Gen. Math. Notes, Vol. 16, No. 1, May, 2013, pp. 40-48
ISSN 2219-7184; Copyright © ICSRS Publication, 2013
www.i-csrs.org
Available free online at http://www.geman.in

The Inversion of an Integral Equation Pertaining to a Generalized Polynomial Set

V.B.L. Chaurasia ${ }^{1}$ and J.C. Arya ${ }^{2}$
${ }^{1}$ Department of Mathematics, University of Rajasthan
Jaipur-302004, India
E-mail: drvblc@yahoo.com
${ }^{2}$ Department of Mathematics, Govt. Post Graduate College
Neemuch-458441 (M.P.), India
E-mail: profarya76@gmail.com

(Received: 4-2-13 / Accepted: 5-3-13)

Abstract

The main object of this paper is to evaluate a certain class of convolution integral equation of Fredholm type with n-generalized polynomial sets. Here, the integral equation is solved by applying the Mellin transform.

Keywords: Mellin Transform, convolution integral equation, generalized polynomial set.

1 Introduction

This paper deals with the investigation of the inversion of the integral

$$
\begin{equation*}
\prod_{i=1, \ldots, n} g_{i}(x)=\prod_{i=1, \ldots, n} \int_{0}^{\infty} h_{i}\left(\frac{x}{y}\right) f_{i}(y)\left(\frac{d y}{y}\right),(x>0) \tag{1}
\end{equation*}
$$

Where g_{i} is a prescribed function, f_{i} is an unknown function to be determined and the kernel h_{i} is given by

$$
\begin{align*}
& \prod_{i=1, \ldots, n} h_{i}(x)=\prod_{i=1, \ldots, n}\left[\frac{\left(a_{i} x^{\alpha_{i}}+b_{i}\right)^{p_{i}}\left(c_{i} x^{\beta_{i}}+d_{i}\right)^{q_{i}}}{e^{-t_{i} \xi_{i}} \xi_{i}} K_{n_{i}}\right. \\
& \quad . R_{n_{i}}^{p_{i}, q_{i}}\left[x, a_{i}, b_{i}, c_{i}, d_{i} ; \alpha_{i}, \beta_{i}, \gamma_{i}, \delta_{i} ; e^{-t_{i} x} \xi_{i}\right. \\
& =\prod_{i=1, \ldots, n}\left[\left\{x^{\theta_{i}}\left(\phi+x D_{x}\right)\right\}^{n_{i}}\left\{\left(a_{i} x^{\alpha_{i}}+b_{i}\right)^{p_{i}+\gamma_{i} n_{i}}\left(c_{i} x^{\beta_{i}}+d_{i}\right)^{q_{i}+\delta_{i} n_{i}} e^{-t_{i} x^{\xi_{i}}}\right\}\right] \tag{2}
\end{align*}
$$

Where the polynomial set $\mathrm{R}_{\mathrm{n}}^{\mathrm{p}, \mathrm{q}}[\mathrm{x}]$ is introduced by Agrawal and Chaubey [1] by means of the following formula

$$
\begin{align*}
& \mathrm{R}_{\mathrm{n}}^{\mathrm{p}, \mathrm{q}}[\mathrm{x}]=\mathrm{R}_{\mathrm{n}}^{\mathrm{p}, \mathrm{q}}[\mathrm{x}, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} ; \alpha, \beta, \gamma, \delta ; \omega(\mathrm{x})] \\
& \left.=\frac{(\mathrm{ax}}{}+\mathrm{b}\right)^{-\mathrm{p}}(\mathrm{cx}+\mathrm{d})^{-\mathrm{q}} \tag{3}\\
& \mathrm{~K}_{\mathrm{n}} \omega(\mathrm{x}) \\
& T_{\theta, \phi}^{\mathrm{n}}\left[\left(\mathrm{ax}^{\alpha}+\mathrm{b}\right)^{\mathrm{p}+\gamma \mathrm{n}}\left(\mathrm{cx}{ }^{\beta}+\mathrm{d}\right)^{q+\delta \mathrm{n}} \omega(\mathrm{x})\right], \mathrm{n}=0,1,2, \ldots
\end{align*}
$$

