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Abstract 

     In this paper, the relationship between the arbitrary sectional curvatures and 
normal sectional curvatures of generalized timelike ruled surface with timelike 
generating space in n-dimensional Minkowski space 1

n
ℝ  are investigated. Three 

different types of relation are obtained and called I., II., and III. type of 
Lorentzian Beltrami-Meusnier formula.  
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1      Introduction 
 
Meusnier formula and Beltrami formula are well known theorems from classical 
surface theory, (see for example, [3], [7], etc.) An analogue of Meusnier formula 
was obtained in [6] by the way of applying this formula to tangential sections of 
generalized ruled surface in n− dimensional Euclid space nΕ , and was called as 
Beltrami-Meusnier formula. In [5], authors calculated the first fundamental form 
and the metric coefficients of generalized timelike ruled surfaces with timelike 
generating space given in [1] and [2]. Moreover, according to Christoffel Symbols, 
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Riemann-Christoffel curvatures of these surfaces were obtained. Furthermore, the 
principal sectional curvatures of generalized timelike ruled surface with timelike 
generating space and central ruled surface were found to be with respect to the 
determinant of the first fundamental form of the surface for spacelike and timelike 
tangential sections, separately. Lastly, four different types of Lorentzian Beltrami-
Euler formulas were constituted for generalized timelike ruled surface with 
timelike generating space in [5].  In this paper, we will consult to these theorems, 
in case of necessity. To avoid from repetition of the basic concepts in Minkowski-
Lorentz space, which are known from [8] and [9], will not be repeated. 
 

2      Generalized Timelike Ruled Surfaces with Timelike 
Generating Space in n-Dimensional Minkowski Space 
 
A ( )−+1k dimensional timelike ruled surface in n− dimensional Minkowski 

space, 1
n
ℝ  is given parametrically as  
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where the base curve α  is a spacelike curve and generating space 

( ) ( ) ( ){ }teteSptE kk ,...,1=  is a timelike subspace. 

( ) ( ) ( ) ( ) ( ){ }11 ,..., , ,..., kkA t Sp e t e t e t e t
• •

=  

 
is called asymptotic bundle of M  with respect to ( )tEk . It is clear that ( )tA  is a 

timelike subspace. If ( )dim A t k m= + , km ≤≤0 , then one can find an 

orthonormal base for ( )tA  containing ( )tEk  such as 

( ) ( ) ( ) ( ){ }tatatete mkkk ++ ,...,,... 11 . Furthermore, for the orthonormal base 

( ) ( ){ }1 , , ke t e t… , the following equations hold [2] 
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where 
   v vµ µ ν µε α ε α= −                     (2.3) 

and 
   1 2 0.mκ κ κ> > > >…                     (2.4) 
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( ) ( ) ( ) ( ) ( ){ }11 ,..., , ,..., ,kkSp e t e t e t e t tα
• • •

 

is called tangential bundle of M  with respect to ( )tEk  and denoted as ( )tT . It can 

be easily seen that 
 

( ) 1++≤≤+ mktboyTmk , km ≤≤0 . 
 
If ( )dimT t k m= + , then ( ) ( ) ( ) ( ){ }tatatete mkkk ++ ,...,,... 11  is the base for both 

asymptotic and tangential bundles. If ( )dim 1T t k m= + + , then one can find an 

orthonormal base for ( )tT  as ( ) ( ) ( ) ( ) ( ){ }tatatatete mkmkkk 111 ,,...,,... ++++ . For both 

cases tangential bundle ( )tT  is a timelike subspace, [2]. 
 
Let ( ) 1dim ++= mktT . In this case ( )−+1k dimensional timelike ruled surface 

has a ( )−− mk dimensional subspace called central space of M  and denoted as 

( ) ( )tEtZ kmk ⊂− . The subspace ( )tZ mk−  is either spacelike or timelike subspace. If 

the base curve α  of M  is chosen to be the base curve and ( )tZ mk−  to be 

generating space, we get a ( )−+− 1mk dimensional ruled surface contained by 

M  in 1
n
ℝ . This is denoted by Ω  and called the central ruled surface. If ( )tZ mk−  is 

spacelike (timelike) then central ruled surface Ω  becomes spacelike (timelike) 
ruled surface, [1]. 
 
A base curve α  of ( )1k + -dimensional ruled surface M  is a base curve of central 

surface M⊂Ω  as well, iff its tangent vector has the form 
 

   ( ) 1 1
1

k

m k mt e aν ν
ν

α ζ η + + +
=

= +∑
i

 , 1 0mη + ≠               (2.5) 

 
where 1 0mη + ≠ , 1++mka  is a unit vector well defined up to the sign with the 

property that { }111 ,,...,,,..., ++++ mkmkkk aaaee  is an orthonormal base of the 

tangential bundle of M , [1]. The tangential space of M  at the central points is 
perpendicular to the asymptotic bundle ( )A t . Considering the equation (2.1) at 

the central point of central ruled surface MΩ ⊂  we see that  
 

   0uσ =   , 1 mσ≤ ≤ .                    (2.6) 

 
For the spacelike base curve α  of ( )−+1k dimensional timelike ruled surface M , 

if 01 ≠+mη  we call −m magnitudes 
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1mPσ
σ

η
κ

+=  , 1 mσ≤ ≤     (2.7) 

 
is called the thσ  principal distribution parameter of M , [1]. 
 
