

Gen. Math. Notes, Vol. 16, No. 2, June, 2013, pp.66-82 ISSN 2219-7184; Copyright ©ICSRS Publication, 2013 www.i-csrs.org Available free online at http://www.geman.in

On a Class of γ -b-Open Sets in a Topological Space

Hariwan Z. Ibrahim

Department of Mathematics, Faculty of Science University of Zakho, Kurdistan-Region, Iraq E-mail: hariwan_math@yahoo.com

(Received: 4-3-13 / Accepted: 7-4-13)

Abstract

In this paper, we introduce some weak separation axioms by utilizing the notions of γ -b-open sets and the γ -b-closure operator.

Keywords: γ -*b*-open, γ -*b*-closure, γD_b -set, γ -*b*- T_0 , γ -*b*- T_1 , γ -*b*- T_2 , γ -*b*- R_0 , γ -*b*- R_1 , γ -*b*-continuous.

1 Introduction

In [1] Andrijevi introduced b-open sets, Kasahara [3] defined an operation α on a topological space to introduce α -closed graphs. Following the same technique, Ogata [6] defined an operation γ on a topological space and introduced γ -open sets.

In this paper, we introduce the notion of γ -b-open sets, and γ -b-irresolute in topological spaces. By utilizing these notions we introduce some weak separation axioms. Also we show that some basic properties of γ -b- T_i , γ -b- D_i for i = 0, 1, 2 spaces and we ofer a new class of functions called γ -b-continuous functions and a new notion of the graph of a function called a γ -b-closed graph and investigate some of their fundamental properties.

2 Preliminaries

Let (X, τ) be a topological space and A a subset of X. The closure of A and the interior of A are denoted by cl(A) and int(A), respectively. A subset A is said to be b-open [1] if $A \subseteq int(cl(A)) \cup cl(int(A))$. The complement of a b-open set is said to be b-closed.

An operation γ [3] on a topology τ is a mapping from τ in to power set P(X) of X such that $V \subset \gamma(V)$ for each $V \in \tau$, where $\gamma(V)$ denotes the value of γ at V. A subset A of X with an operation γ on τ is called γ -open [6] if for each $x \in A$, there exists an open set U such that $x \in U$ and $\gamma(U) \subset A$. Then, τ_{γ} denotes the set of all γ -open set in X. Clearly $\tau_{\gamma} \subset \tau$. Complements of γ -open sets are called γ -closed. The γ -closure [6] of a subset A of X with an operation γ on τ is denoted by τ_{γ} -cl(A) and is defined to be the intersection of all γ -closed sets containing A, and the τ_{γ} -interior [4] of A is denoted by τ_{γ} -int(A) and defined to be the union of all γ -open sets of X contained in A. A subset A of X with an operation γ on τ is called be γ -preopen set [5] if and only if $A \subseteq \tau_{\gamma}$ -int $(\tau_{\gamma}$ -cl(A)). A subset A of X with an operation γ on τ is called be γ - β -open set [2] if $A \subseteq \tau_{\gamma}$ - $cl(\tau_{\gamma}$ - $int(\tau_{\gamma}$ -cl(A))). A topological X with an operation γ on τ is said to be γ -regular [6] if for each $x \in X$ and for each open neighborhood V of x, there exists an open neighborhood U of x such that $\gamma(U)$ contained in V. It is also to be noted that $\tau = \tau_{\gamma}$ if and only if X is a γ -regular space [6].

3 γ -b-Open Sets

Definition 3.1 A subset A of a topological space (X, τ) is said to be γ -bopen if $A \subset \tau_{\gamma}$ -int $(\tau_{\gamma}$ -cl $(A)) \cup \tau_{\gamma}$ -cl $(\tau_{\gamma}$ -int(A)).

The complement of a γ -b-open set is said to be γ -b-closed. The family of all γ -b-open (resp. γ -b-closed) sets in a topological space (X, τ) is denoted by $\gamma bO(X, \tau)$ (resp. $\gamma bC(X, \tau)$).

Definition 3.2 Let A be a subset of a topological space (X, τ) . The intersection of all γ -b-closed sets containing A is called the γ -b-closure of A and is denoted by $\gamma cl_b(A)$.

Definition 3.3 Let (X, τ) be a topological space. A subset U of X is called a γ -b-neighbourhood of a point $x \in X$ if there exists a γ -b-open set V such that $x \in V \subset U$.

Theorem 3.4 For the γ -b-closure of subsets A, B in a topological space (X, τ) , the following properties hold:

- 1. A is γ -b-closed in (X, τ) if and only if $A = \gamma cl_b(A)$.
- 2. If $A \subset B$ then $\gamma cl_b(A) \subset \gamma cl_b(B)$.
- 3. $\gamma cl_b(A)$ is γ -b-closed, that is $\gamma cl_b(A) = \gamma cl_b(\gamma cl_b(A))$.
- 4. $x \in \gamma cl_b(A)$ if and only if $A \cap V \neq \phi$ for every γ -b-open set V of X containing x.

Proof. It is obvious.

Theorem 3.5 For a family $\{A_{\alpha} : \alpha \in \Delta\}$ of subsets a topological space (X, τ) , the following properties hold:

- 1. $\gamma cl_b(\bigcap_{\alpha \in \Delta} A_\alpha) \subset \bigcap_{\alpha \in \Delta} \gamma cl_b(A_\alpha).$
- 2. $\gamma cl_b(\bigcup_{\alpha \in \Delta} A_\alpha) \supset \bigcup_{\alpha \in \Delta} \gamma cl_b(A_\alpha).$

Proof.

- 1. Since $\cap_{\alpha \in \Delta} A_{\alpha} \subset A_{\alpha}$ for each $\alpha \in \Delta$, by Theorem 3.4 we have $\gamma cl_b(\cap_{\alpha \in \Delta} A_{\alpha}) \subset \gamma cl_b(A_{\alpha})$ for each $\alpha \in \Delta$ and hence $\gamma cl_b(\cap_{\alpha \in \Delta} A_{\alpha}) \subset \cap_{\alpha \in \Delta} \gamma cl_b(A_{\alpha})$.
- 2. Since $A_{\alpha} \subset \bigcup_{\alpha \in \Delta} A_{\alpha}$ for each $\alpha \in \Delta$, by Theorem 3.4 we have $\gamma cl_b(A_{\alpha}) \subset \gamma cl_b(\bigcup_{\alpha \in \Delta} A_{\alpha})$ for each $\alpha \in \Delta$ and hence $\bigcup_{\alpha \in \Delta} \gamma cl_b(A_{\alpha}) \subset \gamma cl_b(\bigcup_{\alpha \in \Delta} A_{\alpha})$.

Theorem 3.6 Every γ -preopen set is γ -b-open.

Proof. It follows from the Definitions.

The converse of the above Theorem need not be true by the following Example.

Example 3.7 Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$ and $\gamma(A) = A$ for all $A \in \tau$. Here $\{a, b\}$ is not γ -preopen however it is γ -b-open.

Corollary 3.8 Every γ -open set is γ -b-open.

Proof. It follows from Theorem 3.6.