Where

$$
\begin{equation*}
\mathrm{T}_{\theta, \phi}^{\mathrm{n}}=\mathrm{x}^{\theta}\left(\phi+\mathrm{x} \mathrm{D}_{\mathrm{x}}\right), \mathrm{D}_{\mathrm{x}}=\frac{\mathrm{d}}{\mathrm{dx}} \tag{4}
\end{equation*}
$$

$\left\{\mathrm{K}_{\mathrm{n}}\right\}_{\mathrm{n}=0}^{\infty}$ is a sequence of constants, a,b,c,d, $\alpha, \beta, \gamma, \delta, \mathrm{p}, \mathrm{q}$ are constants and $\omega(\mathrm{x})$ is any general function of x, differentiable an arbitrary number of times.

The polynomial $R_{n}^{p, q}[x]$ is general in nature and yields a number of known polynomials as its special cases. In particular $\alpha=\beta=1, K_{n}=n!, \phi=0, \theta=\& 1$, the polynomial set $\mathrm{R}_{\mathrm{n}}^{\mathrm{p}, \mathrm{q}}[\mathrm{x}]$ reduces to $\mathrm{S}_{\mathrm{n}}^{\mathrm{p}, \mathrm{q}}[\mathrm{x}, \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} ; \gamma, \delta ; \omega(\mathrm{x})]$, given by Srivastava and Panda [6].

2 Lemma

We begin with Lemma involving the Mellin transform of $\prod_{i=1, \ldots, n} h_{i}(x)$ which is as follows:

If $\prod_{i=1, \ldots, n} H_{i}(s)=\prod_{i=1, \ldots, n} M\left\{h_{i}(x) ; s\right\}$ where $\prod_{i=1, \ldots, n} h_{i}(x)$ is defined by (2), then
$\prod_{i=1, \ldots, n} H_{i}(s)=\prod_{i=1, \ldots, n}\left[\sum_{k_{i}=0}^{n_{i}} \sum_{\ell_{i}=0}^{p_{i}+\gamma_{i} n_{i} q_{i}+\delta_{i} n_{i}} \sum_{m_{i}=0}(-1)^{k_{i}+\ell_{i}+m_{i}} \frac{\left(-n_{i}\right)_{k_{i}}}{k_{i}!} \frac{\left(-p_{i}-\gamma_{i} n_{i}\right)_{\ell_{i}}}{\ell!}\right.$

$$
\cdot \frac{\left(-q_{i}-\delta_{i} n_{i}\right)_{m_{i}}}{m_{i}!}(\phi)^{n_{i}-k_{i}}\left(b_{i}\right)^{p_{i}+\gamma_{i} n_{i}-\ell_{i}}\left(d_{i}\right)^{q_{i}+\delta_{i} n_{i}-m_{i}}\left(a_{i}\right)^{\ell_{i}}\left(c_{i}\right)^{m_{i}}\left(\theta_{i}\right)^{k_{i}}
$$

$$
\begin{equation*}
\left.\cdot\left\{-\left(\frac{s+\theta_{i} n_{i}}{\theta_{i}}\right)\right\}_{k_{i}} \frac{1}{\left|\xi_{i}\right|} \Gamma\left(\frac{s+\theta_{i} n_{i}+\alpha_{i} \ell_{i}+\beta_{i} m_{i}}{\xi_{i}}\right)\left(t_{i}\right)^{-\left(\frac{s+\theta_{i} n_{i}+\alpha_{i} \ell_{i}+\beta_{i} m_{i}}{\xi_{i}}\right)}\right] \tag{5}
\end{equation*}
$$