The canonical base of the tangential of M  is 
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, , , , .
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We can evaluate the first fundamental form of M  and the metric coefficients with 
respect to this canonical base. In conventional notation we choose 0u t=  and 

calculate the metric coefficients of M  as follows; 
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In addition to these, the coefficients of the inverse matrix ijg   of the matrix 

ijg   , 0 ,i j k≤ ≤ , are as follows 
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Substituting the equations (2.9) and (2.10) into the Koszul equation (given in [4]) 
the Christoffel symbols are obtained for 1 , , kν µ λ≤ ≤ , 
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Adopting that the base of tangential space in the neighborhood of coordinate 

system { }0 1, , , ku u u…  is { }0 1, , , k∂ ∂ ∂… ( i
iu

∂ = ∂
∂

, 0 i k≤ ≤ ), the Riemann 

curvature tensor of the generalized timelike surface M  is given by  
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Considering the equations (2.9) and (2.11), 00ijR , ijR νµ , 0 0Rν µ  are found to be (in 

terms of the determinant of the first fundamental form of M , the first and second 
order partial differentials of g ) 
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3 Lorentzian Beltrami-Meusnier Formula for 
Generalized Timelike Ruled Surfaces with Timelike 
Generating Space in n-Dimensional Minkowski Space 
 
Two-dimensional subspace Π  of ( )1k + − dimensional time-like ruled surface at 

the point ( )MTξ ξ∈  is called tangent section of M  at point ξ . If v
�

 and w
�

 form 

a basis of the tangent sectionΠ , then ( ) 2
,,,, wvwwvvwvQ
�������� −=  is a non-zero 

quantity iff Π  is non-degenerate. This quantity represents the square of the 
Lorentzian area of the parallelogram determined by v

�
 and w

�
. Using the square of 

the Lorentzian area of the parallelogram determined by the basis vectors{ },v w
� �

, 

one has the following classification for the tangent sections of the time-like ruled 
surfaces: 

( )
( )
( )

2

2

2

, , , , 0 , (time-like plane),

, , , , 0 , (degenerate plane),

, , , , 0 , (space-like plane).

Q v w v v w w v w

Q v w v v w w v w

Q v w v v w w v w

= − <

= − =

= − >

� � � � � � � �

� � � � � � � �

� � � � � � � �

 

 
For the non-degenerate tangent section Π  given by the basis { },v w

� �
 of M  at the 

point ξ  
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is called sectional curvature of M  at the point ξ , where i
i

v
x

β ∂=
∂∑

�
 and 

j
j

w
x

γ ∂=
∂∑

�
. Here the coordinates of the basis vectors v

�
 and w

�
 are 

( )0 1, , , kβ β β…  and ( )0 1, , , kγ γ γ… , respectively, [4].  

 
Let the base curve α  of timelike ruled surface M  with timelike generating space 
be also a base curve of central ruled surface Ω  of M  in 1

n
ℝ . In this case, a 

normal tangent vector n  of M  orthogonal to ( )kE t is defined to be 

  

( ) ( ) ( )1 1
1
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k m k mn u t a t a tσ σ σ
σ

κ η+ + + +
=

= +∑  , ( )1 0mη + ≠                     (3.2) 

 
at the point ( ),t uνξ∀ , where this normal tangent vector field is always spacelike 

since it is orthogonal to generating space ( )kE t . 
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The central ruled surface Ω  of the generalized timelike ruled surface M  with 
timelike generating space in 1

n
ℝ  is either spacelike or timelike. Therefore, at the 

central point ζ∀ ∈Ω , any unit vector a  is defined to be 
  

             0 1 1 2 2 1 1 1 1s s s s s s k k

n
a e e e e e e

n
λ λ λ λ λ λ λ− − + += + + + + + + + +… …    ,   1a =  

 
where a  and eσ , 1 mσ≤ ≤ , are linearly independent. Here se  is a timelike unit 

vector which is either in subspace ( )mF t  or in central subspace ( )k mZ t−  and we 

write  
                  2 2 2 2 2 2 2

0 1 2 1 1, 1.s s s ka a λ λ λ λ λ λ λ− += + + + + − + + + = ±… …  

 
This means that a  is either unit spacelike or timelike vector. Thus, there exist the 
following cases depending on whether central ruled surface Ω  of M  is spacelike 
(i.e., ( )k mZ t− , spacelike) or timelike (i.e., ( )k mZ t− , timelike): 

 
(a)  While the central space ( )k mZ t−  is spacelike, 

 
(a1) Unit vector a  is either spacelike or 
(a2) Unit vector a  is timelike. 

 
(b)  While central ( )k mZ t−  is timelike, 

 
 (b1) Unit vector a  is either spacelike or  
 (b2) Unit vector a  is timelike. 
 
Now let us consider these cases separately. 
 
(a1) Let the central space be spacelike and unit vector a  be spacelike vector:  
 
Suppose that M  is generalized timelike ruled surface with timelike generating 
space and spacelike central ruled surface in 1

n
ℝ . The principle frame of M  is 

{ }1, , , , , ,s m ke e e e… … …  and the normal tangent vector n  is orthogonal to the 

generating space ( )kE t  of M , so at the central point ζ∀ ∈Ω  any spacelike 

vector a  can be written as follows  
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where se , 1 s m≤ ≤ , is a timelike vector in the subspace ( )mF t  and the angles 

0 1, , , , ,s kψ ψ ψ ψ… …  are the hyperbolic angles between the spacelike unit vector a  

and the vectors 1, , , , ,s kn e e e… … .  

 
(a2) Let the central space be spacelike and unit vector a  be timelike vector:  
 
Suppose that M  is generalized timelike ruled surface with timelike generating 
space and spacelike central ruled surface. As in case (a1), at the point ζ∀ ∈Ω  
any timelike vector a  is written as follows 
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such that se , 1 s m≤ ≤ , is a timelike vector in subspace ( )mF t  and the hyperbolic 

angles between the timelike unit vector a  and vectors 1, , , , ,s kn e e e… …  are 

0 1, , , , ,s kψ ψ ψ ψ… … , respectively. 

