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Abstract

In this paper, we study biharmonic curves in beR . We show that all of
them are helices. By using the curvature and torsibthe curves, we give some

. . . . . 2
characterizations biharmonic curves in the *R.
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1 Introduction

The theory of biharmonic functions is an old andhrisubject. Biharmonic
functions have been studied since 1862 by Maxwetl Airy to describe a
mathematical model of elasticity. The theory of ymalrmonic functions was
developed later on, for example, by E. Almansi,.dvi-Civita and M. Nicolescu.

In the last decade there have been a growing stteréhe theory of biharmonic
functions which can be divided into two main resbatirections. On the one side,
the differential geometric aspect has driven aitbento the construction of
examples and classification results. The other mdbe analytic aspect from the
point of view of PDE: biharmonic functions are daus of a fourth order
strongly elliptic semilinear PDE.
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Let f:(M,g) —» (N,h) be a smooth function between two Riemannian metsfo
The bienergyE,(f) of f over compact domaif [ M is defined by

E,()= [ h(r(f).7(f))dv,, (1.1)

wherer(f)= tracgLldf is the tension field off anddy, is the volume form of

M . Using the first variational formula one sees thais a biharmonic function if
and only if its bitension field vanishes identigalle.

r,(f):= A" (z(f)) - trace R" (df, 7( ))df =0, (1.2)
where
A" =~trace (0")* = ~trace, (Dfo —D;M ) (1.3)

is the Laplacian on sections of the pull-back bant*(TN )and R" is the
curvature operator ofN h, defined by

R(X,Y)Z=[0,,0,1Z -0y, 2.

In this paper we first write down the conditionstttany non-harmonic (non-
geodesic) biharmonic curve in th& xR must satisfy. Then we prove that the
non-geodesic biharmonic curves in tH&xR are helices. Finally, we deduce the
explicit parametric equations of the non-geodesiatmonic curves in thel®* xR .

2  Left Invariant Metric in H*xR

Let H® be the upper half-plane modélx, y)OR?:y > 6f the hyperbolic plane
endowed with the metric

_ (dX +dy’)
O = T

of constant Gauss curvaturd. The spacéd?, with the group structure derived
by the composition of proper affine maps, is adieup and the metrig, is left

invariant. Therefore the produét®xR is a Lie group with the left invariant
product metric

g:@+dzzl (21)

The left-invariant orthonormal orthonormal frame
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0 0 0
eg=y—, e=y—, ,=—. 2.2
yax yay 0z (2:2)

Now let Ci}‘ be the structure's constants of the Lie algebmat G that is

[q,ej]: Cie.
The corresponding Lie brackets are
le.e]=-e [ee]=[e.e]=0.
The Coshul formula for the Levi--Civita connectisn

29(0,€.6) = Ci-Ci +Cli=L

ij !

where the non zerb; 's are

L, =-2,12 =2. (2.3)
We adopt the following notation and sign convention Riemannian curvature
operator:

R(X,Y)z=0,0,Z-0,0,Z-0,,Z.

The Riemannian curvature tensor is given by
R(X,Y,Z,W)=g(R(X,Y)Z,W).
Moreover we put
Rabc = R(ea'en)ec’ Rabcd = R(ea’eo'ec’ed)!
where the indices, b,c,d take the values 1,2,3. Then,
I:2121 = eZ’ R.I.212 :1' (24)
3  Biharmonic Curves in H*xR

Let | OR be an open interval angr: | — H*xR be a curve, parametrized by arc
length, on a Riemannian manifold. Puttifige y , we can write the tension field
of y asr(y) = Dy.y' and the biharmonic map equation (1.2) reduces to

0,7 +R(T,0,T)T =0. (3.1)
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A successful key to study the geometry of a cusséoiuse the Frenet frames
along the curve which is recalled in the following.

Let y:1 - H?*xR be a curve o> xR parametrized by arc length. LEE, N, B}
be the Frenet frame fields tangentdxR along y defined as followsT is the
unit vector fieldy tangent toy, N is the unit vector field in the direction of

O;T (normal toy), and B is chosen so thdfl,N,B is a positively oriented
orthonormal basis. Then, we have the following Etdarmulas

O;T =&N
U;N=-«T -1B (3.2)
0.B=1N,
wherek is the curvature of andr its torsion. With respect to the orthonormal
basis{e,e,, e, } we can write

T=Tg+ 16+ T8,
N =N.& +N.& +Ngg;,
B=TxN = Be +Bsg, + Be,.

