Gen. Math. Notes, Vol. 16, No. 2, June, 2013, pp.66-82
ISSN 2219-7184; Copyright (c)ICSRS Publication, 2013
www.i-csrs.org
Available free online at http://www.geman.in

On a Class of γ-b-Open Sets in a Topological Space

Hariwan Z. Ibrahim
Department of Mathematics, Faculty of Science
University of Zakho, Kurdistan-Region, Iraq
E-mail: hariwan_math@yahoo.com

(Received: 4-3-13 / Accepted: 7-4-13)

Abstract

In this paper, we introduce some weak separation axioms by utilizing the notions of γ-b-open sets and the γ-b-closure operator.

Keywords: γ-b-open, γ-b-closure, γD_{b}-set, $\gamma-b-T_{0}, \gamma-b-T_{1}, \gamma-b-T_{2}, \gamma-b$ $R_{0}, \gamma-b-R_{1}, \gamma-b$-continuous.

1 Introduction

In [1] Andrijevi introduced b-open sets, Kasahara [3] defined an operation α on a topological space to introduce α-closed graphs. Following the same technique, Ogata [6] defined an operation γ on a topological space and introduced γ-open sets.

In this paper, we introduce the notion of γ-b-open sets, and γ-b-irresolute in topological spaces. By utilizing these notions we introduce some weak separation axioms. Also we show that some basic properties of $\gamma-\mathrm{b}-T_{i}, \gamma-\mathrm{b}-D_{i}$ for $i=0,1,2$ spaces and we ofer a new class of functions called γ-b-continuous functions and a new notion of the graph of a function called a γ-b-closed graph and investigate some of their fundamental properties.

2 Preliminaries

Let (X, τ) be a topological space and A a subset of X. The closure of A and the interior of A are denoted by $\operatorname{cl}(A)$ and $\operatorname{int}(A)$, respectively. A subset A is said to be b-open [1] if $A \subseteq \operatorname{int}(\operatorname{cl}(A)) \cup \operatorname{cl}(\operatorname{int}(A))$. The complement of a b-open set is said to be b-closed.

An operation $\gamma[3]$ on a topology τ is a mapping from τ in to power set $P(X)$ of X such that $V \subset \gamma(V)$ for each $V \in \tau$, where $\gamma(V)$ denotes the value of γ at V. A subset A of X with an operation γ on τ is called γ-open [6] if for each $x \in A$, there exists an open set U such that $x \in U$ and $\gamma(U) \subset A$. Then, τ_{γ} denotes the set of all γ-open set in X. Clearly $\tau_{\gamma} \subset \tau$. Complements of γ-open sets are called γ-closed. The γ-closure [6] of a subset A of X with an operation γ on τ is denoted by $\tau_{\gamma}-c l(A)$ and is defined to be the intersection of all γ-closed sets containing A, and the τ_{γ}-interior [4] of A is denoted by τ_{γ}-int (A) and defined to be the union of all γ-open sets of X contained in A. A subset A of X with an operation γ on τ is called be γ-preopen set [5] if and only if $A \subseteq \tau_{\gamma}-\operatorname{int}\left(\tau_{\gamma}-c l(A)\right)$. A subset A of X with an operation γ on τ is called be $\gamma-\beta$-open set [2] if $A \subseteq \tau_{\gamma}-c l\left(\tau_{\gamma}-\operatorname{int}\left(\tau_{\gamma}-c l(A)\right)\right)$. A topological X with an operation γ on τ is said to be γ-regular [6] if for each $x \in X$ and for each open neighborhood V of x, there exists an open neighborhood U of x such that $\gamma(U)$ contained in V. It is also to be noted that $\tau=\tau_{\gamma}$ if and only if X is a γ-regular space [6].

$3 \quad \gamma$-b-Open Sets

Definition 3.1 A subset A of a topological space (X, τ) is said to be $\gamma-b$ open if $A \subset \tau_{\gamma}-\operatorname{int}\left(\tau_{\gamma}-c l(A)\right) \cup \tau_{\gamma}-c l\left(\tau_{\gamma}-i n t(A)\right)$.

The complement of a γ-b-open set is said to be γ-b-closed. The family of all γ-b-open (resp. γ-b-closed) sets in a topological space (X, τ) is denoted by $\gamma b O(X, \tau)$ (resp. $\gamma b C(X, \tau))$.

Definition 3.2 Let A be a subset of a topological space (X, τ). The intersection of all γ-b-closed sets containing A is called the γ - b-closure of A and is denoted by $\gamma \operatorname{cl}_{b}(A)$.

Definition 3.3 Let (X, τ) be a topological space. A subset U of X is called $a \gamma$-b-neighbourhood of a point $x \in X$ if there exists $a \gamma$-b-open set V such that $x \in V \subset U$.

Theorem 3.4 For the γ-b-closure of subsets A, B in a topological space (X, τ), the following properties hold:

1. A is γ-b-closed in (X, τ) if and only if $A=\gamma c l_{b}(A)$.
2. If $A \subset B$ then $\gamma c l_{b}(A) \subset \gamma c l_{b}(B)$.
3. $\gamma c l_{b}(A)$ is γ-b-closed, that is $\gamma c l_{b}(A)=\gamma c l_{b}\left(\gamma c l_{b}(A)\right)$.
4. $x \in \gamma \operatorname{cl}_{b}(A)$ if and only if $A \cap V \neq \phi$ for every γ-b-open set V of X containing x.

Proof. It is obvious.
Theorem 3.5 For a family $\left\{A_{\alpha}: \alpha \in \Delta\right\}$ of subsets a topological space (X, τ), the following properties hold:

1. $\gamma c l_{b}\left(\cap_{\alpha \in \Delta} A_{\alpha}\right) \subset \cap_{\alpha \in \Delta} \gamma \operatorname{cl}_{b}\left(A_{\alpha}\right)$.
2. $\gamma \operatorname{cl}_{b}\left(\cup_{\alpha \in \Delta} A_{\alpha}\right) \supset \cup_{\alpha \in \Delta} \gamma \operatorname{cl}_{b}\left(A_{\alpha}\right)$.

Proof.

1. Since $\cap_{\alpha \in \Delta} A_{\alpha} \subset A_{\alpha}$ for each $\alpha \in \Delta$, by Theorem 3.4 we have $\gamma c l_{b}\left(\cap_{\alpha \in \Delta} A_{\alpha}\right) \subset$ $\gamma c l_{b}\left(A_{\alpha}\right)$ for each $\alpha \in \Delta$ and hence $\gamma c l_{b}\left(\cap_{\alpha \in \Delta} A_{\alpha}\right) \subset \cap_{\alpha \in \Delta} \gamma c l_{b}\left(A_{\alpha}\right)$.
2. Since $A_{\alpha} \subset \cup_{\alpha \in \Delta} A_{\alpha}$ for each $\alpha \in \Delta$, by Theorem 3.4 we have $\gamma c l_{b}\left(A_{\alpha}\right) \subset$ $\gamma c l_{b}\left(\cup_{\alpha \in \Delta} A_{\alpha}\right)$ for each $\alpha \in \Delta$ and hence $\cup_{\alpha \in \Delta} \gamma c l_{b}\left(A_{\alpha}\right) \subset \gamma c l_{b}\left(\cup_{\alpha \in \Delta} A_{\alpha}\right)$.

Theorem 3.6 Every γ-preopen set is γ-b-open.
Proof. It follows from the Definitions.
The converse of the above Theorem need not be true by the following Example.

Example 3.7 Let $X=\{a, b, c\}, \tau=\{\phi,\{a\},\{c\},\{a, c\}, X\}$ and $\gamma(A)=A$ for all $A \in \tau$. Here $\{a, b\}$ is not γ-preopen however it is γ - b-open.

Corollary 3.8 Every γ-open set is γ - b-open.
Proof. It follows from Theorem 3.6.
Theorem 3.9 Every γ-b-open set is γ - β-open.
Proof. It follows from the Definitions.
Remark 3.10 The concepts of b-open and γ-b-open sets are independent, while in a γ-regular space these concepts are equivalent.