 
(b1) Let the central space be timelike and unit vector a  be spacelike vector: 
 
Suppose that M  is generalized timelike ruled surface with timelike generating 
space and timelike central ruled surface. At the ζ∀ ∈Ω  point any spacelike unit 
vector a  can be written as follows 
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where m se + , 1 s k m≤ ≤ − , is timelike vector in the central space ( )k mZ t−  and the 

angles 0 1, , , , ,m s kψ ψ ψ ψ+… …  are the hyperbolic angles between spacelike unit 

vector a  and base vectors 1, , , , ,m s kn e e e+… … , respectively. 

 
(b2) Let the central space be timelike and unit vector a  be timelike vector:  
 
Suppose that M  is generalized timelike ruled surface with timelike generating 
space and timelike central ruled surface in 1

n
ℝ . As in the case (b1) we take n  is 

orthogonal to generating space ( )kE t  so that any timelike vector n  can be written 

as follows  
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where m se + , 1 s k m≤ ≤ − , is timelike vector in the central space ( )k mZ t−  and the 

hyperbolic angles 0 1, , , , ,m s kψ ψ ψ ψ+… …  are the angles between spacelike unit 

vector a  and the base vectors 1, , , , ,m s kn e e e+… … , respectively. 

 
Therefore, taking the cases (a1) to (b2) into consideration, we give the following 
theorems below, about the relationship between the curvatures of the section 

( ),e aσ , 1 mσ≤ ≤ , and the thσ  principal section ( ),e nσ , 1 mσ≤ ≤ . 

 
Theorem 3.1: Let a  be any spacelike unit vector of M  generalized timelike ruled 
surface with timelike generating space and with spacelike central ruled surface 
and se , 1 s m≤ ≤ , be timelike base vector within subspace ( )mF t , respectively. 

 
i. Given the unit vector a  which is linearly independent with  the thσ  spacelike 
vector eσ , 1 mσ≤ ≤ , ( sσ ≠ ), there exists the following relation between the 

curvatures of timelike section ( ),e aσ  and the thσ  spacelike principal section 

( ),e nσ  at the point ( )sue Mζ + ∈  

 

( ) ( ) ( )2 2
01 cosh , cosh ,ue ueK e a K e n

σ σσ ζ σ ζ σψ ψ+ +− =  

 
where 0ψ  is the hyperbolic angle between a  and n  and σψ , 1 mσ≤ ≤ , ( sσ ≠ ) 

are the hyperbolic angles between a and eσ , respectively. 

 
ii. Given any unit vector a  which is linearly independent with the ths  timelike 
vector se , 1 s m≤ ≤ , at the point ( )sue Mζ + ∈ , there exists the following 

relation between the curvatures of timelike section ( ),se a  and the ths  timelike 

principal section ( ),se n   

 

( ) ( ) ( )2 2
01 sinh , cosh ,

s ss ue s ue sK e a K e nζ ζψ ψ+ ++ =  

 
where the hyperbolic angles between a  and n  and between a and se  are 0ψ  and 

sψ  respectively. 

 
Proof: Let a  be any spacelike unit vector of generalized timelike ruled surface 
M  with timelike generating space and with spacelike central ruled surface in 
n− dimensional Minkowski space 1

n
ℝ .  

 
i. If we consider the equation (3.1) then the curvature of timelike section is  
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( ) 0 0 0 0
2,

, , ,
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R
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e e a a e aσ

σ σ σ σ
ζ σ

σ σ σ

β β λ λ
+ =

−
   ,   1 mσ≤ ≤   ,  sσ ≠ .                 (3.7) 

 

( ),e aσ  at the point ( )ue Mσζ + ∈ . 

 
The coordinates of the thν  base vector eν , 1 kν≤ ≤ , and spacelike unit vector a  

given by the equation (3.3) are ( )0 1, , , , , kνβ β β β… …  and ( )0 1, , , , ,s kγ γ γ γ… … , 

respectively. Thus, we may write 
 

0 0, 0 , , , 1e e e e kν ν ν ν νβ β ε ν= = = = ≤ ≤  
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When we substitute these last equations together with the equation (2.17) into the 
equation (3.7) we find 
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g g
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  ∂ ∂
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2

n g= − , we obtain  
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Considering equation (25) in ref. [5] we find the relation between curvature of the 

thσ  spacelike principal section ( ),e nσ  and curvature of timelike section ( ),e aσ . 

 
ii. Similarly, at the point ( )sue Mζ + ∈ , the timelike sectional curvature is given 

by  

   ( ) 0 0 0 0
2,

, , ,s

s s s s
ue s

s s s

R
K e a

e e a a e a
ζ

β β λ λ
+ =

−
   , 1 s m≤ ≤ , s σ≠ .                        (3.8) 

 
Substituting the equation (2.17) into the equation (3.8) and considering that 

2
n g= −  we obtain  
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    ( ) ( )
22

2 2
0 2 2

1 1
1 sinh , cosh .

2 4ss ue s
s s

g g
K e a

g u g uζψ ψ+

  ∂ ∂
 + = −   ∂ ∂  

 

 
Therefore, taking the equation (26) in ref. [5] into consideration we get the 
relation between curvature of the ths  timelike principal section ( ),se n  and 

curvature of timelike section ( ),se a . 

 
Theorem 3.2: Let M  be a generalized timelike ruled surface with timelike 
generating space and with spacelike central ruled surface in n− dimensional 
Minkowski space 1

n
ℝ . a  and se , 1 s m≤ ≤ , be any timelike unit vector of M  and 

timelike base vector within subspace ( )mF t , respectively. Given any timelike unit 

vector a  which is linearly independent with eσ , 1 mσ≤ ≤ , sσ ≠ , at the point 

( ) ,ue Mσζ + ∈  there exists the following relation between curvature of timelike 

section ( ),e aσ  and curvature of  the thσ  principal spacelike section ( ),e nσ   

 

( ) ( ) ( )2 2
01 cosh , sinh ,ue ueK e a K e n

σ σσ ζ σ ζ σψ ψ+ ++ = − . 