Theorem 3.9 Every γ -b-open set is γ - β -open.

Proof. It follows from the Definitions.

Remark 3.10 The concepts of b-open and γ -b-open sets are independent, while in a γ -regular space these concepts are equivalent.

Example 3.11 Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Define an operation γ on τ by

$$\gamma(A) = \begin{cases} \{a\} & \text{if } A = \{a\} \\ A \cup \{c\} & \text{if } A \neq \{a\} \end{cases}$$

Clearly, $\tau_{\gamma} = \{\phi, \{a\}, X\}$. Then $\{b\}$ is b-open but not γ -b-open. Again, if we define γ on τ by $\gamma(A) = X$, then $\{c\}$ is γ -b-open but not b-open.

Theorem 3.12 An arbitrary union of γ -b-open sets is γ -b-open.

Proof. Let $\{A_k : k \in \Delta\}$ be a family of γ -b-open sets. Then for each k, $A_k \subseteq \tau_{\gamma} \operatorname{-int}(\tau_{\gamma} \operatorname{-cl}(A_k)) \cup \tau_{\gamma} \operatorname{-cl}(\tau_{\gamma} \operatorname{-int}(A_k))$ and so

$$\bigcup_{k \in \Delta} A_k \subseteq \bigcup_{k \in \Delta} [\tau_{\gamma} \operatorname{-int}(\tau_{\gamma} \operatorname{-cl}(A_k)) \cup \tau_{\gamma} \operatorname{-cl}(\tau_{\gamma} \operatorname{-int}(A_k))]$$

$$\subseteq [\bigcup_{k \in \Delta} \tau_{\gamma} \operatorname{-int}(\tau_{\gamma} \operatorname{-cl}(A_k))] \cup [\bigcup_{k \in \Delta} \tau_{\gamma} \operatorname{-cl}(\tau_{\gamma} \operatorname{-int}(A_k))]$$

$$\subseteq [\tau_{\gamma} \operatorname{-int}(\bigcup_{k \in \Delta} \tau_{\gamma} \operatorname{-cl}(A_k))] \cup [\tau_{\gamma} \operatorname{-cl}(\bigcup_{k \in \Delta} \tau_{\gamma} \operatorname{-int}(A_k))]$$

$$\subseteq [\tau_{\gamma} \operatorname{-int}(\tau_{\gamma} \operatorname{-cl}(\bigcup_{k \in \Delta} A_k))] \cup [\tau_{\gamma} \operatorname{-cl}(\tau_{\gamma} \operatorname{-int}(\bigcup_{k \in \Delta} A_k))].$$

Therefore, $\cup_{k \in \Delta} A_k$ is γ -b-open.

Remark 3.13

- 1. An arbitrary intersection of γ -b-closed sets is γ -b-closed.
- 2. The intersection of even two γ -b-open sets may not be γ -b-open.

Example 3.14 Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{a, b\}, X\}$. Define an operation γ on τ by

$$\gamma(A) = \begin{cases} A & if \ A = \{a, b\} \\ X & otherwise \end{cases}$$

Clearly, $\tau_{\gamma} = \{\phi, \{a, b\}, X\}$, take $A = \{a, c\}$ and $B = \{b, c\}$ are γ -b-open. Then $A \cap B = \{c\}$, which is not a γ -b-open set.

Definition 3.15 A subset A of a topological space (X, τ) is called a γD_b -set if there are two $U, V \in \gamma bO(X, \tau)$ such that $U \neq X$ and $A = U \setminus V$.

It is true that every γ -b-open set U different from X is a γD_b -set if A = Uand $V = \phi$. So, we can observe the following.

Remark 3.16 Every proper γ -b-open set is a γD_b -set.

Definition 3.17 A topological space (X, τ) with an operation γ on τ is said to be

- 1. γ -b- D_0 if for any pair of distinct points x and y of X there exists a γD_b set of X containing x but not y or a γD_b -set of X containing y but not x.
- 2. γ -b- D_1 if for any pair of distinct points x and y of X there exists a γD_b -set of X containing x but not y and a γD_b -set of X containing y but not x.
- 3. γ -b-D₂ if for any pair of distinct points x and y of X there exist disjoint γD_b -set G and E of X containing x and y, respectively.

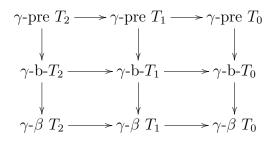
Definition 3.18 A topological space (X, τ) with an operation γ on τ is said to be

- γ-b-T₀ (resp. γ-pre T₀ [5] and γ-β T₀ [2]) if for any pair of distinct points x and y of X there exists a γ-b-open (resp. γ-preopen and γ-βopen) set U in X containing x but not y or a γ-b-open (resp. γ-preopen and γ-β-open) set V in X containing y but not x.
- γ-b-T₁ (resp. γ-pre T₁ [5] and γ-β T₁ [2]) if for any pair of distinct points x and y of X there exists a γ-b-open (resp. γ-preopen and γ-β-open) set U in X containing x but not y and a γ-b-open (resp. γ-preopen and γ-β-open) set V in X containing y but not x.
- 3. γ-b-T₂ (resp. γ-pre T₂ [5] and γ-β T₂ [2]) if for any pair of distinct points x and y of X there exist disjoint γ-b-open (resp. γ-preopen and γ-β-open) sets U and V in X containing x and y, respectively.

Remark 3.19 For a topological space (X, τ) , the following properties hold:

- 1. If (X, τ) is γ -b- T_i , then it is γ -b- T_{i-1} , for i = 1, 2.
- 2. If (X, τ) is γ -b- T_i , then it is γ -b- D_i , for i = 0, 1, 2.
- 3. If (X, τ) is γ -b- D_i , then it is γ -b- D_{i-1} , for i = 1, 2.
- 4. If (X, τ) is γ -pre T_i , then it is γ -b- T_i , for i = 0, 1, 2.
- 5. If (X, τ) is γ -b- T_i , then it is γ - β T_i , for i = 0, 1, 2.

By Remark 3.19 we have the following diagram.



Theorem 3.20 A topological space (X, τ) is γ -b-D₁ if and only if it is γ -b-D₂.

Proof. sufficiency. Follows from Remark 3.19.

Necessity. Let $x, y \in X$, $x \neq y$. Then there exist γD_b -sets G_1, G_2 in X such that $x \in G_1, y \notin G_1$ and $y \in G_2, x \notin G_2$. Let $G_1 = U_1 \setminus U_2$ and $G_2 = U_3 \setminus U_4$, where U_1, U_2, U_3 and U_4 are γ -b-open sets in X. From $x \notin G_2$, it follows that either $x \notin U_3$ or $x \in U_3$ and $x \in U_4$. We discuss the two cases separately. (i) $x \notin U_3$. By $y \notin G_1$ we have two subcases:

(a) $y \notin U_1$. From $x \in U_1 \setminus U_2$, it follows that $x \in U_1 \setminus (U_2 \cup U_3)$, and by $y \in U_3 \setminus U_4$ we have $y \in U_3 \setminus (U_1 \cup U_4)$. Therefore $(U_1 \setminus (U_2 \cup U_3)) \cap (U_3 \setminus (U_1 \cup U_4)) = \phi$. (b) $y \in U_1$ and $y \in U_2$. We have $x \in U_1 \setminus U_2$, and $y \in U_2$. Therefore $(U_1 \setminus U_2) \cap U_2 = \phi$.

