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Abstract 

     In this paper, we study biharmonic curves in the RH ×2
. We show that all of 

them are helices. By using the curvature and torsion of the curves, we give some 

characterizations biharmonic curves in the .2 RH ×   

     Keywords: Biharmonic curve, curvature, helices, torsion.      
 

1      Introduction 
 
The theory of biharmonic functions is an old and rich subject. Biharmonic 
functions have been studied since 1862 by Maxwell and Airy to describe a 
mathematical model of elasticity. The theory of polyharmonic functions was 
developed later on, for example, by E. Almansi, T. Levi-Civita and M. Nicolescu. 
In the last decade there have been a growing interest in the theory of biharmonic 
functions which can be divided into two main research directions. On the one side, 
the differential geometric aspect has driven attention to the construction of 
examples and classification results. The other side is the analytic aspect from the 
point of view of PDE: biharmonic functions are solutions of a fourth order 
strongly elliptic semilinear PDE. 
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Let ),(),(: hNgMf →  be a smooth function between two Riemannian manifolds. 

The bienergy )(2 fE  of f  over compact domain M⊂Ω  is defined by 
 

 ( ) ( ) ( )( ) ,,=2 gdvffhfE ττ∫Ω  (1.1) 

 
where ( ) dff g∇trace=τ  is the tension field of f  and gdv  is the volume form of 

M . Using the first variational formula one sees that f  is a biharmonic function if 
and only if its bitension field vanishes identically, i.e. 

0,=))(,(trace))((:=)(2 dffdfRff N
g

f τττ −−∆  (1.2) 

where 
( )f

M
ff

g
f

g
f

∇
∇−∇∇−∇−∆ trace=)(trace= 2  (1.3) 

is the Laplacian on sections of the pull-back bundle TNf (1−  )and NR  is the 
curvature operator of ),( hN  defined by 
 

 .],[=),( ], ZZZYXR YXYX ∇−∇∇  

 
In this paper we first write down the conditions that any non-harmonic (non-
geodesic) biharmonic curve in the RH ×2  must satisfy. Then we prove that the 
non-geodesic biharmonic curves in the RH ×2  are helices. Finally, we deduce the 
explicit parametric equations of the non-geodesic biharmonic curves in the RH ×2 . 
 

2 Left Invariant Metric in RH ×2  
 
Let 2H  be the upper half-plane model 0}>:),{( 2 yyx R∈  of the hyperbolic plane 
endowed with the metric 

 
2

22 )(
=

y

dydx
g

+
H  

 
of constant Gauss curvature 1− . The space 2H , with the group structure derived 
by the composition of proper affine maps, is a Lie group and the metric Hg  is left 

invariant. Therefore the product RH ×2  is a Lie group with the left invariant 
product metric 

 .
)(

= 2
2

22

dz
y

dydx
g ++

                               (2.1) 

 
The left-invariant orthonormal orthonormal frame 
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Now let k

ijC  be the structure's constants of the Lie algebra g  of G  that is 

 
 [ ] .=, k

k
ijji eCee  

 
The corresponding Lie brackets are 
 

 [ ] [ ] [ ] 0.=,=,,=, 3231121 eeeeeee −  

 
The Coshul formula for the Levi--Civita connection is: 
 

 ,:==),(2 k
ij

j
ki

i
jk

k
ijkjie LCCCeeg +−∇  

where the non zero kijL  's are 

 2.=2,= 2
11

1
12 LL −                               (2.3) 

 
We adopt the following notation and sign convention for Riemannian curvature 
operator: 

 .=),( ], ZZZZYXR YXXYYX ∇−∇∇−∇∇  

 
The Riemannian curvature tensor is given by 
 

 ).,),((=),,,( WZYXRgWZYXR  
Moreover we put 

 ),,,,(=,),(= dcbaabcdcbaabc eeeeRReeeRR  

 
where the indices dcba ,,,  take the values 1,2,3 . Then, 
 
 1.=,= 12122121 ReR                                     (2.4) 
 

3      Biharmonic Curves in RH ×2
 

 
Let R⊂I  be an open interval and  RH ×→ 2: Iγ  be a curve, parametrized by arc 

length, on a Riemannian manifold. Putting 'T γ= , we can write the tension field 

of γ  as '
' γγτ

γ
∇=)(  and the biharmonic map equation (1.2) reduces to 

 
0.=),( TTTRT TT ∇+∇              (3.1) 
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A successful key to study the geometry of a curve is to use the Frenet frames 
along the curve which is recalled in the following. 
Let RH ×→ 2: Iγ  be a curve on RH ×2  parametrized by arc length. Let },,{ BNT  

be the Frenet frame fields tangent to RH ×2  along γ  defined as follows: T  is the 

unit vector field 'γ  tangent to γ , N  is the unit vector field in the direction of 

TT∇  (normal to γ ), and B  is chosen so that },,{ BNT  is a positively oriented 
orthonormal basis. Then, we have the following Frenet formulas 
 

 NTT κ=∇  

 BTNT τκ −−∇ =                                                                        (3.2) 