 
So that the angles 0ψ  and σψ  are the hyperbolic angles between a  and n  and 

between a  and eσ , respectively. 

 
Proof: At the point ( )ue Mσζ + ∈  the curvature of timelike section ( ),e aσ  

becomes 

( ) 0 0 0 0
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, , ,
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R
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σ σ σ σ
ζ σ

σ σ σ
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−
   ,   1 mσ≤ ≤     , .sσ ≠ ,                (3.9) 

 
The coordinates of the thν  base vector eν , 1 kν≤ ≤ , and timelike unit vector a  

given by equation (3.4) are ( )0 1, , , , , kνβ β β β… …  and ( )0 1, , , , ,s kγ γ γ γ… … , and 

we write the following equations 
 
 0 0, 0 , , , 1 ,e e e e kν ν ν ν νβ β ε ν= = = = ≤ ≤  

and 

0
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sinh
, , , sinh , 1 , ,
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a e a e k s
n

a e s m

ν ν ν
ψγ γ ψ ν ν

γ ψ

= = = = ≤ ≤ ≠
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Substituting these equations together with the equation (2.17) into the equation 

(3.9) and considering that 
2

n g= − , we reach 

     ( ) ( )
22

2 2
0 2 2

1 1
1 cosh , sinh .

2 4ue

g g
K e a

g u g uσσ ζ σ
σ σ

ψ ψ+

  ∂ ∂
 − − = − +   ∂ ∂  

 

We obtain, therefore, a relation between curvature of spacelike thσ  principal 
section ( ),e nσ , 1 mσ≤ ≤ , sσ ≠ , given by the equation (25) in ref. [5] and the 

curvature of timelike section ( ),e aσ  and this completes the proof.  

 
Theorem 3.3: Let M  be a generalized timelike ruled surface with timelike 
generating space and with spacelike central ruled surface in n− dimensional 
Minkowski space 1

n
ℝ . a  and m se + , 1 s k m≤ ≤ − , be any spacelike unit vector of 

M  and timelike base vector within the central space ( )k mZ t− , respectively. Given 

the spacelike unit vector a  which is linearly independent of spacelike base 
vectoreσ , 1 mσ≤ ≤ , at the point ( )ue Mσζ + ∈ , there exist the following relation 

between the curvatures of timelike section ( ),e aσ  and the thσ  spacelike principal 

section ( ),e nσ   

 

( ) ( ) ( )2 2
01 cosh , cosh ,ue ueK e a K e n

σ σσ ζ σ ζ σψ ψ+ +− =  

 
where the hyperbolic angles between a  and n , between a  and eσ  are 0ψ  and 

σψ , respectively. 

 
Proof: At the point ( )ue Mσζ + ∈  the curvature of timelike section ( ),e aσ , 

1 mσ≤ ≤ , is given by  

( ) 0 0 0 0
2, , 1 .

, , ,
ue

R
K e a m

e e a a e aσ

σ σ σ σ
ζ σ

σ σ σ

β β λ λ σ+ = ≤ ≤
−

           (3.10) 

 
The coordinates of the thν  base vector eν , 1 kν≤ ≤ , and spacelike unit vector are 

( )0 1, , , , , kνβ β β β… …  and ( )0 1, , , , ,m s kγ γ γ γ+… … , respectively so that 

 
 0 0, 0 , , , 1 ,e e e e kν ν ν ν νβ β ε ν= = = = ≤ ≤  

and 

0
0 0

cosh
, , , cosh , 1 , ,

, sinh , 1 .m s m s m s

a e a e k m s
n

a e s k m

ν ν ν
ψγ γ ψ ν ν

γ ψ+ + +

= = = = ≤ ≤ ≠ +

= = ≤ ≤ −
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When these equations together with the equation (2.17) are substituted into the 
equation (3.10) one finds  

( )

22 2
0

2 2

2

cosh 1 1
2 4

, .
1 coshue

g g

u g un
K e a

σ

σ σ

ζ σ
σ

ψ

ψ+

  ∂ ∂
 −   ∂ ∂  =

−
 

Considering the last equation together with that 
2

n g= −  yields us  

        ( ) ( )
22

2 2
0 2 2

1 1
1 cosh , cosh .

2 4ue

g g
K e a

g u g uσσ ζ σ
σ σ

ψ ψ+

  ∂ ∂
 − = − +   ∂ ∂  

 

Therefore, we obtain the relation between curvature of spacelike thσ  principal 
section ( ),e nσ , 1 mσ≤ ≤ , given by the equation (25) in ref. [5] and the curvature 

of timelike section ( ),e aσ  and this completes the proof.  

 
Theorem 3.4: Let M  be a generalized timelike ruled surface with timelike 
generating space and with spacelike central ruled surface in n− dimensional 
Minkowski space 1

n
ℝ , a  be arbitrary timelike unit vector of M  and m se + , 

1 s k m≤ ≤ − , be a timelike base vector in central space ( )k mZ t− , respectively. 

Giving a spacelike vector eσ , 1 mσ≤ ≤ , and linearly independent with timelike 

unit vector a  there exists a relation at the point ( )ue Mσζ + ∈ ,  

 

( ) ( ) ( )2 2
01 cosh , sinh ,ue ueK e a K e n

σ σσ ζ σ ζ σψ ψ+ ++ = −  

 
between the curvatures of timelike section ( ),e aσ  and the thσ  spacelike principal 

section ( ),e nσ . Here 0ψ  and σψ  are the hyperbolic angles between a , n , and a , 

eσ , 1 mσ≤ ≤ , respectively. 

