 1 2[ ] [ ]P g P g P⊇ ∪ , let x be any number, such that 1 2[ ] [ ]∈ ∪x g P g P . 

Then, either 1[ ],∈x g P  or 2[ ]∈x g P . Let us take the case 2[ ]∈x g P , other is 

similar. Thus, 4 3− ∈x P. Also, we can say 4 3− ∈ nx P  or 2 1[ ] +∈ ⊆n nx g P P . Thus, 
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    1+

∈ ∈

∈ = =
ℕ ℕ

∩ ∩n n
n n

x P P P. 

 
This completes the proof 1 2[ ] [ ]⊇ ∪P g P g P . Hence, the theorem is proved.  

 
Remark 4.1: By using Proposition 2.1, and Theorem 4.2, the Cantor middle one-
half set is unique non-empty compact invariant set for the iterated function system

1 2( , )g g . 

 
Self - Similarity 
 
As discussed in Fig. 3, the first step of division of initiator [0, 1] is 

1 [0,1/ 4] [3 / 4,1]= ∪P  corresponding to the ratio list(1/ 4,1/ 4). Then, from the 

Definition 2.4, the similarity value of a ratio list (1/ 4,1/ 4)is as follows: 
 

(1/ 4) (1/ 4) 1+ =s s  
log1/ 2

0.5
log1/ 4

s= ≈  

 
Thus 0.5s≈ . By using Definition 2.5 and Theorem 4.2, the Similarity dimension 
of Cantor middle one half set is also 0.5s≈ . 
 

4 Conclusion 
 
The Cantor one-fifth set and Cantor middle one-half set both are examples of 
fractal sets. In this paper, properties of both the Cantor sets have been studied and 
following results and conclusions were drawn: 
  
1. The Cantor one-fifth set and Cantor middle one-half set have been defined. 
2. After studying the iterated function system 1 2( , ,..., )nf f f , a new approach 

to construct the Cantor one-fifth set and Cantor middle one-half set have 
been analyzed which is quite different from previous methods in the 
literature.  

3. In Section 3, using iterated function system1 2 3( , , )f f f , we proved that 

Cantor one-fifth set satisfies the self-referential equation for the ratio list
(1/ 5,1/ 5,1/ 5).  

4. In Section 4, using the iterated function system1 2( , )g g , we proved that 

Cantor one-fifth set satisfies the self-referential equation for the ratio list
(1/ 4,1/ 4). 

5. For both the Cantor sets, we also established that self similarity value is 
equivalent to the similarity dimension.  
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