(*ii*) $x \in U_3$ and $x \in U_4$. We have $y \in U_3 \setminus U_4$ and $x \in U_4$. Hence $(U_3 \setminus U_4) \cap U_4 = \phi$. Therefore X is γ -b- D_2 .

Definition 3.21 A point $x \in X$ which has only X as the γ -b-neighborhood is called a γ -b-neat point.

Theorem 3.22 If a topological space (X, τ) is γ -b- D_1 , then it has no γ -bneat point.

Proof. Since (X, τ) is γ -b- D_1 , so each point x of X is contained in a γD_b -set $A = U \setminus V$ and thus in U. By definition $U \neq X$. This implies that x is not a γ -b-neat point.

Theorem 3.23 A topological space (X, τ) with an operation γ on τ is γ -b- T_0 if and only if for each pair of distinct points x, y of $X, \gamma cl_b(\{x\}) \neq \gamma cl_b(\{y\})$.

Theorem 3.24 A topological space (X, τ) with an operation γ on τ is γ -b- T_1 if and only if the singletons are γ -b-closed sets.

Proof. Let (X, τ) be γ -b- T_1 and x any point of X. Suppose $y \in X \setminus \{x\}$, then $x \neq y$ and so there exists a γ -b-open set U such that $y \in U$ but $x \notin U$. Consequently $y \in U \subset X \setminus \{x\}$ i.e., $X \setminus \{x\} = \cup \{U : y \in X \setminus \{x\}\}$ which is γ -b-open.

Conversely, suppose $\{p\}$ is γ -b-closed for every $p \in X$. Let $x, y \in X$ with $x \neq y$. Now $x \neq y$ implies $y \in X \setminus \{x\}$. Hence $X \setminus \{x\}$ is a γ -b-open set contains y but not x. Similarly $X \setminus \{y\}$ is a γ -b-open set contains x but not y. Accordingly X is a γ -b- T_1 space.

Definition 3.25 A topological space (X, τ) is γ -b-symmetric if for x and y in $X, x \in \gamma cl_b(\{y\})$ implies $y \in \gamma cl_b(\{x\})$.

Theorem 3.26 If a topological space (X, τ) with an operation γ on τ is a γ -b- T_1 space, then it is γ -b-symmetric.

Proof. Suppose that $y \notin \gamma cl_b(\{x\})$. Then, since $x \neq y$, there exists a γ -b-open set U containing x such that $y \notin U$ and hence $x \notin \gamma cl_b(\{y\})$. This shows that $x \in \gamma cl_b(\{y\})$ implies $y \in \gamma cl_b(\{x\})$. Therefore, (X, τ) is γ -b-symmetric.

Definition 3.27 Let (X, τ) and (Y, σ) be two topological spaces and γ , β operations on τ , σ , respectively. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be γ -b-irresolute if for each $x \in X$ and each β -b-open set V containing f(x), there is a γ -b-open set U in X containing x such that $f(U) \subset V$.

Theorem 3.28 If $f : (X, \tau) \to (Y, \sigma)$ is a γ -b-irresolute surjective function and E is a βD_b -set in Y, then the inverse image of E is a γD_b -set in X.

Proof. Let E be a βD_b -set in Y. Then there are β -b-open sets U_1 and U_2 in Y such that $E = U_1 \setminus U_2$ and $U_1 \neq Y$. By the γ -b-irresolute of f, $f^{-1}(U_1)$ and $f^{-1}(U_2)$ are γ -b-open in X. Since $U_1 \neq Y$ and f is surjective, we have $f^{-1}(U_1) \neq X$. Hence, $f^{-1}(E) = f^{-1}(U_1) \setminus f^{-1}(U_2)$ is a γD_b -set.

Theorem 3.29 If (Y, σ) is β -b- D_1 and $f : (X, \tau) \to (Y, \sigma)$ is γ -b-irresolute bijective, then (X, τ) is γ -b- D_1 .

Proof. Suppose that Y is a β -b- D_1 space. Let x and y be any pair of distinct points in X. Since f is injective and Y is β -b- D_1 , there exist βD_b -set G_x and G_y of Y containing f(x) and f(y) respectively, such that $f(x) \notin G_y$ and $f(y) \notin G_x$. By Theorem 3.28, $f^{-1}(G_x)$ and $f^{-1}(G_y)$ are γD_b -set in X containing x and y, respectively, such that $x \notin f^{-1}(G_y)$ and $y \notin f^{-1}(G_x)$. This implies that X is a γ -b- D_1 space.

Theorem 3.30 A topological space (X, τ) is γ -b- D_1 if for each pair of distinct points $x, y \in X$, there exists a γ -b-irresolute surjective function $f : (X, \tau) \to (Y, \sigma)$, where Y is a β -b- D_1 space such that f(x) and f(y) are distinct.

Proof. Let x and y be any pair of distinct points in X. By hypothesis, there exists a γ -b-irresolute, surjective function f of a space X onto a β -b- D_1 space Y such that $f(x) \neq f(y)$. By Theorem 3.20, there exist disjoint βD_b -set G_x and G_y in Y such that $f(x) \in G_x$ and $f(y) \in G_y$. Since f is γ -b-irresolute and surjective, by Theorem 3.28, $f^{-1}(G_x)$ and $f^{-1}(G_y)$ are disjoint γD_b -sets in X containing x and y, respectively. hence by Theorem 3.20, X is γ -b- D_1 space.

4 γ -b- R_0 and γ -b- R_1 Spaces

Definition 4.1 Let A be a subset of a topological space (X, τ) with an operation γ on τ . The γ -b-kernel of A, denoted by $\gamma ker_b(A)$ is defined to be the set

$$\gamma ker_b(A) = \cap \{ U \in \gamma bO(X) \colon A \subset U \}.$$

Theorem 4.2 Let (X, τ) be a topological space with an operation γ on τ and $x \in X$. Then $y \in \gamma ker_b(\{x\})$ if and only if $x \in \gamma cl_b(\{y\})$.

Proof. Suppose that $y \notin \gamma ker_b(\{x\})$. Then there exists a γ -b-open set V containing x such that $y \notin V$. Therefore, we have $x \notin \gamma cl_b(\{y\})$. The proof of the converse case can be done similarly.

Lemma 4.3 Let (X, τ) be a topological space and A be a subset of X. Then, $\gamma ker_b(A) = \{x \in X : \gamma cl_b(\{x\}) \cap A \neq \phi\}.$

Proof. Let $x \in \gamma ker_b(A)$ and suppose $\gamma cl_b(\{x\}) \cap A = \phi$. Hence $x \notin X \setminus \gamma cl_b(\{x\})$ which is a γ -b-open set containing A. This is impossible, since $x \in \gamma ker_b(A)$. Consequently, $\gamma cl_b(\{x\}) \cap A \neq \phi$. Next, let $x \in X$ such that $\gamma cl_b(\{x\}) \cap A \neq \phi$ and suppose that $x \notin \gamma ker_b(A)$. Then, there exists a γ -b-open set V containing A and $x \notin V$. Let $y \in \gamma cl_b(\{x\}) \cap A$. Hence, V is a γ -b-neighborhood of y which does not contain x. By this contradiction $x \in \gamma ker_b(A)$ and the claim.