 
Proof: Taking 1 mσ≤ ≤ , the sectional curvature at the point ( )ue Mσζ + ∈  is 

given by  

( ) 0 0 0 0
2,

, , ,
ue

R
K e a

e e a a e aσ

σ σ σ σ
ζ σ

σ σ σ

β β λ λ
+ =

−
   ,   1 .mσ≤ ≤                       (3.11) 

 
If the coordinates of the thν  base vector eν , 1 kν≤ ≤ , and the timelike unit vector 

given by the equation (3.6) are ( )0 1, , , , , kνβ β β β… …  and ( )0 1, , , , ,m s kγ γ γ γ+… … , 

respectively, then we may write 
  

0 0, 0 , , , 1e e e e kν ν ν ν νβ β ε ν= = = = ≤ ≤  
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and 

0
0 0

sinh
, , , sinh , 1 , ,

, cosh , 1 .m s m s m s

a e a e k m s
n

a e s k m

ν ν ν
ψγ γ ψ ν ν

γ ψ+ + +

= = = = ≤ ≤ ≠ +

= = ≤ ≤ −
 
Substituting the last equations and the equation (2.17) into the equation (3.11) and 

considering that 
2

n g= −  we reach that 

     ( ) ( )
22

2 2
0 2 2

1 1
1 cosh , sinh .

2 4ue

g g
K e a

g u g uσσ ζ σ
σ σ

ψ ψ+

  ∂ ∂
 − − = − +   ∂ ∂  

 

 
Taking the equation (25) in ref. [5] into consideration, the relation between 
curvature of the thσ  principal spacelike section ( ),e nσ , 1 mσ≤ ≤ , and curvature 

of timelike section ( ),e aσ  is found and this completes the proof. 

Taking vector e given by equations (30), (31), (32) and (33) in ref. [5] to be the 
unit vector in ( )kE t  and unit vector a  given by equations (3.3), (3.4), (3.5) and 

(3.6) to be a unit vector at the central point ζ∀ ∈Ω , the following theorems 
related to the sectional curvatures of M  could be given.  
 
Theorem 3.5: Let M  be a generalized timelike ruled surface with timelike 
generating space and with spacelike central ruled surface in n− dimensional 
Minkowski space 1

n
ℝ , taking vector a , which is linearly independent with 

spacelike unit vector  e in generating space ( )kE t  of M , to be spacelike unit 

vector at the central point ζ∀ ∈Ω , the following relation holds between 

curvature of nondegenerate section ( ),e a  of M  and curvature of spacelike 

section ( ),e n  

 

( ) ( )
2

0
2

cosh
, ,

1 ,
K e a K e n

e a
ζ ζ

ψ=
−

 

 
where 0ψ  is the angle between spacelike unit vector a  and spacelike normal 

tangent vector n .  
 
Proof: Considering the equation (3.1) the sectional curvature at the central point 
ζ ∈Ω  is given by  

( )
0 0 0 0 0 0 0 0

1

2, .
, , ,

m

s s s s

s

R R

K e a
e e a a e a

σ σ σ σ
σ
σ

ζ

β β λ λ β β λ λ
=
≠

+

=
−

∑
                 (3.12) 
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If the coordinates of e given by equation (30) in ref. [5] and tangent vector a  
given by equation (3.3) ( )0 1, , , , ,s kβ β β β… …  and ( )0 1, , , , ,s kγ γ γ γ… … , 

respectively, then we may write 
  

0 0, 0,

, sinh , 1

, cosh , 1 ,

s s s

e e

e e s m

e e k sν ν ν

β
β θ
β θ ν ν

= =

= = ≤ ≤

= = ≤ ≤ ≠

 

and 

0
0 0

cosh
, ,

, sinh , 1

, cosh , 1 , .

s s s

a e
n

a e s m

a e k sν ν ν

ψγ

γ ψ
γ ψ ν ν

= =

= = ≤ ≤

= = ≤ ≤ ≠

 

 
Substituting the last equations together with the equation (2.17) into the equation 
(3.12) we get  
 

( )

2 22 2 2
2 20

2 2 2
1

2

cosh 1 1 1 1
cosh sinh

2 4 2 4
, .

1 ,

m

s
s s

g g g g

u g u u g un
K e a

e a

σ
σ σ σ

ζ

ψ θ θ
=

       ∂ ∂ ∂ ∂    − + −       ∂ ∂ ∂ ∂        =
−

∑

 

Considering the last equation and 
2

n g= −  we reach 

 

( )

2 22 2
2 2 2

0 2 2 2 2
1

2

1 1 1 1
cosh cosh sinh

2 4 2 4
, .

1 ,

m

s
s s

g g g g

g u g u g u g u
K e a

e a

σ
σ σ σ

ζ

ψ θ θ
=

       ∂ ∂ ∂ ∂    − + + − +       ∂ ∂ ∂ ∂        =
−

∑

 
Considering curvature of the thσ  spacelike principal section ( ),e nσ , 1 mσ≤ ≤ , 

sσ ≠ , given by the equation (25) in ref. [5] and the curvature of  the ths  timelike 
principal section ( ),se n , 1 s m≤ ≤ ,  given by the equation (26) in ref. [5] at the 

central point ζ ∈Ω  we find 
 

( )
( ) ( )2 2 2

0
1

2

cosh cosh , sinh ,

, .
1 ,

m

s sK e a K e a

K e a
e a

σ ζ σ ζ
σ

ζ

ψ θ θ
=

 − 
 =

−

∑
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If we take I. type Lorentzian Beltrami-Euler formula given by theorem in ref. [5] 
we complete the proof.  
 
Theorem 3.6: Let M  be a generalized timelike ruled surface with timelike 
generating space and spacelike central ruled surface in n− dimensional 
Minkowski space 1

n
ℝ  and a  be a timelike unit vector which is linearly 

independent with spacelike unit vector e in generating space ( )kE t  of M . The 

relationship between curvature of timelike section ( ),e a  and curvature of 

spacelike section ( ),e n  of M   at ζ∀ ∈Ω  is 

 

( ) ( )
2

0
2

sinh
, ,

1 ,
K e a K e n

e a
ζ ζ

ψ= −
+

 

 
where 0ψ  is an angle between timelike vector a  and spacelike normal tangent 

vectorn . 
 