Provided that
$0<\operatorname{Re}\left(\mathrm{s}+\theta_{\mathrm{i}} \mathrm{n}_{\mathrm{i}}+\alpha_{\mathrm{i}} \ell_{\mathrm{i}}+\beta_{\mathrm{i}} \mathrm{m}_{\mathrm{i}}\right)<\xi_{\mathrm{i}}$, when $\xi_{\mathrm{i}}>0$;
$\xi_{\mathrm{i}}<\operatorname{Re}\left(\mathrm{s}+\theta_{\mathrm{i}} \mathrm{n}_{\mathrm{i}}+\alpha_{\mathrm{i}} \ell_{\mathrm{i}}+\beta_{\mathrm{i}} \mathrm{m}_{\mathrm{i}}\right)<0$, when $\xi_{\mathrm{i}}<0$;
$\theta_{i} \neq 0$ and $n_{i},\left(p_{i}+\gamma_{i} n_{i}\right),\left(q_{i}+\delta_{i} n_{i}\right) \in N_{0}$, where $i=1, \ldots, n$

Proof:

Using binomial expansions for $\left[x^{\theta_{i}}\left(\phi+x_{x}\right)\right]^{n_{i}},\left(a_{i} x^{\alpha_{i}}+b_{i}\right)^{p_{i}+\gamma_{i} n_{i}}$ and $\left(c_{i} x^{\beta_{i}}+d_{i}\right)^{q_{i}+\delta_{i} n_{i}}$ in (2), we get
$\prod_{i=1, \ldots, n} h_{i}(x)=\prod_{i=1, \ldots, n}\left[\sum_{k_{i}=0}^{n_{i}} \sum_{\ell_{i}=0}^{p_{i}+\gamma_{i} n_{i} q_{i}+\delta_{i} n_{i}} \sum_{m_{i}=0}(-1)^{k_{i}+\ell_{i}+m_{i}} \frac{\left(-n_{i}\right)_{k_{i}}}{k_{i}!} \frac{\left(-p_{i}-\gamma_{i} n_{i}\right)_{\ell_{i}}}{\ell_{i}!}\right.$.
$\frac{\left(-q_{i}-\delta_{i} n_{i}\right)_{m_{i}}}{m_{i}!}(\phi)^{n_{i}-k_{i}}\left(b_{i}\right)^{p_{i}+\gamma_{i} n_{i}-\ell_{i}}\left(d_{i}\right)^{q_{i}+\delta_{i} n_{i}-m_{i}}\left(a_{i}\right)^{\ell}\left(c_{i}\right)^{m_{i}} x^{\theta_{i}\left(n_{i}-k_{i}\right)}$

$$
\begin{equation*}
\left.\cdot\left(x^{\theta_{i}+1} D_{x}\right)^{k_{i}}\left\{x^{\alpha_{i} \ell_{i}+\beta_{i} m_{i}} e^{-t_{i} x^{\xi_{i}}}\right\}\right] \tag{6}
\end{equation*}
$$

Now applying Mellin transform of both sides of the equation (6) and using known results [9, p.14, eq. (2.2)]; [5, p.307,eq.(7)].

We find that

$$
\begin{align*}
& \prod_{i=1, \ldots, n} H_{i}(s)=\prod_{i=1, \ldots, n}\left[\sum_{k_{i}=0}^{n_{i}} \sum_{\ell_{i}=0}^{p_{i}+\gamma_{i} n_{i} q_{i}+\delta_{i} n_{i}} \sum_{m_{i}=0}(-1)^{k_{i}+\ell_{i}+m_{i}} \frac{\left(-n_{i}\right)_{k_{i}}}{k_{i}!} \frac{\left(-p_{i}-\gamma_{i} n_{i}\right)_{\ell_{i}}}{\ell_{i}!}\right. \\
& \\
& \cdot \frac{\left(-q_{i}-\delta_{i} n_{i}\right)_{m_{i}}}{m_{i}!}(\phi)^{n_{i}-k_{i}}\left(b_{i}\right)^{p_{i}+\gamma_{i} n_{i}-\ell_{i}}\left(d_{i}\right)^{q_{i}+\delta_{i} n_{i}-m_{i}}\left(a_{i}\right)^{\ell_{i}}\left(c_{i}\right)^{m_{i}}\left(\theta_{i}\right)^{k_{i}} \tag{7}\\
& \left.\cdot\left\{-\left(\frac{s+\theta_{i} n_{i}}{\theta_{i}}\right)\right\}_{k_{i}} M\left\{x^{\alpha_{i} \ell_{i}+\beta_{i} m_{i}} e^{-t_{i} x^{\prime}}, s+\xi_{i} n_{i}\right\}\right]
\end{align*}
$$