Remark 4.4 The following properties hold for the subsets A, B of a topological space (X, τ) with an operation γ on τ :

- 1. $A \subset \gamma ker_b(A)$, if A is γ -b-open in (X, τ) , then $A = \gamma ker_b(A)$.
- 2. If $A \subset B$, then $\gamma ker_b(A) \subset \gamma ker_b(B)$.

Definition 4.5 A topological space (X, τ) with an operation γ on τ is said to be γ -b- R_0 if every γ -b-open set U and $x \in U$ implies $\gamma cl_b(\{x\}) \subset U$.

Theorem 4.6 For a topological space (X, τ) with an operation γ on τ , the following properties are equivalent:

- 1. (X, τ) is γ -b-R₀.
- 2. For any $F \in \gamma bC(X)$, $x \notin F$ implies $F \subset U$ and $x \notin U$ for some $U \in \gamma bO(X)$.
- 3. For any $F \in \gamma bC(X)$, $x \notin F$ implies $F \cap \gamma cl_b(\{x\}) = \phi$.
- 4. For any distinct points x and y of X, either $\gamma cl_b(\{x\}) = \gamma cl_b(\{y\})$ or $\gamma cl_b(\{x\}) \cap \gamma cl_b(\{y\}) = \phi$.

Proof. (1) \Rightarrow (2). Let $F \in \gamma bC(X)$ and $x \notin F$. Then by (1) $\gamma cl_b(\{x\}) \subset X \setminus F$. Set $U = X \setminus \gamma cl_b(\{x\})$, then U is γ -b-open set such that $F \subset U$ and $x \notin U$. (2) \Rightarrow (3). Let $F \in \gamma bC(X)$ and $x \notin F$. There exists $U \in \gamma bO(X)$ such that $F \subset U$ and $x \notin U$. Since $U \in \gamma bO(X), U \cap \gamma cl_b(\{x\}) = \phi$ and $F \cap \gamma cl_b(\{x\}) = \phi.$ (3) \Rightarrow (4). Suppose that $\gamma cl_b(\{x\}) \neq \gamma cl_b(\{y\})$ for distinct points $x, y \in X$. There exists $z \in \gamma cl_b(\{x\})$ such that $z \notin \gamma cl_b(\{y\})$ (or $z \in \gamma cl_b(\{y\})$ such that $z \notin \gamma cl_b(\{x\})$. There exists $V \in \gamma bO(X)$ such that $y \notin V$ and $z \in$ V; hence $x \in V$. Therefore, we have $x \notin \gamma cl_b(\{y\})$. By (3), we obtain $\gamma cl_b(\{x\}) \cap \gamma cl_b(\{y\}) = \phi$. The proof for otherwise is similar. (4) \Rightarrow (1). let $V \in \gamma bO(X)$ and $x \in V$. For each $y \notin V$, $x \neq y$ and $x \notin \gamma cl_b(\{y\})$. This shows that $\gamma cl_b(\{x\}) \neq \gamma cl_b(\{y\})$. By (4), $\gamma cl_b(\{x\}) \cap$ $\gamma cl_b(\{y\}) = \phi$ for each $y \in X \setminus V$ and hence $\gamma cl_b(\{x\}) \cap (\bigcup_{y \in X \setminus V} \gamma cl_b(\{y\})) = \phi$. On other hand, since $V \in \gamma bO(X)$ and $y \in X \setminus V$, we have $\gamma cl_b(\{y\}) \subset$ $X \setminus V$ and hence $X \setminus V = \bigcup_{y \in X \setminus V} \gamma cl_b(\{y\})$. Therefore, we obtain $(X \setminus V) \cap$ $\gamma cl_b(\{x\}) = \phi$ and $\gamma cl_b(\{x\}) \subset V$. This shows that (X, τ) is a γ -b- R_0 space.

Theorem 4.7 A topological space (X, τ) with an operation γ on τ is γ -b- T_1 if and only if (X, τ) is γ -b- T_0 and γ -b- R_0 space.

Proof. Necessity. Let U be any γ -b-open set of (X, τ) and $x \in U$. Then by Theorem 3.24, we have $\gamma cl_b(\{x\}) \subset U$ and so by Remark 3.19, it is clear that X is γ -b- T_0 and γ -b- R_0 space.

Sufficiency. Let x and y be any distinct points of X. Since X is γ -b- T_0 , there exists a γ -b-open set U such that $x \in U$ and $y \notin U$. As $x \in U$ implies that $\gamma cl_b(\{x\}) \subset U$. Since $y \notin U$, so $y \notin \gamma cl_b(\{x\})$. Hence $y \in V = X \setminus \gamma cl_b(\{x\})$ and it is clear that $x \notin V$. Hence it follows that there exist γ -b-open sets U and V containing x and y respectively, such that $y \notin U$ and $x \notin V$. This implies that X is γ -b- T_1 .

Theorem 4.8 For a topological space (X, τ) with an operation γ on τ , the following properties are equivalent:

1. (X, τ) is γ -b-R₀.

2. $x \in \gamma cl_b(\{y\})$ if and only if $y \in \gamma cl_b(\{x\})$, for any points x and y in X.

Proof. (1) \Rightarrow (2). Assume that X is γ -b- R_0 . Let $x \in \gamma cl_b(\{y\})$ and V be any γ -b-open set such that $y \in V$. Now by hypothesis, $x \in V$. Therefore, every γ -b-open set which contain y contains x. Hence $y \in \gamma cl_b(\{x\})$.

 $(2) \Rightarrow (1)$. Let U be a γ -b-open set and $x \in U$. If $y \notin U$, then $x \notin \gamma cl_b(\{y\})$ and hence $y \notin \gamma cl_b(\{x\})$. This implies that $\gamma cl_b(\{x\}) \subset U$. Hence (X, τ) is γ -b- R_0 .

We observed that by Definition 3.25 and Theorem 4.8 the notions of γ -b-symmetric and γ -b- R_0 are equivalent.