 ,= NBT τ∇  
where κ  is the curvature of γ  and τ  its torsion. With respect to the orthonormal 

basis },,{ 321 eee  we can write 

 
 ,= 332211 eTeTeTT ++  

 ,= 332211 eNeNeNN ++  

 .== 332211 eBeBeBNTB ++×  

 
Theorem 3.1 RH ×→ 2: Iγ  is a biharmonic curve if and only if 
 

 0,constant= ≠κ  

 ,= 2
3

22 Bτκ +                                                                             (3.3) 

 .= 33BN' −τ  

 
Proof. From (3.1) we obtain  

 TTTRT TT ),(=)(2 ∇+∇γτ  

 NNTNTRT ''' )),,,(()3(= 23 κκτκκκκ +−−+−  

 BBTNTR'' )),,,(2( κκττκ +−−+  
 0.=  

 
We see that is a biharmonic curve if and only if 
 

 0,='κκ  

 0,=),,,(23 NTNTR'' κκτκκ +−−  

 0,=),,,(2 BTNTR'' κκττκ +−−  
 
which is equivalent to 
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 0,constant= ≠κ  

 ),,,,(=22 NTNTRτκ +                                                           (3.4) 

 ).,,,(= BTNTR'τ  
 
A direct computation using (2.4) yields 
 

.=),,,(,=),,,( 33
2
3 BNBTNTRBNTNTR −                                (3.5) 

 
These, together with (3.4), complete the proof of the theorem. 
 
Corollary 3.2. Let RH ×→ 2: Iγ  be a curve with constant curvature and 

033 ≠BN . Then, γ  is not biharmonic. 

 
Proof. We use the covariant derivatives of the vector fields NT,  and ,B  these, 
together with equations (3.2) we get 
 

 ,= 33 NT ' κ  

            ,= 333 BTN ' τκ −−                                                                         (3.6) 

 .= 33 NB' τ  

 
Assume now that γ  is biharmonic. Then 33= BN' −τ  0≠  and (3.3) we obtain 

 
 .= 33

'' BBττ  

Since 33= BN' −τ , this is rewritten as 

 .=
3

3

N

B'

−τ                                        (3.7) 

 
From (3.6) we have 
 .= 33 NB' τ                                      (3.8) 

 
If we substitue 'B1  in equation (3.7) 
 0.=τ  

 
Therefore also τ  is constant and we have a contradiction. Complete the proof of 
the corollary. 
By using Theorem 3.1 and Corollary 3.2, we have the following corollary: 

 
Corollary 3.3. RH ×→ 2: Iγ  is biharmonic if and only if 
 

 0,constant= ≠κ  
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 ,constant=τ  

 0,=33BN  

 .= 2
3

22 Bτκ +  

 
Corollary 3.4. 

 
 (i) If 03 ≠N  then γ  is not biharmonic. 

 
(ii) If 0=3N , then 

 ,cos)(sinsin)(cossin=)( 302010 eesessT αβαβα ++                (3.9) 

where R∈0α . 

 
Proof. 

 
(i) Using the above Corollary 3.3 it is easy to see that γ  is not biharmonic. 
 
(ii) Since γ  is s parametrized by arc length, we can write 

 .cos)(sinsin)(cossin=)( 321 eesessT αβαβα ++                   (3.10) 

 
From (3.6) we obtain 

 .= 33 NT ' κ  

Since 0=3N  

 0.=3
'T  

Then 3T  is constant. We use (3.10), we have 

 constant.=cos= 03 αT  

 
Theorem 3.5. The parametric equations of all biharmonic curves of RH ×2 , 

 ,)(sinsin=)( 1

)(cos0sin

02 cdsescsx
dss

+∫
∫

βα
βα  

 ,=)(
)(cos0sin

2

dss

ecsy
βα ∫                                                            (3.11) 

 ,cos=)( 30 cssz +α  

 
where 321 ,, ccc  is arbitrary constants. 

 
Proof. We note that  

 ,=)(= 332211 eTeTeTsT
ds

d ++γ
 

and our left-invariant vector fields are 
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then 

 ).,)(,)((= 321 TTsyTsy
ds

dγ
 

By using equation (3.9), we have 

 ).cos),(sinsin)(),(cossin)((=)(= 000 αβαβαγ
ssyssysT

ds

d
 

In order to find the explicit equations for ))(),(),((=)( szsysxsγ , we must 

integrate the system 
ds

dγ
 )(= sT , that in our case is 

 ),(cossin)(= 0 ssy
ds

dx βα  

 ),(sinsin)(= 0 ssy
ds

dy βα  

 .cos= 0α
ds

dz
 

 
The integration is immediate and yields (3.11). 

 
Corollary 3.7. If ,=)( ssβ  then the parametric equations of all biharmonic 
curves are 

 ,1)cossin(=)( 10

cos0sin
csesx

s ++− αα
 

 ,=)(
cos0sin

2

s
ecsy

α−
                                                                 (3.12) 

 ,cos=)( 30 cssz +α  

 
where 321 ,, ccc  is arbitrary constants. 

 
The picture of biharmonic curve )(sγ  at :1=== 321 ccc  

 

4      Conclusion 
 
In this work, we first write down the conditions that any non-harmonic (non-
geodesic) biharmonic curve in the RH ×2  must satisfy. Then we prove that the 
non-geodesic biharmonic curves in the RH ×2  are helices. Finally, we deduce the 
explicit parametric equations of the non-geodesic biharmonic curves in the RH ×2 . 
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