Again, using [5, p.307, eq. (7)] and the known result [5, p.313, eq. (15)]

$$
\begin{equation*}
\mathrm{M}\left\{\left(\mathrm{e}^{-\mathrm{ax}}\right) ; \mathrm{s}\right\}=\frac{1}{|\mathrm{~h}|} \mathrm{a}^{-(\mathrm{s} / \mathrm{h})} \Gamma\left(\frac{\mathrm{s}}{\mathrm{~h}}\right), \tag{8}
\end{equation*}
$$

We arrive at the required result (3).

3 Solution of the Integral Equation (1)

Theorem: Let the Mellin transforms $F_{i}(s), G_{i}(s)$ and $H_{i}(s) \neq 0$ of the functions $f_{i}(x), g_{i}(x)$ and $h_{i}(x)$ defined by (2) exist and be analytic in some infinite strip $\eta_{i}<\operatorname{Re}(s)<\lambda_{i}$ of the complex s-plane. Also suppose that for a fixed $\sigma_{i} \in\left(\eta_{i}, \lambda_{i}\right)$, $\mathrm{h}_{\mathrm{i}}^{*}(\mathrm{x})$ is defined by

$$
\begin{align*}
\prod_{\mathrm{i}=1, \ldots, \mathrm{n}} \mathrm{~h}_{\mathrm{i}}^{*}(\mathrm{x}) & =\prod_{\mathrm{i}=1, \ldots, \mathrm{n}}\left[\mathrm{M}^{-1}\left\{\mathrm{H}_{\mathrm{i}}^{*}(\mathrm{~s}) ; \mathrm{x}\right\}\right] \\
& =\prod_{\mathrm{i}=1, \ldots, \mathrm{n}} \frac{1}{2 \pi \omega} \int_{\sigma_{\mathrm{i}}-\omega \infty}^{\sigma_{\mathrm{i}}+\omega \infty} \mathrm{x}^{-\mathrm{s}} \mathrm{H}_{\mathrm{i}}^{*}(\mathrm{~s}) \mathrm{ds}, \tag{9}
\end{align*}
$$

Where $\omega=\sqrt{-1}$,

$$
\prod_{\mathrm{i}=1, \ldots, \mathrm{n}} \mathrm{H}_{\mathrm{i}}^{*}(\mathrm{~s})
$$

$$
\begin{align*}
& =\prod_{i=1, \ldots, n}\left[B_{i}^{E_{i}} \frac{\Gamma\left(-\frac{s}{B_{i}}\right)}{\Gamma\left(-E_{i}-\frac{s}{B_{i}}\right)} \sum_{k_{i}=0}^{n_{i}} \sum_{\ell_{i}=0}^{p_{i}+\gamma_{i} n_{i} q_{i}+\delta_{i} n_{i}} \sum_{m_{i}=0}(-1)^{k_{i}+\ell_{i}+m_{i}} \frac{\left(-n_{i}\right)_{k_{i}}}{k_{i}!} \frac{\left(-p_{i}-\gamma_{i} n_{i}\right)_{\ell_{i}}}{\ell_{i}!}\right. \\
& . \frac{\left(-q_{i}-\delta_{i} n_{i}\right)_{m_{i}}}{m_{i}!}(\phi)^{n_{i}-k_{i}}\left(b_{i}\right)^{p_{i}+\gamma_{i} n_{i}-\ell_{i}}\left(d_{i}\right)^{q_{i}+\delta_{i} n_{i}-m_{i}}\left(a_{i}\right)^{\ell_{i}}\left(c_{i}\right)^{m_{i}} \frac{\left(\theta_{i}\right)^{k_{i}}}{\left|\xi_{i}\right|} \\
& \cdot \tag{10}\\
& \\
& \left.\left.. \frac{\left.\Gamma\left(1+\frac{s+\theta_{i} n_{i}+B_{i} E_{i}+C_{i}}{\theta_{i}}\right) \Gamma\left(\frac{s+B_{i} E_{i}+C_{i}+\theta_{i} n_{i}+\alpha_{i} \ell_{i}+\beta_{i} m_{i}}{\xi_{i}}\right)\right]^{-1}}{\Gamma\left(\frac{s+\theta_{i} n_{i}+B_{i} E_{i}+C_{i}}{\theta_{i}}-k_{i}+1\right)\left(t_{i}\right)}\right]^{\left(\frac{s+B_{i} E_{i}+C_{i}+\theta_{i} n_{i}+\alpha_{i} \ell_{i}+\beta_{i} m_{i}}{\xi_{i}}\right)}\right]
\end{align*}
$$