Theorem 4.9 The following statements are equivalent for any points x and y in a topological space (X, τ) with an operation γ on τ :

- 1. $\gamma ker_b(\{x\}) \neq \gamma ker_b(\{y\}).$
- 2. $\gamma cl_b(\{x\}) \neq \gamma cl_b(\{y\}).$

Proof. (1) \Rightarrow (2). Suppose that $\gamma ker_b(\{x\}) \neq \gamma ker_b(\{y\})$, then there exists a point z in X such that $z \in \gamma ker_b(\{x\})$ and $z \notin \gamma ker_b(\{y\})$. From $z \in \gamma ker_b(\{x\})$ it follows that $\{x\} \cap \gamma cl_b(\{z\}) \neq \phi$ which implies $x \in \gamma cl_b(\{z\})$. By $z \notin \gamma ker_b(\{y\})$, we have $\{y\} \cap \gamma cl_b(\{z\}) = \phi$. Since $x \in \gamma cl_b(\{z\}), \gamma cl_b(\{x\}) \subset \gamma cl_b(\{z\})$ and $\{y\} \cap \gamma cl_b(\{x\}) = \phi$. Therefore, it follows that $\gamma cl_b(\{x\}) \neq \gamma cl_b(\{y\})$. (2) \Rightarrow (1). Suppose that $\gamma cl_b(\{x\}) \neq \gamma cl_b(\{y\})$. Then there exists a point z in X such that $z \in \gamma cl_b(\{x\})$ and $z \notin \gamma cl_b(\{y\})$. Then, there exists a γ -b-open set containing z and therefore x but not y, namely, $y \notin \gamma ker_b(\{x\})$ and thus $\gamma ker_b(\{x\}) \neq \gamma ker_b(\{y\})$.

Theorem 4.10 Let (X, τ) be a topological space and γ be an operation on τ . Then $\cap \{\gamma cl_b(\{x\}) : x \in X\} = \phi$ if and only if $\gamma ker_b(\{x\}) \neq X$ for every $x \in X$.

Proof. Necessity. Suppose that $\cap \{\gamma cl_b(\{x\}) : x \in X\} = \phi$. Assume that there is a point y in X such that $\gamma ker_b(\{y\}) = X$. Let x be any point of X. Then $x \in V$ for every γ -b-open set V containing y and hence $y \in \gamma cl_b(\{x\})$ for any $x \in X$. This implies that $y \in \cap \{\gamma cl_b(\{x\}) : x \in X\}$. But this is a contradiction.

Sufficiency. Assume that $\gamma ker_b(\{x\}) \neq X$ for every $x \in X$. If there exists a point y in X such that $y \in \cap \{\gamma cl_b(\{x\}) : x \in X\}$, then every γ -b-open set containing y must contain every point of X. This implies that the space X is the unique γ -b-open set containing y. Hence $\gamma ker_b(\{y\}) = X$ which is a contradiction. Therefore, $\cap \{\gamma cl_b(\{x\}) : x \in X\} = \phi$.

Theorem 4.11 A topological space (X, τ) with an operation γ on τ is γ b-R₀ if and only if for every x and y in X, $\gamma cl_b(\{x\}) \neq \gamma cl_b(\{y\})$ implies $\gamma cl_b(\{x\}) \cap \gamma cl_b(\{y\}) = \phi$.

Proof. Necessity. Suppose that (X, τ) is γ -b- R_0 and $x, y \in X$ such that $\gamma cl_b(\{x\}) \neq \gamma cl_b(\{y\})$. Then, there exists $z \in \gamma cl_b(\{x\})$ such that $z \notin \gamma cl_b(\{y\})$ (or $z \in \gamma cl_b(\{y\})$ such that $z \notin \gamma cl_b(\{x\})$). There exists $V \in \gamma bO(X)$ such that $y \notin V$ and $z \in V$, hence $x \in V$. Therefore, we have $x \notin \gamma cl_b(\{y\})$. Thus $x \in [X \setminus \gamma cl_b(\{y\})] \in \gamma bO(X)$, which implies $\gamma cl_b(\{x\}) \subset [X \setminus \gamma cl_b(\{y\})]$ and $\gamma cl_b(\{x\}) \cap \gamma cl_b(\{y\}) = \phi$. The proof for otherwise is similar.

Sufficiency. Let $V \in \gamma bO(X)$ and let $x \in V$. We still show that $\gamma cl_b(\{x\}) \subset V$. Let $y \notin V$, i.e., $y \in X \setminus V$. Then $x \neq y$ and $x \notin \gamma cl_b(\{y\})$. This shows that $\gamma cl_b(\{x\}) \neq \gamma cl_b(\{y\})$. By assumption, $\gamma cl_b(\{x\}) \cap \gamma cl_b(\{y\}) = \phi$. Hence $y \notin \gamma cl_b(\{x\})$ and therefore $\gamma cl_b(\{x\}) \subset V$.

Theorem 4.12 A topological space (X, τ) with an operation γ on τ is γ -b- R_0 if and only if for any points x and y in X, $\gamma ker_b(\{x\}) \neq \gamma ker_b(\{y\})$ implies $\gamma ker_b(\{x\}) \cap \gamma ker_b(\{y\}) = \phi$.

Proof. Suppose that (X, τ) is a γ -b- R_0 space. Thus by Theorem 4.9, for any points x and y in X if $\gamma ker_b(\{x\}) \neq \gamma ker_b(\{y\})$ then $\gamma cl_b(\{x\}) \neq \gamma cl_b(\{y\})$. Now we prove that $\gamma ker_b(\{x\}) \cap \gamma ker_b(\{y\}) = \phi$. Assume that $z \in \gamma ker_b(\{x\}) \cap \gamma ker_b(\{y\})$. By $z \in \gamma ker_b(\{x\})$ and Theorem 4.2, it follows that $x \in \gamma cl_b(\{z\})$. Since $x \in \gamma cl_b(\{x\})$, by Theorem 4.6, $\gamma cl_b(\{x\}) = \gamma cl_b(\{z\})$. Similarly, we have $\gamma cl_b(\{y\}) = \gamma cl_b(\{z\}) = \gamma cl_b(\{x\})$. This is a contradiction. Therefore, we have $\gamma ker_b(\{x\}) \cap \gamma ker_b(\{y\}) = \phi$.

Conversely, let (X, τ) be a topological space such that for any points xand y in X, $\gamma ker_b(\{x\}) \neq \gamma ker_b(\{y\})$ implies $\gamma ker_b(\{x\}) \cap \gamma ker_b(\{y\}) = \phi$. If $\gamma cl_b(\{x\}) \neq \gamma cl_b(\{y\})$, then by Theorem 4.9, $\gamma ker_b(\{x\}) \neq \gamma ker_b(\{y\})$. Hence, $\gamma ker_b(\{x\}) \cap \gamma ker_b(\{y\}) = \phi$ which implies $\gamma cl_b(\{x\}) \cap \gamma cl_b(\{y\}) = \phi$. Because $z \in \gamma cl_b(\{x\})$ implies that $x \in \gamma ker_b(\{z\})$ and therefore $\gamma ker_b(\{x\}) \cap \gamma ker_b(\{z\}) \neq \phi$. By hypothesis, we have $\gamma ker_b(\{x\}) = \gamma ker_b(\{z\})$. Then $z \in \gamma cl_b(\{x\}) \cap \gamma cl_b(\{y\})$ implies that $\gamma ker_b(\{x\}) = \gamma ker_b(\{z\}) = \gamma ker_b(\{y\})$. This is a contradiction. Therefore, $\gamma cl_b(\{x\}) \cap \gamma cl_b(\{y\}) = \phi$ and by Theorem 4.6 (X, τ) is a γ -b- R_0 space.