Theorem 3.1y:1 - H*xR is a biharmonic curve if and only if

K = constantz 0,
K®+1° =BZ, (3.3)
r =-N,B..

Proof. From (3.1) we obtain

,(y)=0,T+R(,0O,T)T

=(-3kk T+ (k -Kk*—-k1? +KR(T,N,T,N))N
+(-2k'T-KkT +KkR(T,N,T,B))B

=0.

We see that is a biharmonic curve if and only if

kK =0,
K —Kk*-kT? +KR(T,N,T,N) =0,
-2k'T-KkT +KkR(T,N,T,B) =0,

which is equivalent to



Biharmonic Curves in ... 63

K = constantz 0,
K2+71°%= R(T,N,T,N), (3.4)
r = R(T,N,T,B).

A direct computation using (2.4) yields
R(T,N,T,N)=BZ, R(T,N,T,B)=-N,B,. (3.5)
These, together with (3.4), complete the prooheftheorem.

Corollary 3.2. Let y:1 -~ H*xR be a curve with constant curvature and
N,B, #0. Then,y is not biharmonic.

Proof. We use the covariant derivatives of the vectod$id,N andB ,these,
together with equations (3.2) we get

T, = &N,
N, = —4T, - 1B, , (3.6)
B, = IN,.

Assume now thay is biharmonic. Themr =-N,B, #0 and (3.3) we obtain

T = B,B..
Sincer =-N,B,, this is rewritten as
r=-5 3.7)
N3
From (3.6) we have
B, = IN,. (3.8)

If we substitueB, in equation (3.7)
r =0.

Therefore alsa is constant and we have a contradiction. Completeproof of
the corollary.
By using Theorem 3.1 and Corollary 3.2, we havefallewing corollary:

Corollary 3.3. y:1 - H*xR is biharmonic if and only if

K = constantz 0,
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7 =constar,
N,B; =0,
K*+r1? =B

Corollary 3.4.

(i) If N, #0 theny is not biharmonic.

(i) If N; =0, then
T(s) =sina,cosp(9e, +sina,sinS(9e, +cosag;, (3.9
wherea, OR.

Proof.

(i) Using the above Corollary 3.3 it is easy to g y is not biharmonic.

(i) Since y is s parametrized by arc length, we can write
T(s) =sina cosp(9e +sinasinB(9e, +cosae,. (3.10)

From (3.6) we obtain
T, = KN,.
SinceN, =0
T, =0.
ThenT, is constant. We use (3.10), we have
T, = cosa, = constant.

Theorem 3.5.The parametric equations of all biharmonic curvé$idxR ,
. . sinao.[cosﬂ(s)ds
X(s)=c, smaoj'smﬂ(s)e

sinaojcosﬁ(s)ds
¥(s) = ce : (3.11)
Z(s) = scosa, +C;,

ds+c,

wherec,c,,c, is arbitrary constants

Proof. We note that

d
PETO=Te+Te Te,

and our left-invariant vector fields are
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)0 ey old
AT Yo ay’% 0z

then

d

d_}: =(Y9T, Y9IT,, Ty).
By using equation (3.9), we have

% =T (s) = (y(s)sina, cosf(s), y(s)sina,sin 5(s),cosa,).
In order to find th‘e explicit equations fagr(s) = (X(s), Y(s), 4S)) , we must
dy

integrate the systemd— =T(s), that in our case is
<

% = y(s)sina, cosp(s),

dy

o y(s)sina,sin 3(s),
dz
P = Cc0sq,.

The integration is immediate and yields (3.11).

Corollary 3.7. If fB(s)=s, then the parametric equations of all biharmonic
curves are

X(s) = e "% (sing, coss+1) +¢,,

y(S) — Cze—sinaocoss, (312)
Z(s) = scosa, +C;,

wherec,,c,,c, is arbitrary constants.
The picture of biharmonic curvg(s) at ¢, =c¢, = ¢, =1:

4 Conclusion

In this work, we first write down the conditionsathany non-harmonic (non-
geodesic) biharmonic curve in th€ xR must satisfy. Then we prove that the
non-geodesic biharmonic curves in tH&xR are helices. Finally, we deduce the
explicit parametric equations of the non-geodesiartmonic curves in thél* xR
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