provided that
$0<\operatorname{Re}\left(\mathrm{s}+\mathrm{B}_{\mathrm{i}} \mathrm{E}_{\mathrm{i}}+\mathrm{C}_{\mathrm{i}}+\theta_{\mathrm{i}} \mathrm{n}_{\mathrm{i}}+\alpha_{\mathrm{i}} \ell_{\mathrm{i}}+\beta_{\mathrm{i}} \mathrm{m}_{\mathrm{i}}\right)<\xi_{\mathrm{i}}$, when $\xi_{\mathrm{i}}>0$;
$\xi_{\mathrm{i}}<\operatorname{Re}\left(\mathrm{s}+\mathrm{B}_{\mathrm{i}} \mathrm{E}_{\mathrm{i}}+\mathrm{C}_{\mathrm{i}}+\theta_{\mathrm{i}} \mathrm{n}_{\mathrm{i}}+\alpha_{\mathrm{i}} \ell_{\mathrm{i}}+\beta_{\mathrm{i}} \mathrm{m}_{\mathrm{i}}\right)<0$, when $\xi_{\mathrm{i}}<0 ; \xi_{\mathrm{i}}, \mathrm{B}_{\mathrm{i}} ; \theta_{\mathrm{i}} \neq 0$
$\mathrm{n}_{\mathrm{i}},\left(\mathrm{p}_{\mathrm{i}}+\gamma_{\mathrm{i}} \mathrm{n}_{\mathrm{i}}\right),\left(\mathrm{q}_{\mathrm{i}}+\delta_{\mathrm{i}} \mathrm{n}_{\mathrm{i}}\right) \in \mathrm{N}_{0}$, where $\mathrm{i}=1, \ldots, \mathrm{n}$.
Then the integral equation (1) has its solution given by

$$
\begin{equation*}
\prod_{i=1, \ldots, n} f_{i}(x)=\prod_{i=1, \ldots, n}\left[x^{-B_{i} E_{i}-C_{i}} \int_{0}^{\infty} y^{-1} h_{i}^{*}\left(\frac{x}{y}\right)\left(y^{B_{i}+1} D_{y}\right)^{E_{i}}\left\{y^{C_{i}} g_{i}(y)\right\} d y\right] \tag{11}
\end{equation*}
$$

provided that the integral exists.
Proof: By convolution Theorem for Mellin transforms [5, p.308, eq.(14)], equation (1) changes into

$$
\begin{equation*}
\prod_{\mathrm{i}=1, \ldots, \mathrm{n}} \mathrm{H}_{\mathrm{i}}(\mathrm{~s}) \mathrm{F}_{\mathrm{i}}(\mathrm{~s})=\prod_{\mathrm{i}=1, \ldots, \mathrm{n}} \mathrm{G}_{\mathrm{i}}(\mathrm{~s}) \tag{12}
\end{equation*}
$$

Where $\mathrm{H}_{\mathrm{i}}(\mathrm{s})$, $\mathrm{F}_{\mathrm{i}}(\mathrm{s})$ and $\mathrm{G}_{\mathrm{i}}(\mathrm{s})$ are Mellin transforms of $\mathrm{h}_{\mathrm{i}}(\mathrm{x})$, $\mathrm{f}_{\mathrm{i}}(\mathrm{x})$ and $\mathrm{g}_{\mathrm{i}}(\mathrm{x})$ respectively.