Theorem 4.13 For a topological space (X, τ) with an operation γ on τ , the following properties are equivalent:

- 1. (X, τ) is a γ -b-R₀ space.
- 2. For any nonempty set A and $G \in \gamma bO(X)$ such that $A \cap G \neq \phi$, there exists $F \in \gamma bC(X)$ such that $A \cap F \neq \phi$ and $F \subset G$.

- 3. Any $G \in \gamma bO(X)$, $G = \cup \{F \in \gamma bC(X) \colon F \subset G\}$.
- 4. Any $F \in \gamma bC(X)$, $F = \cap \{G \in \gamma bO(X) : F \subset G\}$.
- 5. For every $x \in X$, $\gamma cl_b(\{x\}) \subset \gamma ker_b(\{x\})$.

Proof. (1) \Rightarrow (2). Let A be a nonempty subset of X and $G \in \gamma bO(X)$ such that $A \cap G \neq \phi$. There exists $x \in A \cap G$. Since $x \in G \in \gamma bO(X)$, $\gamma cl_b(\{x\}) \subset G$. Set $F = \gamma cl_b(\{x\})$, then $F \in \gamma bC(X)$, $F \subset G$ and $A \cap F \neq \phi$. (2) \Rightarrow (3). Let $G \in \gamma bO(X)$, then $G \supseteq \cup \{F \in \gamma bC(X) \colon F \subset G\}$. Let x be any point of G. There exists $F \in \gamma bC(X)$ such that $x \in F$ and $F \subset G$. Therefore, we have $x \in F \subset \cup \{F \in \gamma bC(X) \colon F \subset G\}$ and hence $G = \cup \{F \in \gamma bC(X) \colon F \subset G\}$.

 $(3) \Rightarrow (4)$. This is obvious.

(4) \Rightarrow (5). Let x be any point of X and $y \notin \gamma ker_b(\{x\})$. There exists $V \in \gamma bO(X)$ such that $x \in V$ and $y \notin V$, hence $\gamma cl_b(\{y\}) \cap V = \phi$. By (4) $(\cap \{G \in \gamma bO(X): \gamma cl_b(\{y\}) \subset G\}) \cap V = \phi$ and there exists $G \in \gamma bO(X)$ such that $x \notin G$ and $\gamma cl_b(\{y\}) \subset G$. Therefore $\gamma cl_b(\{x\}) \cap G = \phi$ and $y \notin \gamma cl_b(\{x\})$. Consequently, we obtain $\gamma cl_b(\{x\}) \subset \gamma ker_b(\{x\})$.

 $(5) \Rightarrow (1)$. Let $G \in \gamma bO(X)$ and $x \in G$. Let $y \in \gamma ker_b(\{x\})$, then $x \in \gamma cl_b(\{y\})$ and $y \in G$. This implies that $\gamma ker_b(\{x\}) \subset G$. Therefore, we obtain $x \in \gamma cl_b(\{x\}) \subset \gamma ker_b(\{x\}) \subset G$. This shows that (X, τ) is a γ -b- R_0 space.

Corollary 4.14 For a topological space (X, τ) with an operation γ on τ , the following properties are equivalent:

- 1. (X, τ) is a γ -b-R₀ space.
- 2. $\gamma cl_b(\{x\}) = \gamma ker_b(\{x\})$ for all $x \in X$.

Proof. (1) \Rightarrow (2). Suppose that (X, τ) is a γ -b- R_0 space. By Theorem 4.13, $\gamma cl_b(\{x\}) \subset \gamma ker_b(\{x\})$ for each $x \in X$. Let $y \in \gamma ker_b(\{x\})$, then $x \in \gamma cl_b(\{y\})$ and by Theorem 4.6 $\gamma cl_b(\{x\}) = \gamma cl_b(\{y\})$. Therefore, $y \in \gamma cl_b(\{x\})$ and hence $\gamma ker_b(\{x\}) \subset \gamma cl_b(\{x\})$. This shows that $\gamma cl_b(\{x\}) = \gamma ker_b(\{x\})$. (2) \Rightarrow (1). This is obvious by Theorem 4.13.

Theorem 4.15 For a topological space (X, τ) with an operation γ on τ , the following properties are equivalent:

- 1. (X, τ) is a γ -b-R₀ space.
- 2. If F is γ -b-closed, then $F = \gamma ker_b(F)$.
- 3. If F is γ -b-closed and $x \in F$, then $\gamma ker_b(\{x\}) \subset F$.
- 4. If $x \in X$, then $\gamma ker_b(\{x\}) \subset \gamma cl_b(\{x\})$.

Proof. (1) \Rightarrow (2). Let F be a γ -b-closed and $x \notin F$. Thus $(X \setminus F)$ is a γ -b-open set containing x. Since (X, τ) is γ -b- R_0 . $\gamma cl_b(\{x\}) \subset (X \setminus F)$. Thus $\gamma cl_b(\{x\}) \cap F = \phi$ and by Lemma 4.3 $x \notin \gamma ker_b(F)$. Therefore $\gamma ker_b(F) = F$. (2) \Rightarrow (3). In general, $A \subset B$ implies $\gamma ker_b(A) \subset \gamma ker_b(B)$. Therefore, it follows from (2) that $\gamma ker_b(\{x\}) \subset \gamma ker_b(F) = F$. (3) \Rightarrow (4). Since $x \in \gamma cl_b(\{x\})$ and $\gamma cl_b(\{x\})$ is γ -b-closed, by (3), $\gamma ker_b(\{x\}) \subset \gamma cl_b(\{x\})$.

(4) \Rightarrow (1). We show the implication by using Theorem 4.8. Let $x \in \gamma cl_b(\{y\})$. Then by Theorem 4.2, $y \in \gamma ker_b(\{x\})$. Since $x \in \gamma cl_b(\{x\})$ and $\gamma cl_b(\{x\})$ is γ -b-closed, by (4) we obtain $y \in \gamma ker_b(\{x\}) \subset \gamma cl_b(\{x\})$. Therefore $x \in \gamma cl_b(\{y\})$ implies $y \in \gamma cl_b(\{x\})$. The converse is obvious and (X, τ) is γ -b- R_0 .

Definition 4.16 A topological space (X, τ) with an operation γ on τ , is said to be γ -b- R_1 if for x, y in X with $\gamma cl_b(\{x\}) \neq \gamma cl_b(\{y\})$, there exist disjoint γ -b-open sets U and V such that $\gamma cl_b(\{x\}) \subset U$ and $\gamma cl_b(\{y\}) \subset V$.

Theorem 4.17 A topological space (X, τ) with an operation γ on τ is γ -b- R_1 if it is γ -b- T_2 .