On a Class of γ-b-Open Sets...

Example 3.11 Let $X=\{a, b, c\}$ and $\tau=\{\phi,\{a\},\{b\},\{a, b\}, X\}$. Define an operation γ on τ by

$$
\gamma(A)=\left\{\begin{array}{lr}
\{a\} & \text { if } A=\{a\} \\
A \cup\{c\} & \text { if } A \neq\{a\}
\end{array}\right.
$$

Clearly, $\tau_{\gamma}=\{\phi,\{a\}, X\}$. Then $\{b\}$ is b-open but not γ-b-open. Again, if we define γ on τ by $\gamma(A)=X$, then $\{c\}$ is γ-b-open but not b-open.

Theorem 3.12 An arbitrary union of γ-b-open sets is γ - b-open.
Proof. Let $\left\{A_{k}: k \in \Delta\right\}$ be a family of γ-b-open sets. Then for each k, $A_{k} \subseteq \tau_{\gamma}-i n t\left(\tau_{\gamma}-c l\left(A_{k}\right)\right) \cup \tau_{\gamma}-c l\left(\tau_{\gamma}-i n t\left(A_{k}\right)\right)$ and so

$$
\begin{aligned}
& \cup_{k \in \Delta} A_{k} \subseteq \cup_{k \in \Delta}\left[\tau_{\gamma}-i n t\left(\tau_{\gamma}-c l\left(A_{k}\right)\right) \cup \tau_{\gamma}-c l\left(\tau_{\gamma}-i n t\left(A_{k}\right)\right)\right] \\
& \subseteq\left[\cup_{k \in \Delta} \tau_{\gamma}-i n t\left(\tau_{\gamma}-c l\left(A_{k}\right)\right)\right] \cup\left[\cup_{k \in \Delta} \tau_{\gamma}-c l\left(\tau_{\gamma}-i n t\left(A_{k}\right)\right)\right] \\
& \subseteq\left[\tau_{\gamma}-i n t\left(\cup_{k \in \Delta} \tau_{\gamma}-c l\left(A_{k}\right)\right)\right] \cup\left[\tau_{\gamma}-c l\left(\cup_{k \in \Delta} \tau_{\gamma}-i n t\left(A_{k}\right)\right)\right] \\
& \subseteq\left[\tau_{\gamma}-\operatorname{int}\left(\tau_{\gamma}-c l\left(\cup_{k \in \Delta} A_{k}\right)\right)\right] \cup\left[\tau_{\gamma}-c l\left(\tau_{\gamma}-i n t\left(\cup_{k \in \Delta} A_{k}\right)\right)\right] .
\end{aligned}
$$

Therefore, $\cup_{k \in \Delta} A_{k}$ is γ-b-open.

Remark 3.13

1. An arbitrary intersection of γ-b-closed sets is γ-b-closed.
2. The intersection of even two γ-b-open sets may not be γ-b-open.

Example 3.14 Let $X=\{a, b, c\}$ and $\tau=\{\phi,\{a\},\{a, b\}, X\}$. Define an operation γ on τ by

$$
\gamma(A)=\left\{\begin{array}{l}
A \quad \text { if } A=\{a, b\} \\
X \quad \text { otherwise }
\end{array}\right.
$$

Clearly, $\tau_{\gamma}=\{\phi,\{a, b\}, X\}$, take $A=\{a, c\}$ and $B=\{b, c\}$ are γ-b-open. Then $A \cap B=\{c\}$, which is not a γ-b-open set.

Definition 3.15 A subset A of a topological space (X, τ) is called a γD_{b}-set if there are two $U, V \in \gamma b O(X, \tau)$ such that $U \neq X$ and $A=U \backslash V$.

It is true that every γ-b-open set U different from X is a γD_{b}-set if $A=U$ and $V=\phi$. So, we can observe the following.

Remark 3.16 Every proper γ-b-open set is a γD_{b}-set.

Definition 3.17 A topological space (X, τ) with an operation γ on τ is said to be

1. $\gamma-b-D_{0}$ if for any pair of distinct points x and y of X there exists a $\gamma D_{b^{-}}$ set of X containing x but not y or a γD_{b}-set of X containing y but not x.
2. $\gamma-b-D_{1}$ if for any pair of distinct points x and y of X there exists a $\gamma D_{b^{-}}$ set of X containing x but not y and a γD_{b}-set of X containing y but not x.
3. $\gamma-b-D_{2}$ if for any pair of distinct points x and y of X there exist disjoint γD_{b}-set G and E of X containing x and y, respectively.

Definition 3.18 A topological space (X, τ) with an operation γ on τ is said to be

1. γ-b- T_{0} (resp. γ-pre T_{0} [5] and $\gamma-\beta T_{0}$ [2]) if for any pair of distinct points x and y of X there exists a γ-b-open (resp. γ-preopen and γ - β open) set U in X containing x but not y or a γ-b-open (resp. γ-preopen and γ - β-open) set V in X containing y but not x.
2. $\gamma-b-T_{1}$ (resp. γ-pre $T_{1}[5]$ and $\left.\gamma-\beta T_{1}[2]\right)$ if for any pair of distinct points x and y of X there exists a γ-b-open (resp. γ-preopen and γ - β-open) set U in X containing x but not y and $a \gamma$-b-open (resp. γ-preopen and $\gamma-\beta$-open) set V in X containing y but not x.
3. γ-b-T T_{2} (resp. γ-pre T_{2} [5] and $\gamma-\beta T_{2}$ [2]) if for any pair of distinct points x and y of X there exist disjoint γ-b-open (resp. γ-preopen and $\gamma-\beta$-open) sets U and V in X containing x and y, respectively.

Remark 3.19 For a topological space (X, τ), the following properties hold:

1. If (X, τ) is $\gamma-b-T_{i}$, then it is $\gamma-b-T_{i-1}$, for $i=1,2$.
2. If (X, τ) is $\gamma-b-T_{i}$, then it is $\gamma-b-D_{i}$, for $i=0,1,2$.
3. If (X, τ) is $\gamma-b-D_{i}$, then it is $\gamma-b-D_{i-1}$, for $i=1,2$.
4. If (X, τ) is γ-pre T_{i}, then it is $\gamma-b-T_{i}$, for $i=0,1,2$.
5. If (X, τ) is $\gamma-b-T_{i}$, then it is $\gamma-\beta T_{i}$, for $i=0,1,2$.

By Remark 3.19 we have the following diagram.

Theorem 3.20 A topological space (X, τ) is $\gamma-b-D_{1}$ if and only if it is γ -$b-D_{2}$.

Proof. sufficiency. Follows from Remark 3.19.
Necessity. Let $x, y \in X, x \neq y$. Then there exist γD_{b}-sets G_{1}, G_{2} in X such that $x \in G_{1}, y \notin G_{1}$ and $y \in G_{2}, x \notin G_{2}$. Let $G_{1}=U_{1} \backslash U_{2}$ and $G_{2}=U_{3} \backslash U_{4}$, where U_{1}, U_{2}, U_{3} and U_{4} are γ-b-open sets in X. From $x \notin G_{2}$, it follows that either $x \notin U_{3}$ or $x \in U_{3}$ and $x \in U_{4}$. We discuss the two cases separately.
(i) $x \notin U_{3}$. By $y \notin G_{1}$ we have two subcases:
(a) $y \notin U_{1}$. From $x \in U_{1} \backslash U_{2}$, it follows that $x \in U_{1} \backslash\left(U_{2} \cup U_{3}\right)$, and by $y \in U_{3} \backslash U_{4}$ we have $y \in U_{3} \backslash\left(U_{1} \cup U_{4}\right)$. Therefore $\left(U_{1} \backslash\left(U_{2} \cup U_{3}\right)\right) \cap\left(U_{3} \backslash\left(U_{1} \cup U_{4}\right)\right)=\phi$. (b) $y \in U_{1}$ and $y \in U_{2}$. We have $x \in U_{1} \backslash U_{2}$, and $y \in U_{2}$. Therefore $\left(U_{1} \backslash U_{2}\right) \cap U_{2}=\phi$.
(ii) $x \in U_{3}$ and $x \in U_{4}$. We have $y \in U_{3} \backslash U_{4}$ and $x \in U_{4}$. Hence $\left(U_{3} \backslash U_{4}\right) \cap U_{4}=\phi$. Therefore X is γ-b- D_{2}.