Replacing s in (12) by $\left(\mathrm{s}+\mathrm{B}_{\mathrm{i}} \mathrm{E}_{\mathrm{i}}+\mathrm{C}_{\mathrm{i}}\right)$, we have

$$
\begin{align*}
& \prod_{i=1, \ldots, n} F_{i}\left(s+B_{i} E_{i}+C_{i}\right) \\
= & \left.\prod_{i=1, \ldots, n}\left[H_{i}^{*}(s)\left\{B_{i}^{E_{i}}\left(-\left(\frac{s+B_{i} E_{i}}{B_{i}}\right)\right)\right)_{E_{i}}\right\} G_{i}\left(s+B_{i} E_{i}+C_{i}\right)\right],
\end{align*}
$$

Where $\mathrm{H}_{\mathrm{i}}^{*}(\mathrm{~s})$ is given by (10).
Now by using known results [6, p.14, eq.(2.2)] and [5, p.307, eq. (7)], we obtain

$$
\begin{equation*}
\prod_{i=1, \ldots, n} F_{i}\left(s+B_{i} E_{i}+C_{i}\right)=\prod_{i=1, \ldots, n} H_{i}^{*}(s)\left[M\left\{\left(y^{B_{i}+1} D_{y}\right)^{E_{i}} y^{C_{i}} g_{i}(y)\right\} d y ; s\right] \tag{14}
\end{equation*}
$$

and by using the known results [5, p.307, eq. (7) and [5, p.308, eq. (14)] in (14), we have

$$
\begin{aligned}
& \prod_{i=1, \ldots, n} M\left[x^{B_{i} E_{i}+C_{i}} f_{i}(x) ; s\right] \\
= & \prod_{i=1, \ldots, n}\left[M\left\{\int_{0}^{\infty} y^{-1} h_{i}^{*}\left(\frac{x}{y}\right)\left(y^{B_{i}+1} D_{y}\right)^{E_{i}}\left(y^{C_{i}} g_{i}(y)\right) d y ; s\right\}\right],
\end{aligned}
$$

Inverting both sides of (15) by using the Mellin inversion Theorem [5, p.307, eq. (1)], we arrive at the required solution (11).

4 Applications

4.1. By setting $i=1$ to 3 in (2), we have the following corollary

Corollary: The convolution integral equation

$$
\begin{equation*}
\prod_{i=1,2,3} g_{i}(x)=\prod_{i=1,2,3} \int_{0}^{\infty} y^{-1} h_{i}\left(\frac{x}{y}\right) f_{i}(y) d y, \quad(x>0) \tag{16}
\end{equation*}
$$

Where, the kernel

$$
\begin{align*}
& \prod_{i=1,2,3} h_{i}(x)=\prod_{i=1,2,3}\left[\frac{\left(a_{i} x^{\alpha_{i}}+b_{i}\right)^{p_{i}}\left(c_{i} x^{\beta_{i}}+d_{i}\right)^{q_{i}}}{e^{-t_{i} x_{i}}} K_{n_{i}}\right. \\
& \left.\quad . R_{n_{i}}^{p_{i}, q_{i}}\left[x, a_{i}, b_{i}, c_{i}, d_{i} ; \alpha_{i}, \beta_{i}, \gamma_{i}, \delta_{i} ; e^{-t_{i} x^{\xi_{i}}}\right]\right] \tag{17}\\
& =\prod_{i=1,2,3}\left[\left\{x^{\theta_{i}}\left(\phi+x D_{x}\right)\right\}^{n_{i}}\left\{\left(a_{i} x^{\alpha_{i}}+b_{i}\right)^{p_{i}+\gamma_{i} n_{i}}\left(c_{i} x^{\beta i}+d_{i}\right)^{q_{i}+\delta_{i} n_{i}} e^{-t_{i} x^{\xi_{i}}}\right\}\right]
\end{align*}
$$