Proof: At the point ζ ∈Ω  the sectional curvature is given by 
  

( )
0 0 0 0 0 0 0 0

1

2, .
, , ,

m

s s s s

s

R R

K e a
e e a a e a

σ σ σ σ
σ
σ

ζ

β β λ λ β β λ λ
=
≠

+

=
−

∑
      (3.13) 

 
If the coordinates of e given by equation (30) in ref. [5] and the unit vector a  
given by equation (3.4) are ( )0 1, , , , ,s kβ β β β… …  and ( )0 1, , , , , ,s kγ γ γ γ… …  

respectively, then we obtain 
 

0 0, 0,

, sinh , 1

, cosh , 1 , ,

s s s

e e

e e s m

e e k sν ν ν

β
β θ
β θ ν ν

= =

= = ≤ ≤

= = ≤ ≤ ≠

 

and 

0
0 0

sinh
, ,

, cosh , 1

, sinh , 1 , .

s s s

a e
n

a e s m

a e k sν ν ν

ψγ

γ ψ
γ ψ ν ν

= =

= = ≤ ≤

= = ≤ ≤ ≠

 

 
Substituting the last equations together with equation (2.17) into equation (3.13) 

and considering that 
2

n g= −  we reach  
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( )

2 22 2
2 2 2

0 2 2 2 2
1

2

1 1 1 1
sinh cosh sinh

2 4 2 4
, .

1 ,

m

s
s s

g g g g

g u g u g u g u
K e a

e a

σ
σ σ σ

ζ

ψ θ θ
=

       ∂ ∂ ∂ ∂    − + + − +       ∂ ∂ ∂ ∂        = −
+

∑

 
Considering the curvature of the thσ  spacelike principal section ( ),e nσ , 

1 mσ≤ ≤ , sσ ≠ , which is given by equation (25) in ref. [5], and curvature of the 
ths  timelike principal section ( ),se n , 1 s m≤ ≤ , is given by (26) in ref. [5], into 

the last equation at the point ζ ∈Ω , we get 
  

( )
( ) ( )2 2 2

0
1

2

sinh cosh , sinh ,

, .
1 ,

m

s sK e a K e a

K e a
e a

σ ζ σ ζ
σ

ζ

ψ θ θ
=

 − 
 = −

+

∑
 

 
The last equation together with the I. type Lorentzian Beltrami-Euler formula 
completes the proof.  
 
Theorem 3.7: Let M  be a generalized timelike ruled surface with timelike 
generating space and spacelike central ruled surface in n− dimensional 
Minkowski space 1

n
ℝ . If we suppose the vector a , which is linearly independent 

with timelike unit vector e in the generating space ( )kE t  to be a spacelike unit 

vector at the point ζ∀ ∈Ω  there exists the following relation between curvature 

of timelike section ( ),e a  and curvature of timelike section ( ),e n  of M  

 

( ) ( )
2

0
2

cosh
, ,

1 ,
K e a K e n

e a
ζ ζ

ψ=
+

 

 
where 0ψ  is an angle between spacelike vector a  and spacelike normal tangent 

vector n . 
 
Proof: At the central point ζ ∈Ω , the curvature of the timelike section ( ),e a  is 

given by 

( )
0 0 0 0 0 0 0 0

1

2, .
, , ,

m

s s s s

s

R R

K e a
e e a a e a

σ σ σ σ
σ
σ

ζ

β β λ λ β β λ λ
=
≠

+

=
−

∑
                 (3.14) 

 
If the coordinates of e given by equation (30) in ref. [5] and the tangent vector a  
are ( )0 1, , , , ,s kβ β β β… …  and ( )0 1, , , , ,s kγ γ γ γ… … , respectively, then we get 



 Lorentzian Beltrami-Meusnier Formula                                                                81 
 

0 0, 0,

, cosh , 1 ,

, sinh , 1 , ,

s s s

e e

e e s m

e e k sν ν ν

β
β θ
β θ ν ν

= =

= = ≤ ≤

= = ≤ ≤ ≠

 

and 

0
0 0

cosh
, ,

, sinh , 1 ,

, cosh , 1 , .

s s s

a e
n

a e s m

a e k sν ν ν

ψγ

γ ψ
γ ψ ν ν

= =

= = ≤ ≤

= = ≤ ≤ ≠

 

 
Substituting the last equations together with the equation (2.17) into the equation 

(3.14) and considering that 
2

n g= −  we find 

 

( )

2 22 2
2 2 2

0 2 2 2 2
1

2

1 1 1 1
cosh sinh cosh

2 4 2 4
, .

1 ,

m

s
s s

g g g g

g u g u g u g u
K e a

e a

σ
σ σ σ

ζ

ψ θ θ
=

       ∂ ∂ ∂ ∂    − + + − +       ∂ ∂ ∂ ∂        = −
+

∑

 
If we substitute the curvature of the thσ  spacelike principal section ( ),e nσ , 

1 mσ≤ ≤ , sσ ≠ , given by equation (25) in ref. [5], and the curvature of the ths  
timelike principal section ( ),se n , 1 s m≤ ≤ , given by equation (26) in ref. [5] into 

the last equation at the point ζ ∈Ω ,  we get 
 

( )
( ) ( )2 2 2

0
1

2

cosh sinh , cosh ,

, .
1 ,

m

s sK e a K e a

K e a
e a

σ ζ σ ζ
σ

ζ

ψ θ θ
=

 − + 
 =

+

∑
 

 
Considering the II. type Lorentzian Beltrami-Euler formula given by Theorem 4.7 
in ref. [5] completes the proof.  
 