Definition 3.21 A point $x \in X$ which has only X as the γ-b-neighborhood is called a γ-b-neat point.

Theorem 3.22 If a topological space (X, τ) is $\gamma-b-D_{1}$, then it has no $\gamma-b$ neat point.

Proof. Since (X, τ) is γ-b- D_{1}, so each point x of X is contained in a γD_{b}-set $A=U \backslash V$ and thus in U. By definition $U \neq X$. This implies that x is not a γ-b-neat point.

Theorem 3.23 A topological space (X, τ) with an operation γ on τ is $\gamma-b$ T_{0} if and only if for each pair of distinct points x, y of $X, \gamma \operatorname{cl} l_{b}(\{x\}) \neq \gamma \operatorname{cl} l_{b}(\{y\})$.

Theorem 3.24 A topological space (X, τ) with an operation γ on τ is $\gamma-b$ T_{1} if and only if the singletons are $\gamma-b$-closed sets.

Proof. Let (X, τ) be $\gamma-\mathrm{b}-T_{1}$ and x any point of X. Suppose $y \in X \backslash\{x\}$, then $x \neq y$ and so there exists a γ-b-open set U such that $y \in U$ but $x \notin U$. Consequently $y \in U \subset X \backslash\{x\}$ i.e., $X \backslash\{x\}=\cup\{U: y \in X \backslash\{x\}\}$ which is γ-b-open.

Conversely, suppose $\{p\}$ is γ-b-closed for every $p \in X$. Let $x, y \in X$ with $x \neq y$. Now $x \neq y$ implies $y \in X \backslash\{x\}$. Hence $X \backslash\{x\}$ is a γ-b-open set contains y but not x. Similarly $X \backslash\{y\}$ is a γ-b-open set contains x but not y. Accordingly X is a $\gamma-\mathrm{b}-T_{1}$ space.

Definition 3.25 A topological space (X, τ) is γ-b-symmetric if for x and y in $X, x \in \gamma \operatorname{cl}_{b}(\{y\})$ implies $y \in \gamma \operatorname{cl}_{b}(\{x\})$.

Theorem 3.26 If a topological space (X, τ) with an operation γ on τ is a $\gamma-b-T_{1}$ space, then it is γ - b-symmetric.

Proof. Suppose that $y \notin \gamma \operatorname{cl}_{b}(\{x\})$. Then, since $x \neq y$, there exists a γ-b-open set U containing x such that $y \notin U$ and hence $x \notin \gamma c l_{b}(\{y\})$. This shows that $x \in \gamma c l_{b}(\{y\})$ implies $y \in \gamma c l_{b}(\{x\})$. Therefore, (X, τ) is γ-b-symmetric.

Definition 3.27 Let (X, τ) and (Y, σ) be two topological spaces and γ, β operations on τ, σ, respectively. A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is said to be γ-b-irresolute if for each $x \in X$ and each β-b-open set V containing $f(x)$, there is a γ-b-open set U in X containing x such that $f(U) \subset V$.

Theorem 3.28 If $f:(X, \tau) \rightarrow(Y, \sigma)$ is a γ-b-irresolute surjective function and E is a βD_{b}-set in Y, then the inverse image of E is a γD_{b}-set in X.

Proof. Let E be a βD_{b}-set in Y. Then there are β-b-open sets U_{1} and U_{2} in Y such that $E=U_{1} \backslash U_{2}$ and $U_{1} \neq Y$. By the γ-b-irresolute of $f, f^{-1}\left(U_{1}\right)$ and $f^{-1}\left(U_{2}\right)$ are γ-b-open in X. Since $U_{1} \neq Y$ and f is surjective, we have $f^{-1}\left(U_{1}\right) \neq X$. Hence, $f^{-1}(E)=f^{-1}\left(U_{1}\right) \backslash f^{-1}\left(U_{2}\right)$ is a γD_{b}-set.

Theorem 3.29 If (Y, σ) is $\beta-b-D_{1}$ and $f:(X, \tau) \rightarrow(Y, \sigma)$ is γ-b-irresolute bijective, then (X, τ) is $\gamma-b-D_{1}$.

Proof. Suppose that Y is a β-b- D_{1} space. Let x and y be any pair of distinct points in X. Since f is injective and Y is β-b- D_{1}, there exist βD_{b}-set G_{x} and G_{y} of Y containing $f(x)$ and $f(y)$ respectively, such that $f(x) \notin G_{y}$ and $f(y) \notin G_{x}$. By Theorem 3.28, $f^{-1}\left(G_{x}\right)$ and $f^{-1}\left(G_{y}\right)$ are γD_{b}-set in X containing x and y, respectively, such that $x \notin f^{-1}\left(G_{y}\right)$ and $y \notin f^{-1}\left(G_{x}\right)$. This implies that X is a $\gamma-\mathrm{b}-D_{1}$ space.

Theorem 3.30 A topological space (X, τ) is $\gamma-b-D_{1}$ if for each pair of distinct points $x, y \in X$, there exists a γ-b-irresolute surjective function f : $(X, \tau) \rightarrow(Y, \sigma)$, where Y is a $\beta-b-D_{1}$ space such that $f(x)$ and $f(y)$ are distinct.

Proof. Let x and y be any pair of distinct points in X. By hypothesis, there exists a γ-b-irresolute, surjective function f of a space X onto a β-b- D_{1} space Y such that $f(x) \neq f(y)$. By Theorem 3.20, there exist disjoint βD_{b}-set G_{x} and G_{y} in Y such that $f(x) \in G_{x}$ and $f(y) \in G_{y}$. Since f is γ-b-irresolute and surjective, by Theorem 3.28, $f^{-1}\left(G_{x}\right)$ and $f^{-1}\left(G_{y}\right)$ are disjoint γD_{b}-sets in X containing x and y, respectively. hence by Theorem $3.20, X$ is γ-b- D_{1} space.

$4 \quad \gamma-\mathrm{b}-R_{0}$ and $\gamma-\mathrm{b}-R_{1}$ Spaces

Definition 4.1 Let A be a subset of a topological space (X, τ) with an operation γ on τ. The γ-b-kernel of A, denoted by $\gamma \operatorname{ker}_{b}(A)$ is defined to be the set

$$
\gamma k e r_{b}(A)=\cap\{U \in \gamma b O(X): A \subset U\} .
$$

Theorem 4.2 Let (X, τ) be a topological space with an operation γ on τ and $x \in X$. Then $y \in \gamma \operatorname{ker}_{b}(\{x\})$ if and only if $x \in \gamma \operatorname{cl}_{b}(\{y\})$.

Proof. Suppose that $y \notin \gamma \operatorname{ker}_{b}(\{x\})$. Then there exists a γ-b-open set V containing x such that $y \notin V$. Therefore, we have $x \notin \gamma c l_{b}(\{y\})$. The proof of the converse case can be done similarly.

Lemma 4.3 Let (X, τ) be a topological space and A be a subset of X. Then, $\gamma \operatorname{ker}_{b}(A)=\left\{x \in X: \gamma c l_{b}(\{x\}) \cap A \neq \phi\right\}$.

Proof. Let $x \in \gamma \operatorname{ker}_{b}(A)$ and suppose $\gamma c l_{b}(\{x\}) \cap A=\phi$. Hence $x \notin X \backslash$ $\gamma l_{b}(\{x\})$ which is a γ-b-open set containing A. This is impossible, since $x \in \gamma \operatorname{ker}_{b}(A)$. Consequently, $\gamma \operatorname{cl}_{b}(\{x\}) \cap A \neq \phi$. Next, let $x \in X$ such that $\gamma \operatorname{cl}_{b}(\{x\}) \cap A \neq \phi$ and suppose that $x \notin \gamma \operatorname{ker}_{b}(A)$. Then, there exists a γ -b-open set V containing A and $x \notin V$. Let $y \in \gamma c l_{b}(\{x\}) \cap A$. Hence, V is a γ-b-neighborhood of y which does not contain x. By this contradiction $x \in \gamma \operatorname{ker}_{b}(A)$ and the claim.