has the solution

$$
\begin{align*}
& \prod_{i=1,2,3} f_{i}(x) \\
= & \prod_{i=1,2,3}\left[x^{-B_{i} E_{i}-C_{i}} \int_{0}^{\infty} y^{-1} h_{i}^{*}\left(\frac{x}{y}\right)\left(y^{B_{i}+1} D_{y}\right)^{E_{i}}\left\{y^{c_{i}} g_{i}(y)\right\} d y\right] \tag{18}
\end{align*}
$$

provided that the integral exists and $\prod_{\mathrm{i}=1,2,3} \mathrm{~h}_{\mathrm{i}}^{*}(\mathrm{x})$ is the Mellin inverse transform

$$
\begin{aligned}
& \prod_{i=1,2,3} H_{i}^{*}(s) \\
= & \prod_{i=1,2,3}\left[B_{i}^{E_{i}} \frac{\Gamma\left(-\frac{s}{B_{i}}\right)}{\Gamma\left(-E_{i}-\frac{s}{B_{i}}\right)} \sum_{k_{i}=0}^{n_{i}} \sum_{\ell_{i}=0}^{p_{i}+\gamma_{i} n_{i}} \sum_{m_{i}+\delta_{i} n_{i}}^{n_{i}}(-1)^{k_{i}+\ell_{i}+m_{i}} \frac{\left(-n_{i}\right)_{k_{i}}}{k_{i}!} \frac{\left(-p_{i}-\gamma_{i} n_{i}\right)_{\ell_{i}}}{\ell_{i}!}\right.
\end{aligned}
$$

$$
\frac{\left(-q_{i}-\delta_{i} n_{i}\right)_{m_{i}}}{m_{i}!}(\phi)^{n_{i}-k_{i}}\left(b_{i}\right)^{p_{i}+\gamma_{i} n_{i}-\ell_{i}}\left(d_{i}\right)^{q_{i}+\delta_{i} n_{i}-m_{i}}\left(a_{i}\right)^{\ell_{i}}\left(c_{i}\right)^{m_{i}} \frac{\left(\theta_{i}\right)^{k_{i}}}{\left|\xi_{i}\right|}
$$

$$
\begin{equation*}
\left.\frac{\Gamma\left(1+\frac{\mathrm{s}+\theta_{\mathrm{i}} \mathrm{n}_{\mathrm{i}}+\mathrm{B}_{\mathrm{i}} \mathrm{E}_{\mathrm{i}}+\mathrm{C}_{\mathrm{i}}}{\theta_{\mathrm{i}}}\right) \Gamma\left(\frac{\mathrm{s}+\mathrm{B}_{\mathrm{i}} \mathrm{E}_{\mathrm{i}}+\mathrm{C}_{\mathrm{i}}+\theta_{\mathrm{i}} \mathrm{n}_{\mathrm{i}}+\alpha_{\mathrm{i}} \ell_{\mathrm{i}}+\beta_{\mathrm{i}} \mathrm{~m}_{\mathrm{i}}}{\xi_{i}}\right)}{\Gamma\left(\frac{\mathrm{s}+\theta_{i} \mathrm{n}_{\mathrm{i}}+\mathrm{B}_{\mathrm{i}} \mathrm{E}_{\mathrm{i}}+\mathrm{C}_{\mathrm{i}}}{\theta_{\mathrm{i}}}-\mathrm{k}_{\mathrm{i}}+1\right) \mathrm{t}_{\mathrm{i}} \frac{\mathrm{~s}+\mathrm{B}_{\mathrm{i}} \mathrm{E}_{\mathrm{i}}+\mathrm{C}_{\mathrm{i}}+\theta_{\mathrm{i}} \mathrm{n}_{\mathrm{i}}+\alpha_{i} \ell_{i}+\beta_{\mathrm{i}} \mathrm{~m}_{\mathrm{i}}}{\xi_{i}}}\right)^{-1}, \tag{19}
\end{equation*}
$$