Proof. Let x and y be any points of X such that $\gamma cl_b(\{x\}) \neq \gamma cl_b(\{y\})$. By Remark 3.19, every γ -b- T_2 space is γ -b- T_1 . Therefore, by Theorem 3.24, $\gamma cl_b(\{x\}) = \{x\}, \gamma cl_b(\{y\}) = \{y\}$ and hence $\{x\} \neq \{y\}$. Since (X, τ) is γ -b- T_2 , there exist disjoint γ -b-open sets U and V such that $\gamma cl_b(\{x\}) = \{x\} \subset U$ and $\gamma cl_b(\{y\}) = \{y\} \subset V$. This shows that (X, τ) is γ -b- R_1

Theorem 4.18 For a topological space (X, τ) with an operation γ on τ , the following are equivalent:

- 1. (X, τ) is γ -b-T₂.
- 2. (X, τ) is γ -b- R_1 and γ -b- T_1 .
- 3. (X, τ) is γ -b- R_1 and γ -b- T_0 .

Proof. Proof is easy and hence omitted.

Theorem 4.19 For a topological space (X, τ) with an operation γ on τ , the following statements are equivalent:

- 1. (X, τ) is γ -b-R₁.
- 2. If $x, y \in X$ such that $\gamma cl_b(\{x\}) \neq \gamma cl_b(\{y\})$, then there exist γ -b-closed sets F_1 and F_2 such that $x \in F_1$, $y \notin F_1$, $y \in F_2$, $x \notin F_2$ and $X = F_1 \cup F_2$.

Proof. Proof is easy and hence omitted.

Theorem 4.20 If (X, τ) is γ -b- R_1 , then (X, τ) is γ -b- R_0 .

Proof. Let U be γ -b-open such that $x \in U$. If $y \notin U$, since $x \notin \gamma cl_b(\{y\})$, we have $\gamma cl_b(\{x\}) \neq \gamma cl_b(\{y\})$. So, there exists a γ -b-open set V such that $\gamma cl_b(\{y\}) \subset V$ and $x \notin V$, which implies $y \notin \gamma cl_b(\{x\})$. Hence $\gamma cl_b(\{x\}) \subset U$. Therefore, (X, τ) is γ -b- R_0 .

The converse of the above Theorem need not be ture as shown in the following example.

Example 4.21 Consider $X = \{a, b, c\}$ with the discrete topology on X. Define an operation γ on τ by

$$\gamma(A) = \begin{cases} A & \text{if } A = \{a, b\} \text{ or } \{a, c\} \text{ or } \{b, c\} \\ X & \text{otherwise} \end{cases}$$

Then X is a γ -b-R₀ space but not a γ -b-R₁ space.

Theorem 4.22 A topological space (X, τ) with an operation γ on τ is γ -b- R_1 if and only if for $x, y \in X$, $\gamma ker_b(\{x\}) \neq \gamma ker_b(\{y\})$, there exist disjoint γ -b-open sets U and V such that $\gamma cl_b(\{x\}) \subset U$ and $\gamma cl_b(\{y\}) \subset V$.

Proof. It follows from Theorem 4.9.

Theorem 4.23 A topological space (X, τ) is γ -b- R_1 if and only if the inclusion $x \in X \setminus \gamma cl_b(\{y\})$ implies that x and y have disjoint γ -b-open neighborhoods.

Proof. Necessity. Let $x \in X \setminus \gamma cl_b(\{y\})$. Then $\gamma cl_b(\{x\}) \neq \gamma cl_b(\{y\})$ and x and y have disjoint γ -b-open neighborhoods.

Sufficiency. First, we show that (X, τ) is γ -b- R_0 . Let U be a γ -b-open set and $x \in U$. Suppose that $y \notin U$. Then, $\gamma cl_b(\{y\}) \cap U = \phi$ and $x \notin \gamma cl_b(\{y\})$. There exist γ -b-open sets U_x and U_y such that $x \in U_x$, $y \in U_y$ and $U_x \cap U_y = \phi$. Hence, $\gamma cl_b(\{x\}) \subset \gamma cl_b(U_x)$ and $\gamma cl_b(\{x\}) \cap U_y \subset \gamma cl_b(U_x) \cap U_y = \phi$. Therefore, $y \notin \gamma cl_b(\{x\})$. Consequently, $\gamma cl_b(\{x\}) \subset U$ and (X, τ) is γ -b- R_0 . Next, we show that (X, τ) is γ -b- R_1 . Suppose that $\gamma cl_b(\{x\}) \neq \gamma cl_b(\{y\})$. Then, we can assume that there exists $z \in \gamma cl_b(\{x\})$ such that $z \notin \gamma cl_b(\{y\})$. There exist γ -b-open sets V_z and V_y such that $z \in V_z$, $y \in V_y$ and $V_z \cap V_y = \phi$. Since $z \in \gamma cl_b(\{x\})$, $x \in V_z$. Since (X, τ) is γ -b- R_0 , we obtain $\gamma cl_b(\{x\}) \subset V_z$, $\gamma cl_b(\{y\}) \subset V_y$ and $V_z \cap V_y = \phi$. This shows that (X, τ) is γ -b- R_1 .

5 γ -b-Continuous Functions and γ -b-Closed Graphs

Definition 5.1 A function $f: (X, \tau) \to (Y, \sigma)$ is said to be γ -b-continuous if for every open set V of Y, $f^{-1}(V)$ is γ -b-open in X.

Theorem 5.2 The following are equivalent for a function $f : (X, \tau) \rightarrow (Y, \sigma)$:

- 1. f is γ -b-continuous.
- 2. The inverse image of every closed set in Y is γ -b-closed in X.
- 3. For each subset A of X, $f(\gamma cl_b(A)) \subset cl(f(A))$.
- 4. For each subset B of Y, $\gamma cl_b(f^{-1}(B)) \subset f^{-1}(cl(B))$.

Proof. (1) \Leftrightarrow (2). Obvious.

(3) \Leftrightarrow (4). Let *B* be any subset of *Y*. Then by (3), we have $f(\gamma cl_b(f^{-1}(B))) \subset cl(f(f^{-1}(B))) \subset cl(B)$. This implies $\gamma cl_b(f^{-1}(B)) \subset f^{-1}(cl(B))$.

Conversely, let B = f(A) where A is a subset of X. Then, by (4), we have, $\gamma cl_b(A) \subset \gamma cl_b(f^{-1}(f(A))) \subset f^{-1}(cl(f(A)))$. Thus, $f(\gamma cl_b(A)) \subset cl(f(A))$. (2) \Rightarrow (4). Let $B \subset Y$. Since $f^{-1}(cl(B))$ is γ -b-closed and $f^{-1}(B) \subset f^{-1}(cl(B))$, then $\gamma cl_b(f^{-1}(B)) \subset f^{-1}(cl(B))$. (4) \Rightarrow (2). Let $K \subset Y$ be a closed set. By (4), $\gamma cl_b(f^{-1}(K)) \subset f^{-1}(cl(K)) = f^{-1}(K)$. Thus, $f^{-1}(K)$ is γ -b-closed.

Definition 5.3 For a function $f : (X, \tau) \to (Y, \sigma)$, the graph $G(f) = \{(x, f(x)) : x \in X\}$ is said to be γ -b-closed if for each $(x, y) \notin G(f)$, there exist a γ -b-open set U containing x and an open set V containing y such that $(U \times V) \cap G(f) = \phi$.