Remark 4.4 The following properties hold for the subsets A, B of a topological space (X, τ) with an operation γ on τ :

1. $A \subset \gamma \operatorname{ker}_{b}(A)$, if A is γ-b-open in (X, τ), then $A=\gamma \operatorname{ker}_{b}(A)$.
2. If $A \subset B$, then $\gamma k e r_{b}(A) \subset \gamma \operatorname{ker}_{b}(B)$.

Definition 4.5 A topological space (X, τ) with an operation γ on τ is said to be $\gamma-b-R_{0}$ if every γ-b-open set U and $x \in U$ implies $\gamma c l_{b}(\{x\}) \subset U$.

Theorem 4.6 For a topological space (X, τ) with an operation γ on τ, the following properties are equivalent:

1. (X, τ) is $\gamma-b-R_{0}$.
2. For any $F \in \gamma b C(X), x \notin F$ implies $F \subset U$ and $x \notin U$ for some $U \in \gamma b O(X)$.
3. For any $F \in \gamma b C(X), x \notin F$ implies $F \cap \gamma \operatorname{cl}_{b}(\{x\})=\phi$.
4. For any distinct points x and y of X, either $\gamma \operatorname{cl}_{b}(\{x\})=\gamma \operatorname{cl}_{b}(\{y\})$ or $\gamma \operatorname{cl}_{b}(\{x\}) \cap \gamma c l_{b}(\{y\})=\phi$.

Proof. (1) $\Rightarrow(2)$. Let $F \in \gamma b C(X)$ and $x \notin F$. Then by (1) $\gamma c l_{b}(\{x\}) \subset X \backslash F$. Set $U=X \backslash \gamma c l_{b}(\{x\})$, then U is γ-b-open set such that $F \subset U$ and $x \notin U$.
$(2) \Rightarrow(3)$. Let $F \in \gamma b C(X)$ and $x \notin F$. There exists $U \in \gamma b O(X)$ such that $F \subset U$ and $x \notin U$. Since $U \in \gamma b O(X), U \cap \gamma c l_{b}(\{x\})=\phi$ and $F \cap \gamma c l_{b}(\{x\})=\phi$.
$(3) \Rightarrow(4)$. Suppose that $\gamma c l_{b}(\{x\}) \neq \gamma c l_{b}(\{y\})$ for distinct points $x, y \in X$. There exists $z \in \gamma c l_{b}(\{x\})$ such that $z \notin \gamma c l_{b}(\{y\})$ (or $z \in \gamma c l_{b}(\{y\})$ such that $\left.z \notin \gamma c l_{b}(\{x\})\right)$. There exists $V \in \gamma b O(X)$ such that $y \notin V$ and $z \in$ V; hence $x \in V$. Therefore, we have $x \notin \gamma c l_{b}(\{y\})$. By (3), we obtain $\gamma c l_{b}(\{x\}) \cap \gamma c l_{b}(\{y\})=\phi$. The proof for otherwise is similar.
$(4) \Rightarrow(1)$. let $V \in \gamma b O(X)$ and $x \in V$. For each $y \notin V, x \neq y$ and $x \notin \gamma c l_{b}(\{y\})$. This shows that $\gamma c l_{b}(\{x\}) \neq \gamma c l_{b}(\{y\})$. By (4), $\gamma c l_{b}(\{x\}) \cap$ $\gamma c l_{b}(\{y\})=\phi$ for each $y \in X \backslash V$ and hence $\gamma c l_{b}(\{x\}) \cap\left(\bigcup_{y \in X \backslash V} \gamma c l_{b}(\{y\})\right)=\phi$. On other hand, since $V \in \gamma b O(X)$ and $y \in X \backslash V$, we have $\gamma c l_{b}(\{y\}) \subset$ $X \backslash V$ and hence $X \backslash V=\bigcup_{y \in X \backslash V} \gamma c l_{b}(\{y\})$. Therefore, we obtain $(X \backslash V) \cap$ $\gamma c l_{b}(\{x\})=\phi$ and $\gamma c l_{b}(\{x\}) \subset V$. This shows that (X, τ) is a γ-b- R_{0} space.

Theorem 4.7 A topological space (X, τ) with an operation γ on τ is $\gamma-b-T_{1}$ if and only if (X, τ) is $\gamma-b-T_{0}$ and $\gamma-b-R_{0}$ space.

Proof. Necessity. Let U be any γ-b-open set of (X, τ) and $x \in U$. Then by Theorem 3.24, we have $\gamma c l_{b}(\{x\}) \subset U$ and so by Remark 3.19, it is clear that X is γ-b- T_{0} and γ-b- R_{0} space.
Sufficiency. Let x and y be any distinct points of X. Since X is γ-b- T_{0}, there exists a γ-b-open set U such that $x \in U$ and $y \notin U$. As $x \in U$ implies that $\gamma c l_{b}(\{x\}) \subset U$. Since $y \notin U$, so $y \notin \gamma c l_{b}(\{x\})$. Hence $y \in V=X \backslash \gamma c l_{b}(\{x\})$ and it is clear that $x \notin V$. Hence it follows that there exist γ-b-open sets U and V containing x and y respectively, such that $y \notin U$ and $x \notin V$. This implies that X is γ-b- T_{1}.

Theorem 4.8 For a topological space (X, τ) with an operation γ on τ, the following properties are equivalent:

1. (X, τ) is $\gamma-b-R_{0}$.
2. $x \in \gamma \operatorname{cl}_{b}(\{y\})$ if and only if $y \in \gamma \operatorname{cl}_{b}(\{x\})$, for any points x and y in X.

Proof. (1) $\Rightarrow(2)$. Assume that X is $\gamma-\mathrm{b}-R_{0}$. Let $x \in \gamma \operatorname{cl}_{b}(\{y\})$ and V be any γ-b-open set such that $y \in V$. Now by hypothesis, $x \in V$. Therefore, every γ-b-open set which contain y contains x. Hence $y \in \gamma \operatorname{cl}_{b}(\{x\})$.
$(2) \Rightarrow(1)$. Let U be a γ-b-open set and $x \in U$. If $y \notin U$, then $x \notin \gamma \operatorname{cl}_{b}(\{y\})$ and hence $y \notin \gamma \operatorname{cl}_{b}(\{x\})$. This implies that $\gamma c l_{b}(\{x\}) \subset U$. Hence (X, τ) is γ-b- R_{0}.

We observed that by Definition 3.25 and Theorem 4.8 the notions of γ-bsymmetric and γ-b- R_{0} are equivalent.

Theorem 4.9 The following statements are equivalent for any points x and y in a topological space (X, τ) with an operation γ on τ :

1. $\gamma \operatorname{ker}_{b}(\{x\}) \neq \gamma \operatorname{ker}_{b}(\{y\})$.
2. $\gamma \operatorname{cl}_{b}(\{x\}) \neq \gamma c l_{b}(\{y\})$.