Theorem 3.8: Let M  be a generalized timelike ruled surface with timelike 
generating space and timelike central ruled surface in n− dimensional Minkowski 
space 1

n
ℝ . Suggesting the vectora , which is independent with spacelike unit 

vector e  in the generating space ( )kE t , to be a spacelike unit vector at the point 

ζ∀ ∈Ω , there exists the following relation between curvature of nondegenerate 

section ( ),e a  and curvature of spacelike section ( ),e n  of M  

 

( ) ( )
2

0
2

cosh
, ,

1 ,
K e a K e n

e a
ζ ζ

ψ=
−
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so that 0ψ  denotes the angle between spacelike unit vector a  and spacelike 

normal tangential vector n . 
 
Proof: The curvature of the spacelike section ( ),e a  at the point ζ ∈Ω  is  

( )
0 0 0 0

1
2, .

, , ,

m

R
K e a

e e a a e a

σ σ σ σ
σ

ζ

β β λ λ
==

−

∑
                 (3.15) 

 
If the coordinates of e from the equation (32) in [5] and the tangent vector a  
given by equation (3.5) are ( )0 1, , , , ,m s kβ β β β+… …  and ( )0 1, , , , ,m s kγ γ γ γ+… … , 

respectively, we find 
  

0 0, 0,

, sinh , 1 ,

, cosh , 1 , ,

m s m s m s

e e

e e s k m

e e k m sν ν ν

β
β θ

β θ ν ν
+ + +

= =

= = ≤ ≤ −

= = ≤ ≤ ≠ +

 

and 

0
0 0

cosh
, ,

, sinh , 1 ,

, cosh , 1 , .

m s m s m s

a e
n

a e s k m

a e k m sν ν ν

ψγ

γ ψ
γ ψ ν ν
+ + +

= =

= = ≤ ≤ −

= = ≤ ≤ ≠ +

 

 

Considering that 
2

n g= −  and substituting the last equations together with 

equation (2.17) into the equation (3.15) yields 
 

                ( )

22 2
20

2 2
1

2

cosh 1 1
cosh

2 4
, .

1 ,

m g g

u g un
K e a

e a

σ
σ σ σ

ζ

ψ θ
=

  ∂ ∂
 −   ∂ ∂  =

−

∑
 

 
Considering that the curvature of spacelike thσ  principal section ( ),e nσ , 

1 mσ≤ ≤ , given by equation (25) in ref. [5] at the point ζ ∈Ω , we obtain 
 

( )
( )2 2

0
1

2

cosh cosh ,
,

1 ,

m

K e a
K e a

e a

σ ζ σ
σ

ζ

ψ θ
==

−

∑
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From III. type Lorentzian Beltrami-Euler formula, we see that there exists the 
relation between the curvature of spacelike section ( ),e a  and curvature of 

spacelike section ( ),e n  and this completes the proof.  

 
Theorem 3.9: Let M  be a generalized timelike ruled surface with timelike 
generating space and timelike central ruled surface in n− dimensional Minkowski 
space 1

n
ℝ . Considering that the vector a , which is independent with spacelike 

unit vector e  in the generating space ( )kE t , to be a timelike unit vector at the 

point ζ∀ ∈Ω , there exists the following relation between the curvature of 

timelike section ( ),e a  and curvature of spacelike section ( ),e n  of M , such that 

 

( ) ( )
2

0
2

sinh
, ,

1 ,
K e a K e n

e a
ζ ζ

ψ= −
+

 

 
where 0ψ  is the angle between timelike unit vector a  and spacelike normal 

tangential vector n . 
 
Proof: The curvature of timelike section ( ),e a  at the point ζ ∈Ω  is given by 

            ( )
0 0 0 0

1
2
.,

, , ,

m

R
K e a

e e a a e a

σ σ σ σ
σ

ζ

β β λ λ
==

−

∑
                            (3.16) 

 
Taking the coordinates of e from equation (32) in ref. [5] and the tangent vector 
a  to be ( )0 1, , , , ,m s kβ β β β+… …  and( )0 1, , , , ,m s kγ γ γ γ+… … , respectively, we reach 

  

0 0, 0,

, sinh , 1 ,

, cosh , 1 , ,

m s m s m s

e e

e e s k m

e e k m sν ν ν

β
β θ

β θ ν ν
+ + +

= =

= = ≤ ≤ −

= = ≤ ≤ ≠ +

 

and 

0
0 0

sinh
, ,

, cosh , 1 ,

, sinh , 1 , .

m s m s m s

a e
n

a e s k m

a e k m sν ν ν

ψγ

γ ψ
γ ψ ν ν
+ + +

= =

= = ≤ ≤ −

= = ≤ ≤ ≠ +

 

 

Considering 
2

n g= −  and substituting the last equations together with the 

equation (2.17) into the equation (3.16), we find 
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( )

22
2 2

0 2 2
1

2

1 1
sinh cosh

2 4
, .

1 ,

m g g

g u g u
K e a

e a

σ
σ σ σ

ζ

ψ θ
=

  ∂ ∂
 − +   ∂ ∂  = −
+

∑
 

 
If we consider the curvature of the thσ  spacelike principal section( ),e nσ , 

1 mσ≤ ≤ , given by equation (25) in ref. [5], we find 
 

( )
( )2 2

0
1

2

sinh cosh ,
, .

1 ,

m

K e a
K e a

e a

σ ζ σ
σ

ζ

ψ θ
== −

+

∑
 

 
Considering the curvature of spacelike section ( ),e n , which is given by III. type 

Lorentzian Beltrami-Euler formula in ref. [5] completes the proof.  
 