Lemma 5.4 The function $f : (X, \tau) \to (Y, \sigma)$ has an γ -b-closed graph if and only if for each $x \in X$ and $y \in Y$ such that $y \neq f(x)$, there exist a γ -b-open set U and an open set V containing x and y respectively, such that $f(U) \cap V = \phi$.

Proof. It follows readily from the above definition.

Theorem 5.5 If $f : (X, \tau) \to (Y, \sigma)$ is an injective function with the γ -bclosed graph, then X is γ -b-T₁.

Proof. Let x and y be two distinct points of X. Then $f(x) \neq f(y)$. Thus there exist a γ -b-open set U and an open set V containing x and f(y), respectively, such that $f(U) \cap V = \phi$. Therefore $y \notin U$ and it follows that X is γ -b-T₁.

Theorem 5.6 If $f : (X, \tau) \to (Y, \sigma)$ is an injective γ -b-continuous with a γ -b-closed graph G(f), then X is γ -b-T₂.

Proof. Let x_1 and x_2 be any distinct points of X. Then $f(x_1) \neq f(x_2)$, so $(x_1, f(x_2)) \in (X \times Y) \setminus G(f)$. Since the graph G(f) is γ -b-closed, there exist a γ -b-open set U containing x_1 and open set V containing $f(x_2)$ such that $f(U) \cap V = \phi$. Since f is γ -b-continuous, $f^{-1}(V)$ is a γ -b-open set containing x_2 such that $U \cap f^{-1}(V) = \phi$. Hence X is γ -b- T_2 .

Recall that a space X is said to be T_1 if for each pair of distinct points x and y of X, there exist an open set U containing x but not y and an open set V containing y but not x.

Theorem 5.7 If $f : (X, \tau) \to (Y, \sigma)$ is an surjective function with the γ -b-closed graph, then Y is T_1 .

Proof. Let y_1 and y_2 be two distinct points of Y. Since f is surjective, there exists x in X such that $f(x) = y_2$. Therefore $(x, y_1) \notin G(f)$. By Lemma 5.4, there exist γ -b-open set U and an open set V containing x and y_1 respectively, such that $f(U) \cap V = \phi$. We obtain an open set V containing y_1 which does not contain y_2 . It follows that $y_2 \notin V$. Hence, Y is T_1 .

Definition 5.8 A function $f : (X, \tau) \to (Y, \sigma)$ is said to be γ -b-W-continuous if for each $x \in X$ and each open set V of Y containing f(x), there exists a γ -b-open set U in X containing x such that $f(U) \subset cl(V)$.

Theorem 5.9 If $f : (X, \tau) \to (Y, \sigma)$ is γ -b-W-continuous and Y is Hausdorff, then G(f) is γ -b-closed.

Proof. Suppose that $(x, y) \notin G(f)$, then $f(x) \neq y$. By the fact that Y is Hausdorff, there exist open sets W and V such that $f(x) \in W$, $y \in V$ and $V \cap W = \phi$. It follows that $cl(W) \cap V = \phi$. Since f is γ -b-W-continuous, there exists a γ -b-open set U containing x such that $f(U) \subset cl(W)$. Hence, we have $f(U) \cap V = \phi$. This means that G(f) is γ -b-closed.

Definition 5.10 A subset A of a space X is said to be γ -b-compact relative to X if every cover of A by γ -b-open sets of X has a finite subcover.

Theorem 5.11 Let $f : (X, \tau) \to (Y, \sigma)$ have a γ -b-closed graph. If K is γ -b-compact relative to X, then f(K) is closed in Y.

Proof. Suppose that $y \notin f(K)$. For each $x \in K$, $f(x) \neq y$. By lemma 5.4, there exists a γ -b-open set U_x containing x and an open neighbourhood V_x of y such that $f(U_x) \cap V_x = \phi$. The family $\{U_x : x \in K\}$ is a cover of K by γ -b-open sets of X and there exists a fnite subset K_0 of K such that $K \subset \cup \{U_x : x \in K_0\}$. Put $V = \cap \{V_x : x \in K_0\}$. Then V is an open neighbourhood of y and $f(K) \cap V = \phi$. This means that f(K) is closed in Y.

Theorem 5.12 If $f : (X, \tau) \to (Y, \sigma)$ has a γ -b-closed graph G(f), then for each $x \in X$. $\{f(x)\} = \cap \{cl(f(A) : A \text{ is } \gamma\text{-b-open set containing } x\}.$

Proof. Suppose that $y \neq f(x)$ and $y \in \cap \{cl(f(A)) : A \text{ is } \gamma\text{-b-open set} \text{ containing } x\}$. Then $y \in cl(f(A))$ for each $\gamma\text{-b-open set } A$ containing x. This implies that for each open set B containing $y, B \cap f(A) \neq \phi$. Since $(x, y) \notin G(f)$ and G(f) is a $\gamma\text{-b-closed graph}$, this is a contradiction.

Definition 5.13 A function $f : (X, \tau) \to (Y, \sigma)$ is called a γ -b-open if the image of every γ -b-open set in X is open in Y.

Theorem 5.14 If $f : (X, \tau) \to (Y, \sigma)$ is a surjective γ -b-open function with a γ -b-closed graph G(f), then Y is T_2 .

Proof. Let y_1 and y_2 be any two distinct points of Y. Since f is surjective $f(x) = y_1$ for some $x \in X$ and $(x, y_2) \in (X \times Y) \setminus G(f)$. This implies that there exist a γ -b-open set A of X and an open set B of Y such that $(x, y_2) \in (A \times B)$ and $(A \times B) \cap G(f) = \phi$. We have $f(A) \cap B = \phi$. Since f is γ -b-open, then f(A) is open such that $f(x) = y_1 \in f(A)$. Thus, Y is T_2 .

Theorem 5.15 If $f : (X, \tau) \to (Y, \sigma)$ is a γ -b-continuous injective function and Y is T_2 , then X is γ -b- T_2 .

Proof. Let x and y in X be any pair of distinct points, then there exist disjoint open sets A and B in Y such that $f(x) \in A$ and $f(y) \in B$. Since f is γ -b-continuous, $f^{-1}(A)$ and $f^{-1}(B)$ are γ -b-open in X containing x and y respectively, we have $f^{-1}(A) \cap f^{-1}(B) = \phi$. Thus, X is γ -b-T₂.

References

- [1] D. Andrijevi, On b-open sets, *Mat. Vesnik*, 48(1996), 59-64.
- [2] C.K. Basu, B.M.U. Afsan and M.K. Ghosh, A class of functions and separation axioms with respect to an operation, *Hacettepe Journal of Mathematics and Statistics*, 38(2) (2009), 103-118.
- [3] S. Kasahara, Operation compact spaces, *Math. Japonica*, 24(1) (1979), 97-105.
- [4] G.S.S. Krishnan, A new class of semi open sets in a topological space, Proc. NCMCM, Allied Publishers, New Delhi, (2003), 305-311.
- [5] G.S.S. Krishnan and K. Balachandran, On a class of γ -preopen sets in a topological space, *East Asian Math. J.*, 22(2) (2006), 131-149.
- [6] H. Ogata, Operation on topological spaces and associated topology, Math. Japonica, 36(1) (1991), 175-184.