Proof. (1) $\Rightarrow(2)$. Suppose that $\gamma \operatorname{ker}_{b}(\{x\}) \neq \gamma \operatorname{ker}_{b}(\{y\})$, then there exists a point z in X such that $z \in \operatorname{ker}_{b}(\{x\})$ and $z \notin \gamma \operatorname{ker}_{b}(\{y\})$. From $z \in$ $\gamma \operatorname{ker}_{b}(\{x\})$ it follows that $\{x\} \cap \gamma c l_{b}(\{z\}) \neq \phi$ which implies $x \in \gamma c l_{b}(\{z\})$. By $z \notin \gamma \operatorname{ker}_{b}(\{y\})$, we have $\{y\} \cap \gamma c l_{b}(\{z\})=\phi$. Since $x \in \gamma \operatorname{cl}_{b}(\{z\}), \gamma c l_{b}(\{x\}) \subset$ $\gamma c l_{b}(\{z\})$ and $\{y\} \cap \gamma c l_{b}(\{x\})=\phi$. Therefore, it follows that $\gamma c l_{b}(\{x\}) \neq$ $\gamma c l_{b}(\{y\})$. Now $\gamma \operatorname{ker}_{b}(\{x\}) \neq \gamma \operatorname{ker}_{b}(\{y\})$ implies that $\gamma c l_{b}(\{x\}) \neq \gamma c l_{b}(\{y\})$. $(2) \Rightarrow(1)$. Suppose that $\gamma \operatorname{cl}_{b}(\{x\}) \neq \gamma \operatorname{cl}_{b}(\{y\})$. Then there exists a point z in X such that $z \in \gamma c l_{b}(\{x\})$ and $z \notin \gamma c l_{b}(\{y\})$. Then, there exists a γ-b-open set containing z and therefore x but not y, namely, $y \notin \gamma k e r_{b}(\{x\})$ and thus $\gamma \operatorname{ker}_{b}(\{x\}) \neq \gamma \operatorname{ker}_{b}(\{y\})$.

Theorem 4.10 Let (X, τ) be a topological space and γ be an operation on τ. Then $\cap\left\{\gamma c l_{b}(\{x\}): x \in X\right\}=\phi$ if and only if $\gamma \operatorname{ker}_{b}(\{x\}) \neq X$ for every $x \in X$.

Proof. Necessity. Suppose that $\cap\left\{\gamma c l_{b}(\{x\}): x \in X\right\}=\phi$. Assume that there is a point y in X such that $\gamma k e r_{b}(\{y\})=X$. Let x be any point of X. Then $x \in V$ for every γ-b-open set V containing y and hence $y \in \gamma \operatorname{cl}_{b}(\{x\})$ for any $x \in X$. This implies that $y \in \cap\left\{\gamma \operatorname{cl}_{b}(\{x\}): x \in X\right\}$. But this is a contradiction.
Sufficiency. Assume that $\gamma \operatorname{ker}_{b}(\{x\}) \neq X$ for every $x \in X$. If there exists a point y in X such that $y \in \cap\left\{\gamma \operatorname{cl}_{b}(\{x\}): x \in X\right\}$, then every γ-b-open set containing y must contain every point of X. This implies that the space X is the unique γ-b-open set containing y. Hence $\gamma \operatorname{ker}_{b}(\{y\})=X$ which is a contradiction. Therefore, $\cap\left\{\gamma c l_{b}(\{x\}): x \in X\right\}=\phi$.

Theorem 4.11 A topological space (X, τ) with an operation γ on τ is γ -$b-R_{0}$ if and only if for every x and y in $X, \gamma c l_{b}(\{x\}) \neq \gamma c l_{b}(\{y\})$ implies $\gamma \operatorname{cl}_{b}(\{x\}) \cap \gamma c l_{b}(\{y\})=\phi$.

Proof. Necessity. Suppose that (X, τ) is $\gamma-\mathrm{b}-R_{0}$ and $x, y \in X$ such that $\gamma \operatorname{cl}_{b}(\{x\}) \neq \gamma \operatorname{cl}_{b}(\{y\})$. Then, there exists $z \in \gamma c l_{b}(\{x\})$ such that $z \notin \gamma c l_{b}(\{y\})$ (or $z \in \gamma c l_{b}(\{y\})$ such that $\left.z \notin \gamma c l_{b}(\{x\})\right)$. There exists $V \in \gamma b O(X)$ such that $y \notin V$ and $z \in V$, hence $x \in V$. Therefore, we have $x \notin \gamma c l_{b}(\{y\})$. Thus $x \in\left[X \backslash \gamma c l_{b}(\{y\})\right] \in \gamma b O(X)$, which implies $\gamma c l_{b}(\{x\}) \subset\left[X \backslash \gamma c l_{b}(\{y\})\right]$ and $\gamma c l_{b}(\{x\}) \cap \gamma c l_{b}(\{y\})=\phi$. The proof for otherwise is similar.
Sufficiency. Let $V \in \gamma b O(X)$ and let $x \in V$. We still show that $\gamma c l_{b}(\{x\}) \subset V$. Let $y \notin V$, i.e., $y \in X \backslash V$. Then $x \neq y$ and $x \notin \gamma c l_{b}(\{y\})$. This shows that $\gamma c l_{b}(\{x\}) \neq \gamma c l_{b}(\{y\})$. By assumption, $\gamma c l_{b}(\{x\}) \cap \gamma c l_{b}(\{y\})=\phi$. Hence $y \notin \gamma c l_{b}(\{x\})$ and therefore $\gamma \operatorname{cl}_{b}(\{x\}) \subset V$.

Theorem 4.12 A topological space (X, τ) with an operation γ on τ is γ-bR_{0} if and only if for any points x and y in $X, \gamma \operatorname{ker}_{b}(\{x\}) \neq \gamma \operatorname{ker}_{b}(\{y\})$ implies $\gamma \operatorname{ker}_{b}(\{x\}) \cap \gamma \operatorname{ker}_{b}(\{y\})=\phi$.

Proof. Suppose that (X, τ) is a γ-b- R_{0} space. Thus by Theorem 4.9, for any points x and y in X if $\gamma \operatorname{ker}_{b}(\{x\}) \neq \gamma \operatorname{ker}_{b}(\{y\})$ then $\gamma c l_{b}(\{x\}) \neq \gamma c l_{b}(\{y\})$. Now we prove that $\gamma \operatorname{ker}_{b}(\{x\}) \cap \gamma \operatorname{ker}_{b}(\{y\})=\phi$. Assume that $z \in \gamma \operatorname{ker}_{b}(\{x\}) \cap$ $\gamma \operatorname{ker}_{b}(\{y\})$. By $z \in \gamma \operatorname{ker}_{b}(\{x\})$ and Theorem 4.2, it follows that $x \in \gamma c l_{b}(\{z\})$. Since $x \in \gamma c l_{b}(\{x\})$, by Theorem 4.6, $\gamma \operatorname{cl}_{b}(\{x\})=\gamma c l_{b}(\{z\})$. Similarly, we have $\gamma c l_{b}(\{y\})=\gamma \operatorname{cl}_{b}(\{z\})=\gamma \operatorname{cl}_{b}(\{x\})$. This is a contradiction. Therefore, we have $\gamma \operatorname{ker}_{b}(\{x\}) \cap \gamma \operatorname{ker}_{b}(\{y\})=\phi$.

Conversely, let (X, τ) be a topological space such that for any points x and y in $X, \gamma \operatorname{ker}_{b}(\{x\}) \neq \gamma \operatorname{ker}_{b}(\{y\})$ implies $\gamma \operatorname{ker}_{b}(\{x\}) \cap \gamma \operatorname{ker}_{b}(\{y\})=\phi$. If $\gamma c l_{b}(\{x\}) \neq \gamma \operatorname{cl}_{b}(\{y\})$, then by Theorem 4.9, $\gamma \operatorname{ker}_{b}(\{x\}) \neq \gamma \operatorname{ker}_{b}(\{y\})$. Hence, $\gamma \operatorname{ker}_{b}(\{x\}) \cap \gamma \operatorname{ker}_{b}(\{y\})=\phi$ which implies $\gamma c l_{b}(\{x\}) \cap \gamma c l_{b}(\{y\})=\phi$. Because $z \in \gamma c l_{b}(\{x\})$ implies that $x \in \gamma \operatorname{ker}_{b}(\{z\})$ and therefore $\gamma \operatorname{ker}_{b}(\{x\}) \cap$ $\gamma \operatorname{ker}_{b}(\{z\}) \neq \phi$. By hypothesis, we have $\gamma \operatorname{ker}_{b}(\{x\})=\gamma \operatorname{ker}_{b}(\{z\})$. Then $z \in \gamma c l_{b}(\{x\}) \cap \gamma c l_{b}(\{y\})$ implies that $\gamma \operatorname{ker}_{b}(\{x\})=\gamma \operatorname{ker}_{b}(\{z\})=\gamma \operatorname{ker}_{b}(\{y\})$. This is a contradiction. Therefore, $\gamma c l_{b}(\{x\}) \cap \gamma c l_{b}(\{y\})=\phi$ and by Theorem $4.6(X, \tau)$ is a γ-b- R_{0} space.