Theorem 3.10 Let M  be a generalized timelike ruled surface with timelike 
generating space and timelike central ruled surface in n− dimensional Minkowski 
space 1

n
ℝ . Considering that the vector a , which is independent with timelike unit 

vector e  in the generating space ( )kE t  of M , to be a timelike unit vector at the 

central point ζ∀ ∈Ω , there exists the following relation between curvature of 

timelike section ( ),e a  and curvature of timelike section ( ),e n  

 

( ) ( )
2

0
2

cosh
, ,

1 ,
K e a K e n

e a
ζ ζ

ψ=
+

 

 
Where 0ψ  denotes the angle between spacelike unit vector a  and spacelike 

normal tangential vector n . 
 
Proof: The curvature of timelike section ( ),e a  at the central point ζ ∈Ω  is given 

by 

( )
0 0 0 0

1
2, .

, , ,

m

R
K e a

e e a a e a

σ σ σ σ
σ

ζ

β β λ λ
==

−

∑
                             (3.17) 

 
If the coordinates of tangent vector a  given by equation (3.5) and e given by (33) 
in ref. [5] are ( )0 1, , , , ,m s kβ β β β+… …  and ( )0 1, , , , ,m s kγ γ γ γ+… … , respectively, 

then we write 
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0 0, 0,

, cosh , 1 ,

, sinh , 1 , ,

m s m s m s

e e

e e s k m

e e k m sν ν ν

β
β θ

β θ ν ν
+ + +

= =

= = ≤ ≤ −

= = ≤ ≤ ≠ +

 

and 

0
0 0

cosh
, ,

, sinh , 1 ,

, cosh , 1 , .

m s m s m s

a e
n

a e s k m

a e k m sν ν ν

ψγ

γ ψ
γ ψ ν ν
+ + +

= =

= = ≤ ≤ −

= = ≤ ≤ ≠ +

 

 

Considering that 
2

n g= −  and substituting the equation (2.17) together with the 

last equations into the (3.17) we reach 
 

   ( )

22
2 2

0 2 2
1

2

1 1
cosh sinh

2 4
, .

1 ,

m g g

g u g u
K e a

e a

σ
σ σ σ

ζ

ψ θ
=

  ∂ ∂
 − +   ∂ ∂  = −
+

∑
 

 
If we use the curvature of the thσ  spacelike principal section ( ),e nσ , 1 mσ≤ ≤ , 

given by the equation (25) in ref. [5] at the central point ζ ∈Ω  in the last 
equation we see that  

( )
( )2 2

0
1

2

cosh sinh ,
, .

1 ,

m

K e a
K e a

e a

σ ζ σ
σ

ζ

ψ θ
== −

+

∑
 

 
Considering the IV. type Lorentzian Beltrami-Euler formula in Theorem 4.9, [5] 
completes the proof. 
 
From the last six theorems it can be easily seen that when the central ruled surface 
of M  is either spacelike or timelike, the relations obtained are seemed to be same. 
Therefore we can give the following corollaries, respectively.  
 
From Theorems 3.6 and 3.8 we give the following corollary. 
 
Corollary 3.11: Let M  be a generalized timelike ruled surface with timelike 
generating space and (spacelike or timelike) central ruled surface in 
n− dimensional Minkowski space 1

n
ℝ . The vector a  is the spacelike unit vector, 

which is linearly independent with spacelike unit vector e in ( )kE t  of M  at the 

central point ζ∀ ∈ Ω . The curvature of spacelike section ( ),e a  of M  depends on 

the vectors e and a , Lorentzian Beltrami-Euler formula for the spacelike section 
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( ),e n  and the angle ( )0 ,a nψ =∢ . In this case, there exists the following relation 

between the curvature of spacelike section ( ),e a  and curvature of spacelike 

section ( ),e n  of M  

( ) ( )
2

0
2

cosh
, , .

1 ,
K e a K e n

e a
ζ ζ

ψ=
−

 

 
This equation is called I. type Lorentzian Beltrami-Meusnier formula for 
sectional curvature of generalized timelike ruled surface with timelike generating 
space at the central point.  
 
From Theorems 3.7 and 3.10 we give the following corollary. 
 
Corollary 3.12: Let M  be a generalized timelike ruled surface with timelike 
generating space and (spacelike or timelike) central ruled surface in 
n− dimensional Minkowski space 1

n
ℝ . The vector a  be a timelike unit vector, 

which is linearly independent with spacelike unit vector e in ( )kE t  of M  at the 

central point ζ∀ ∈ Ω . In this case, the following relation holds between the 

curvature of timelike section ( ),e a  and curvature of spacelike section ( ),e n  

( ) ( )
2

0
2

sinh
, ,

1 ,
K e a K e n

e a
ζ ζ

ψ= −
+

 

 
and this equation is called II. type Lorentzian Beltrami-Meusnier formula for 
sectional curvature of generalized timelike ruled surface with timelike generating 
space at the central point. Here, any curvature of timelike section ( ),e a  of M  

depends on the vectors e  and a , Lorentzian Beltrami-Euler formula for the 
spacelike section ( ),e n  and the angle ( )0 ,a nψ =∢ .  

 
We can give the following corollary from Theorem 3.7 and 3.10. 
 
Corollary 3.13: Let M  be a generalized timelike ruled surface with timelike 
generating space and (spacelike or timelike) central ruled surface in 
n− dimensional Minkowski space 1

n
ℝ . We also suppose that the vector a  is a 

spacelike unit vector, which is linearly independent with timelike unit vector in 

( )kE t  of M . In this special case any curvature of timelike section ( ),e a  of M  

depends on the vectors e  and a , Lorentzian Beltrami-Euler formula for the 
timelike section ( ),e n  and the angle ( )0 ,a nψ =∢ . The relation 
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( ) ( )
2

0
2

cosh
, ,

1 ,
K e a K e n

e a
ζ ζ

ψ=
+

 

 
holds between the curvature of timelike section ( ),e a  and curvature of timelike 

section ( ),e n  and this equation is named III. type Lorentzian Beltrami-Meusnier 

formula for sectional curvature of generalized timelike ruled surface with timelike 
generating space at the central point. 
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