provided that

$$
\begin{aligned}
& 0<\operatorname{Re}\left(\mathrm{s}+\mathrm{B}_{\mathrm{i}} \mathrm{E}_{\mathrm{i}}+\mathrm{C}_{\mathrm{i}}+\theta_{\mathrm{i}} n_{i}+\alpha_{\mathrm{i}} \ell_{\mathrm{i}}+\beta_{\mathrm{i}} \mathrm{~m}_{\mathrm{i}}\right)<\xi_{\mathrm{i}}, \text { when } \xi_{\mathrm{i}}>0 ; \\
& \xi_{\mathrm{i}}<\operatorname{Re}\left(\mathrm{s}+\mathrm{B}_{\mathrm{i}} \mathrm{E}_{\mathrm{i}}+\mathrm{C}_{\mathrm{i}}+\theta_{\mathrm{i}} n_{\mathrm{i}}+\alpha_{i} \ell_{\mathrm{i}}+\beta_{\mathrm{i}} m_{\mathrm{i}}\right)<0, \text { when } \xi_{\mathrm{i}}<0 ; \xi_{\mathrm{i}}, \mathrm{~B}_{\mathrm{i}} ; \theta_{\mathrm{i}} \neq 0 \\
& \mathrm{n}_{\mathrm{i}},\left(\mathrm{p}_{\mathrm{i}}+\gamma_{\mathrm{i}} n_{\mathrm{i}}\right),\left(\mathrm{q}_{\mathrm{i}}+\delta_{\mathrm{i}} n_{\mathrm{i}}\right) \in \mathrm{N}_{0}, \text { where } \mathrm{i}=1,2,3 .
\end{aligned}
$$

4.2. By taking $\mathrm{i}=1,2$ in (2), the main theorem reduces to a known result recently obtained by Chaurasia and Agnihotri in [4].
4.3. Since the polynomial set $\mathrm{R}_{\mathrm{n}}^{\mathrm{p}, \mathrm{q}}(\mathrm{x})$ incorporate in itself several classical as well as other polynomials, solutions of a large number of convolution integral equations for the above mentioned polynomials may be obtained by assigning different values to the parameters in $\mathrm{R}_{\mathrm{n}}^{\mathrm{p}, \mathrm{q}}(\mathrm{x})$.

By making suitable substitution, we get the known results obtained by Srivastava [9] and Chaurasia and Patni [3].

Acknowledgement

The authors are grateful to Professor H.M. Srivastava, University of Victoria, Canada for his kind help and valuable suggestions in the preparation of this paper.

References

[1] B.D. Agrawal and J.P. Chaubey, Bilateral generating relations for a function defined by generalized Rodrigues formula, Indian J. Pure Appl. Math., 12(1981), 377-379.
[2] S.K. Chatterjea, A generalization of the Bessel polynomials, Mathematics (Cluj), 29(6) (1964a), 19-29.
[3] V.B.L. Chaurasia and R. Patni, A class of convolution integral equations concerning a generalized polynomial set, Soochow J. Math., 27(2001), 3743.
[4] V.B.L. Chaurasia and M. Agnihotri, The product of generalized polynomials sets pertaining to a class of convolution integral equlations, Demonstratio Mathematica, XLII(3) (2009), 505-512.
[5] A. Erdelyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Tables of Integral Transforms (Vol. I), New York, McGraw-Hill, (1954).
[6] H.M. Srivastava and R. Panda, On the unified presentation of certain classical polynomials, Bull. Un. Mat. Ital., 12(4) (1975), 306-314.
[7] H.M. Srivastava, K.C. Gupta and S.P. Goyal, The H-Functions of One and Two Variables with Application, New Delhi, South Asian Publ., (1982).
[8] H.M. Srivastava and H.L. Manocha, A Treatise on Generating Functions, New York, Ellis Harwood Ltd., (1984).
[9] R. Srivastava, The inversion of an integral equation involving a general class of polynomials, J. Math. Anal. Appl., 186(1994), 11-20.