Theorem 4.13 For a topological space (X, τ) with an operation γ on τ, the following properties are equivalent:

1. (X, τ) is a $\gamma-b-R_{0}$ space.
2. For any nonempty set A and $G \in \gamma b O(X)$ such that $A \cap G \neq \phi$, there exists $F \in \gamma b C(X)$ such that $A \cap F \neq \phi$ and $F \subset G$.
3. Any $G \in \gamma b O(X), G=\cup\{F \in \gamma b C(X): F \subset G\}$.
4. Any $F \in \gamma b C(X), F=\cap\{G \in \gamma b O(X): F \subset G\}$.
5. For every $x \in X, \gamma \operatorname{cl}_{b}(\{x\}) \subset \gamma \operatorname{ker}_{b}(\{x\})$.

Proof. (1) $\Rightarrow(2)$. Let A be a nonempty subset of X and $G \in \gamma b O(X)$ such that $A \cap G \neq \phi$. There exists $x \in A \cap G$. Since $x \in G \in \gamma b O(X)$, $\gamma c_{b}(\{x\}) \subset G$. Set $F=\gamma \operatorname{cl}_{b}(\{x\})$, then $F \in \gamma b C(X), F \subset G$ and $A \cap F \neq \phi$. $(2) \Rightarrow(3)$. Let $G \in \gamma b O(X)$, then $G \supseteq \cup\{F \in \gamma b C(X): F \subset G\}$. Let x be any point of G. There exists $F \in \gamma b C(X)$ such that $x \in F$ and $F \subset G$. Therefore, we have $x \in F \subset \cup\{F \in \gamma b C(X): F \subset G\}$ and hence $G=\cup\{F \in \gamma b C(X)$: $F \subset G\}$. $(3) \Rightarrow(4)$. This is obvious.
$(4) \Rightarrow(5)$. Let x be any point of X and $y \notin \gamma \operatorname{ker}_{b}(\{x\})$. There exists $V \in$ $\gamma b O(X)$ such that $x \in V$ and $y \notin V$, hence $\gamma c l_{b}(\{y\}) \cap V=\phi$. By (4) $\left(\cap\left\{G \in \gamma b O(X): \gamma c l_{b}(\{y\}) \subset G\right\}\right) \cap V=\phi$ and there exists $G \in \gamma b O(X)$ such that $x \notin G$ and $\gamma c l_{b}(\{y\}) \subset G$. Therefore $\gamma c l_{b}(\{x\}) \cap G=\phi$ and $y \notin \gamma c l_{b}(\{x\})$. Consequently, we obtain $\gamma c l_{b}(\{x\}) \subset \gamma \operatorname{ker}_{b}(\{x\})$.
(5) \Rightarrow (1). Let $G \in \gamma b O(X)$ and $x \in G$. Let $y \in \gamma \operatorname{ker}_{b}(\{x\})$, then $x \in$ $\gamma c l_{b}(\{y\})$ and $y \in G$. This implies that $\gamma \operatorname{ker}_{b}(\{x\}) \subset G$. Therefore, we obtain $x \in \gamma c l_{b}(\{x\}) \subset \gamma \operatorname{ker}_{b}(\{x\}) \subset G$. This shows that (X, τ) is a γ-b- R_{0} space.

Corollary 4.14 For a topological space (X, τ) with an operation γ on τ, the following properties are equivalent:

1. (X, τ) is a $\gamma-b-R_{0}$ space.
2. $\gamma c l_{b}(\{x\})=\gamma \operatorname{ker}_{b}(\{x\})$ for all $x \in X$.

Proof. (1) $\Rightarrow(2)$. Suppose that (X, τ) is a γ-b- R_{0} space. By Theorem 4.13, $\gamma \operatorname{cl}_{b}(\{x\}) \subset \gamma \operatorname{ker}_{b}(\{x\})$ for each $x \in X$. Let $y \in \gamma \operatorname{ker}_{b}(\{x\})$, then $x \in$ $\gamma c l_{b}(\{y\})$ and by Theorem $4.6 \gamma c l_{b}(\{x\})=\gamma c l_{b}(\{y\})$. Therefore, $y \in \gamma c l_{b}(\{x\})$ and hence $\gamma \operatorname{ker}_{b}(\{x\}) \subset \gamma c l_{b}(\{x\})$. This shows that $\gamma c l_{b}(\{x\})=\gamma k e r_{b}(\{x\})$. $(2) \Rightarrow(1)$. This is obvious by Theorem 4.13.

Theorem 4.15 For a topological space (X, τ) with an operation γ on τ, the following properties are equivalent:

1. (X, τ) is a $\gamma-b-R_{0}$ space.
2. If F is γ-b-closed, then $F=\gamma \operatorname{ker}_{b}(F)$.
3. If F is γ-b-closed and $x \in F$, then $\gamma \operatorname{ker}_{b}(\{x\}) \subset F$.
4. If $x \in X$, then $\gamma \operatorname{ker}_{b}(\{x\}) \subset \gamma c l_{b}(\{x\})$.

Proof. (1) $\Rightarrow(2)$. Let F be a γ-b-closed and $x \notin F$. Thus $(X \backslash F)$ is a γ-b-open set containing x. Since (X, τ) is γ-b- $R_{0} . \gamma c l_{b}(\{x\}) \subset(X \backslash F)$. Thus $\gamma c l_{b}(\{x\}) \cap F=\phi$ and by Lemma $4.3 x \notin \gamma \operatorname{ker}_{b}(F)$. Therefore $\gamma k \operatorname{ker}_{b}(F)=F$. $(2) \Rightarrow(3)$. In general, $A \subset B$ implies $\gamma \operatorname{ker}_{b}(A) \subset \gamma \operatorname{ker}_{b}(B)$. Therefore, it follows from (2) that $\gamma \operatorname{ker}_{b}(\{x\}) \subset \gamma \operatorname{ker}_{b}(F)=F$.
$(3) \Rightarrow(4)$. Since $x \in \gamma c l_{b}(\{x\})$ and $\gamma c l_{b}(\{x\})$ is γ-b-closed, by $(3), \gamma k e r_{b}(\{x\}) \subset$ $\gamma c l_{b}(\{x\})$.
$(4) \Rightarrow(1)$. We show the implication by using Theorem 4.8. Let $x \in \gamma c l_{b}(\{y\})$. Then by Theorem 4.2, $y \in \gamma \operatorname{ker}_{b}(\{x\})$. Since $x \in \gamma c l_{b}(\{x\})$ and $\gamma c l_{b}(\{x\})$ is γ-b-closed, by (4) we obtain $y \in \gamma \operatorname{ker}_{b}(\{x\}) \subset \gamma c l_{b}(\{x\})$. Therefore $x \in$ $\gamma c l_{b}(\{y\})$ implies $y \in \gamma c l_{b}(\{x\})$. The converse is obvious and (X, τ) is γ-b- R_{0}.

Definition 4.16 A topological space (X, τ) with an operation γ on τ, is said to be $\gamma-b-R_{1}$ if for x, y in X with $\gamma \operatorname{cl}_{b}(\{x\}) \neq \gamma \operatorname{cl}_{b}(\{y\})$, there exist disjoint γ-b-open sets U and V such that $\gamma c l_{b}(\{x\}) \subset U$ and $\gamma c l_{b}(\{y\}) \subset V$.

Theorem 4.17 A topological space (X, τ) with an operation γ on τ is $\gamma-b$ R_{1} if it is $\gamma-b-T_{2}$.

Proof. Let x and y be any points of X such that $\gamma c l_{b}(\{x\}) \neq \gamma c l_{b}(\{y\})$. By Remark 3.19, every γ-b- T_{2} space is γ-b- T_{1}. Therefore, by Theorem 3.24, $\gamma \operatorname{cl}_{b}(\{x\})=\{x\}, \gamma \operatorname{cl}_{b}(\{y\})=\{y\}$ and hence $\{x\} \neq\{y\}$. Since (X, τ) is γ-b- T_{2}, there exist disjoint γ-b-open sets U and V such that $\gamma c l_{b}(\{x\})=\{x\} \subset U$ and $\gamma c l_{b}(\{y\})=\{y\} \subset V$. This shows that (X, τ) is $\gamma-\mathrm{b}-R_{1}$

Theorem 4.18 For a topological space (X, τ) with an operation γ on τ, the following are equivalent:

1. (X, τ) is $\gamma-b-T_{2}$.
2. (X, τ) is $\gamma-b-R_{1}$ and $\gamma-b-T_{1}$.
3. (X, τ) is $\gamma-b-R_{1}$ and $\gamma-b-T_{0}$.

Proof. Proof is easy and hence omitted.
Theorem 4.19 For a topological space (X, τ) with an operation γ on τ, the following statements are equivalent:

1. (X, τ) is $\gamma-b-R_{1}$.
2. If $x, y \in X$ such that $\gamma \operatorname{cl}_{b}(\{x\}) \neq \gamma_{c l}(\{y\})$, then there exist γ-b-closed sets F_{1} and F_{2} such that $x \in F_{1}, y \notin F_{1}, y \in F_{2}, x \notin F_{2}$ and $X=F_{1} \cup F_{2}$.

Proof. Proof is easy and hence omitted.

Theorem 4.20 If (X, τ) is $\gamma-b-R_{1}$, then (X, τ) is $\gamma-b-R_{0}$.
Proof. Let U be γ-b-open such that $x \in U$. If $y \notin U$, since $x \notin \gamma c l_{b}(\{y\})$, we have $\gamma c l_{b}(\{x\}) \neq \gamma c l_{b}(\{y\})$. So, there exists a γ-b-open set V such that $\gamma \operatorname{cl}_{b}(\{y\}) \subset V$ and $x \notin V$, which implies $y \notin \gamma \operatorname{cl}_{b}(\{x\})$. Hence $\gamma c l_{b}(\{x\}) \subset U$. Therefore, (X, τ) is γ-b- R_{0}.

The converse of the above Theorem need not be ture as shown in the following example.

Example 4.21 Consider $X=\{a, b, c\}$ with the discrete topology on X. Define an operation γ on τ by

$$
\gamma(A)= \begin{cases}A & \text { if } A=\{a, b\} \text { or }\{a, c\} \text { or }\{b, c\} \\ X & \text { otherwise }\end{cases}
$$

Then X is a $\gamma-b-R_{0}$ space but not a $\gamma-b-R_{1}$ space.
Theorem 4.22 A topological space (X, τ) with an operation γ on τ is $\gamma-b$ R_{1} if and only if for $x, y \in X, \gamma \operatorname{ker}_{b}(\{x\}) \neq \gamma \operatorname{ker}_{b}(\{y\})$, there exist disjoint γ-b-open sets U and V such that $\gamma \operatorname{cl}_{b}(\{x\}) \subset U$ and $\gamma c l_{b}(\{y\}) \subset V$.

Proof. It follows from Theorem 4.9.
Theorem 4.23 A topological space (X, τ) is $\gamma-b-R_{1}$ if and only if the inclusion $x \in X \backslash \gamma \operatorname{cl}_{b}(\{y\})$ implies that x and y have disjoint γ-b-open neighborhoods.

Proof. Necessity. Let $x \in X \backslash \gamma c l_{b}(\{y\})$. Then $\gamma c l_{b}(\{x\}) \neq \gamma c l_{b}(\{y\})$ and x and y have disjoint γ-b-open neighborhoods.
Sufficiency. First, we show that (X, τ) is γ-b- R_{0}. Let U be a γ-b-open set and $x \in U$. Suppose that $y \notin U$. Then, $\gamma c l_{b}(\{y\}) \cap U=\phi$ and $x \notin \gamma c l_{b}(\{y\})$. There exist γ-b-open sets U_{x} and U_{y} such that $x \in U_{x}, y \in U_{y}$ and $U_{x} \cap U_{y}=\phi$. Hence, $\gamma c l_{b}(\{x\}) \subset \gamma c l_{b}\left(U_{x}\right)$ and $\gamma c l_{b}(\{x\}) \cap U_{y} \subset \gamma c l_{b}\left(U_{x}\right) \cap U_{y}=\phi$. Therefore, $y \notin \gamma c l_{b}(\{x\})$. Consequently, $\gamma \operatorname{cl}_{b}(\{x\}) \subset U$ and (X, τ) is γ-b- R_{0}. Next, we show that (X, τ) is γ-b- R_{1}. Suppose that $\gamma c l_{b}(\{x\}) \neq \gamma c l_{b}(\{y\})$. Then, we can assume that there exists $z \in \gamma c l_{b}(\{x\})$ such that $z \notin \gamma c l_{b}(\{y\})$. There exist γ-b-open sets V_{z} and V_{y} such that $z \in V_{z}, y \in V_{y}$ and $V_{z} \cap V_{y}=\phi$. Since $z \in \gamma c l_{b}(\{x\}), x \in V_{z}$. Since (X, τ) is γ-b- R_{0}, we obtain $\gamma c l_{b}(\{x\}) \subset V_{z}$, $\gamma c l_{b}(\{y\}) \subset V_{y}$ and $V_{z} \cap V_{y}=\phi$. This shows that (X, τ) is $\gamma-\mathrm{b}-R_{1}$.

5γ-b-Continuous Functions and γ-b-Closed Graphs

Definition 5.1 A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is said to be γ-b-continuous if for every open set V of $Y, f^{-1}(V)$ is γ-b-open in X.

Theorem 5.2 The following are equivalent for a function $f:(X, \tau) \rightarrow$ (Y, σ) :

1. f is γ-b-continuous.
2. The inverse image of every closed set in Y is γ-b-closed in X.
3. For each subset A of $X, f\left(\gamma c l_{b}(A)\right) \subset \operatorname{cl}(f(A))$.
4. For each subset B of $Y, \gamma c_{b}\left(f^{-1}(B)\right) \subset f^{-1}(c l(B))$.

Proof. (1) $\Leftrightarrow(2)$. Obvious.
$(3) \Leftrightarrow(4)$. Let B be any subset of Y. Then by (3), we have $f\left(\gamma \operatorname{cl}_{b}\left(f^{-1}(B)\right)\right) \subset$ $c l\left(f\left(f^{-1}(B)\right)\right) \subset c l(B)$. This implies $\gamma c l_{b}\left(f^{-1}(B)\right) \subset f^{-1}(c l(B))$.

Conversely, let $B=f(A)$ where A is a subset of X. Then, by (4), we have, $\gamma c l_{b}(A) \subset \gamma \operatorname{cl}_{b}\left(f^{-1}(f(A))\right) \subset f^{-1}(c l(f(A)))$. Thus, $f\left(\gamma c l_{b}(A)\right) \subset \operatorname{cl}(f(A))$.
$(2) \Rightarrow$ (4). Let $B \subset Y$. Since $f^{-1}(c l(B))$ is γ-b-closed and $f^{-1}(B) \subset$ $f^{-1}(c l(B))$, then $\gamma c l_{b}\left(f^{-1}(B)\right) \subset f^{-1}(c l(B))$.
$(4) \Rightarrow(2)$. Let $K \subset Y$ be a closed set. By $(4), \gamma \operatorname{cl}_{b}\left(f^{-1}(K)\right) \subset f^{-1}(c l(K))=$ $f^{-1}(K)$. Thus, $f^{-1}(K)$ is γ-b-closed.

Definition 5.3 For a function $f:(X, \tau) \rightarrow(Y, \sigma)$, the graph $G(f)=$ $\{(x, f(x)): x \in X\}$ is said to be γ-b-closed if for each $(x, y) \notin G(f)$, there exist a γ-b-open set U containing x and an open set V containing y such that $(U \times V) \cap G(f)=\phi$.

Lemma 5.4 The function $f:(X, \tau) \rightarrow(Y, \sigma)$ has an γ-b-closed graph if and only if for each $x \in X$ and $y \in Y$ such that $y \neq f(x)$, there exist a γ-b-open set U and an open set V containing x and y respectively, such that $f(U) \cap V=\phi$.

Proof. It follows readily from the above definition.
Theorem 5.5 If $f:(X, \tau) \rightarrow(Y, \sigma)$ is an injective function with the $\gamma-b$ closed graph, then X is $\gamma-b-T_{1}$.

Proof. Let x and y be two distinct points of X. Then $f(x) \neq f(y)$. Thus there exist a γ-b-open set U and an open set V containing x and $f(y)$, respectively, such that $f(U) \cap V=\phi$. Therefore $y \notin U$ and it follows that X is $\gamma-\mathrm{b}-T_{1}$.

Theorem 5.6 If $f:(X, \tau) \rightarrow(Y, \sigma)$ is an injective γ-b-continuous with a γ-b-closed graph $G(f)$, then X is $\gamma-b-T_{2}$.

On a Class of γ-b-Open Sets...

Proof. Let x_{1} and x_{2} be any distinct points of X. Then $f\left(x_{1}\right) \neq f\left(x_{2}\right)$, so $\left(x_{1}, f\left(x_{2}\right)\right) \in(X \times Y) \backslash G(f)$. Since the graph $G(f)$ is γ-b-closed, there exist a γ-b-open set U containing x_{1} and open set V containing $f\left(x_{2}\right)$ such that $f(U) \cap V=\phi$. Since f is γ-b-continuous, $f^{-1}(V)$ is a γ-b-open set containing x_{2} such that $U \cap f^{-1}(V)=\phi$. Hence X is $\gamma-\mathrm{b}-T_{2}$.

Recall that a space X is said to be T_{1} if for each pair of distinct points x and y of X, there exist an open set U containing x but not y and an open set V containing y but not x.

Theorem 5.7 If $f:(X, \tau) \rightarrow(Y, \sigma)$ is an surjective function with the γ-b-closed graph, then Y is T_{1}.

Proof. Let y_{1} and y_{2} be two distinct points of Y. Since f is surjective, there exists x in X such that $f(x)=y_{2}$. Therefore $\left(x, y_{1}\right) \notin G(f)$. By Lemma 5.4, there exist γ-b-open set U and an open set V containing x and y_{1} respectively, such that $f(U) \cap V=\phi$. We obtain an open set V containing y_{1} which does not contain y_{2}. It follows that $y_{2} \notin V$. Hence, Y is T_{1}.

Definition 5.8 A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is said to be γ - b - W-continuous if for each $x \in X$ and each open set V of Y containing $f(x)$, there exists a γ-b-open set U in X containing x such that $f(U) \subset \operatorname{cl}(V)$.

Theorem 5.9 If $f:(X, \tau) \rightarrow(Y, \sigma)$ is γ - b - W-continuous and Y is Hausdorff, then $G(f)$ is γ-b-closed.

Proof. Suppose that $(x, y) \notin G(f)$, then $f(x) \neq y$. By the fact that Y is Hausdorff, there exist open sets W and V such that $f(x) \in W, y \in V$ and $V \cap W=\phi$. It follows that $c l(W) \cap V=\phi$. Since f is γ-b-W-continuous, there exists a γ-b-open set U containing x such that $f(U) \subset c l(W)$. Hence, we have $f(U) \cap V=\phi$. This means that $G(f)$ is γ-b-closed.

Definition 5.10 A subset A of a space X is said to be γ-b-compact relative to X if every cover of A by γ-b-open sets of X has a finite subcover.

Theorem 5.11 Let $f:(X, \tau) \rightarrow(Y, \sigma)$ have a γ-b-closed graph. If K is γ-b-compact relative to X, then $f(K)$ is closed in Y.

Proof. Suppose that $y \notin f(K)$. For each $x \in K, f(x) \neq y$. By lemma 5.4, there exists a γ-b-open set U_{x} containing x and an open neighbourhood V_{x} of y such that $f\left(U_{x}\right) \cap V_{x}=\phi$. The family $\left\{U_{x}: x \in K\right\}$ is a cover of K by γ-b-open sets of X and there exists a fnite subset K_{0} of K such that $K \subset \cup\left\{U_{x}: x \in K_{0}\right\}$. Put $V=\cap\left\{V_{x}: x \in K_{0}\right\}$. Then V is an open neighbourhood of y and $f(K) \cap V=\phi$. This means that $f(K)$ is closed in Y.

Theorem 5.12 If $f:(X, \tau) \rightarrow(Y, \sigma)$ has a γ-b-closed graph $G(f)$, then for each $x \in X .\{f(x)\}=\cap\{c l(f(A): A$ is γ-b-open set containing $x\}$.
Proof. Suppose that $y \neq f(x)$ and $y \in \cap\{\operatorname{cl}(f(A)): A$ is γ-b-open set containing $x\}$. Then $y \in c l(f(A))$ for each γ-b-open set A containing x. This implies that for each open set B containing $y, B \cap f(A) \neq \phi$. Since $(x, y) \notin G(f)$ and $G(f)$ is a γ-b-closed graph, this is a contradiction.

Definition 5.13 A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is called a γ-b-open if the image of every γ-b-open set in X is open in Y.

Theorem 5.14 If $f:(X, \tau) \rightarrow(Y, \sigma)$ is a surjective γ-b-open function with a γ-b-closed graph $G(f)$, then Y is T_{2}.
Proof. Let y_{1} and y_{2} be any two distinct points of Y. Since f is surjective $f(x)=y_{1}$ for some $x \in X$ and $\left(x, y_{2}\right) \in(X \times Y) \backslash G(f)$. This implies that there exist a γ-b-open set A of X and an open set B of Y such that $\left(x, y_{2}\right) \in(A \times B)$ and $(A \times B) \cap G(f)=\phi$. We have $f(A) \cap B=\phi$. Since f is γ-b-open, then $f(A)$ is open such that $f(x)=y_{1} \in f(A)$. Thus, Y is T_{2}.

Theorem 5.15 If $f:(X, \tau) \rightarrow(Y, \sigma)$ is a γ-b-continuous injective function and Y is T_{2}, then X is $\gamma-b-T_{2}$.

Proof. Let x and y in X be any pair of distinct points, then there exist disjoint open sets A and B in Y such that $f(x) \in A$ and $f(y) \in B$. Since f is γ-b-continuous, $f^{-1}(A)$ and $f^{-1}(B)$ are γ-b-open in X containing x and y respectively, we have $f^{-1}(A) \cap f^{-1}(B)=\phi$. Thus, X is $\gamma-\mathrm{b}-T_{2}$.

References

[1] D. Andrijevi, On b-open sets, Mat. Vesnik, 48(1996), 59-64.
[2] C.K. Basu, B.M.U. Afsan and M.K. Ghosh, A class of functions and separation axioms with respect to an operation, Hacettepe Journal of Mathematics and Statistics, 38(2) (2009), 103-118.
[3] S. Kasahara, Operation compact spaces, Math. Japonica, 24(1) (1979), 97-105.
[4] G.S.S. Krishnan, A new class of semi open sets in a topological space, Proc. NCMCM, Allied Publishers, New Delhi, (2003), 305-311.
[5] G.S.S. Krishnan and K. Balachandran, On a class of γ-preopen sets in a topological space, East Asian Math. J., 22(2) (2006), 131-149.
[6] H. Ogata, Operation on topological spaces and associated topology, Math. Japonica, 36(1) (1991), 175-184.

