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Abstract

Fixed point theorems for a class of mappings using rational symmetric ex-
pression involving four points of the space under consideration have been stud-
ied.
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1 Introduction

The chief aim of this paper is to introduce a class of mappings by using rational
symmetric expression and which involve four points of the space under con-
sideration. A fixed point theorem with this mapping has been proved. Finally
some related results with this type of mappings have been proved.

Let (M,d) be a complete metric space. Let ψi : P̃ → [0,∞ ) (P is the range
of d and P̃ is the closure of P) be an upper semicontinuous function from the
right on P and satisfies the condition

ψi(t) <
t

3
for t > 0 and ψi(0) = 0 i = 1, 2, 3. (1.1)
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Also, let f be a mapping of M into itself such that

d(fu1, fu2) ≤
ψ1(d(u2, fu4))[1 + ψ1(d(u1, fu3))]

1 + ψ1(d(u1, u2))

+
ψ2(d(u1, fu4))[1 + ψ2(d(u2, fu3))]

1 + ψ2(d(u1, u2))

+
ψ3(d(u1, fu3))[1 + ψ3(d(u2, fu4))]

1 + ψ3(d(u1, u2))
(1.2)

for u1, u2, u3, u4 ∈ M .

2 The Main Results

Theorem 2.1. If f be mapping of M into itself satisfying (1.2), then f has
a unique fixed point.

Proof. Let x, y ∈M and we define u1 = fy, u2 = fx, u3 = x, u4 = y
Then (1.2) takes the form

d(f(fy), f(fx)) ≤ ψ1(d(fx, fy))[1 + ψ1(d(fy, fx))]

1 + ψ1(d(fy, fx))

+
ψ2(d(fy, fy))[1 + ψ2(d(fx, fx))]

1 + ψ2(d(fy, fx))

+
ψ3(d(fy, fx))[1 + ψ3(d(fx, fy))]

1 + ψ3(d(fy, fx))

≤ ψ1(d(fx, fy)) + ψ3(d(fx, fy)) (2.1)

Let x0 ∈M be arbitrary and construct a sequence {xn} defined by
fxn−1 = xn, fxn = xn+1, fxn+1, n = 1, 2, · · ·
Let us put x = xn−1, y = xn in (2.1), then we have,

d(f(fxn), f(fxn−1)) ≤ ψ1(d(fxn−1, fxn)) + ψ3(d(fxn−1, fxn))

i.e. d(xn+1, xn+2) ≤ ψ1(d(xn, xn+1)) + ψ3(d(xn, xn+1)) (2.2)

Now set Cn = d(xn−1, xn). Then

Cn+2 = d(xn+1, xn+2)

≤ ψ1(d(xn, xn+1)) + ψ3(d(xn, xn+1))

≤ ψ1(Cn+1) + ψ3(Cn+1) (2.3)

From (2.3) it follows that Cn decreases with n and hence Cn → C say as
n → ∞ . Then since ψi is upper semicontinous we obtain in the limit as
n→∞

C ≤ ψ1(C) + ψ3(C) <
2

3
C
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which is impossible unless C = 0.

Next, we shall show that the sequence {xn} is Cauchy. Suppose that it is
not so. Then there exist an ε > 0 and sequence of integers {m(k)} ,{n(k)}
with m(k) > n(k) ≥ k such that

dk = d(xm(k), xn(k)) ≥ ε, k = 1, 2, 3, · · · (2.4)

If m(k) is the smallest integer exceding n(k) for which (2.4) holds, then from
the well ordering principle we have,

d(xm(k)−1, xn(k)) ≤ ε (2.5)

Then dk = d(xm(k), xm(k)−1) + d(xm(k)−1, xn(k)) ≤ Cm(k) + ε < Ck + ε
which implies that dk → ε as n → ∞.
Also we have,

dk = d(xm, xn)

≤ d(xm, xm+1) + d(xm+1, xn+1) + d(xn+1, xn)

≤ Cm+1 + Cn+1 + d(fxn, fxm)

≤ Cm+1 + Cn+1 +
ψ1(d(xm, fxm−1))[1 + ψ1(d(xn, fxn−1))]

1 + ψ1(d(xn, xm))

+
ψ2(d(xn, fxm−1))[1 + ψ2(d(xm, fxn−1))]

1 + ψ2(d(xn, xm))

+
ψ3(d(xn, fxn−1))[1 + ψ3(d(xm, fxm−1))]

1 + ψ3(d(xn, xm))

(By putting u1 = xn, u2 = xm, u3 = xn−1, u4 = xm−1)

dk = d(xm, xn) ≤ Cm+1 + Cn+1 + ψ2(d(xnxm)) + ψ3(d(xn, xm))

≤ Cm+1 + Cn+1 + ψ2(dk) + ψ3(dk)

letting k →∞ we have

ε ≤ ψ2(ε) + ψ3(ε) <
2

3
ε

which is a contradiction if ε > 0.

This leads us to conclude that {xn} is a Cauchy sequence and since M is
complete, there exists a point z ∈ M such that xn → z as n → ∞ . We
shall show that z is a fixed point of f.
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Now putting u1 = xn−1, u2 = z, u3 = xn+1, u4 = xn in (1.2) we have,

d(fxn−1, fz)

≤ ψ1(d(z, fxn))[1 + ψ1(d(xn−1, fxn+1))]

1 + ψ1(d(xn−1, z))

+
ψ2(d(xn−1, fxn))[1 + ψ2(d(z, fxn+1))]

1 + ψ2(d(xn−1, z))

+
ψ3(d(xn−1, fxn+1))[1 + ψ3(d(z, fxn))]

1 + ψ3(d(xn−1, z))

≤ ψ1(d(z, xn+1))[1 + ψ1(d(xn−1, xn+2))]

1 + ψ1(d(xn−1, z))

+
ψ2(d(xn−1, xn+1))[1 + ψ2(d(z, xn+2))]

1 + ψ2(d(xn−1, z))

+
ψ3(d(xn−1, xn+2))[1 + ψ3(d(z, xn+1))]

1 + ψ3(d(xn−1, z))
(2.6)

Letting n → ∞ we get d(z, fz) ≤ 0 which implies z = fz . Thus z is a
fixed point of f.
If possible, let there be another fixed point w(6= z) , then putting u1 = u4 =
z, u2 = u3 = w in (1.2) we get,

d(z, w) = d(fz, fw)

≤ ψ1(d(w, fz))[1 + ψ1(d(z, fw))]

1 + ψ1(d(z, w))
+

ψ2(d(z, fz))[1 + ψ2(d(w, fw))]

1 + ψ2(d(z, w))

+
ψ3(d(z, fw))[1 + ψ3(d(w, fz))]

1 + ψ3(d(z, w))

≤ ψ1(d(z, w)) + ψ2(d(z, w)) <
2

3
d(z, w)

which is impossible. Hence z = w.

Theorem 2.2. Let (M,d) be a complete metric space and fk
(k = 1, 2, · · · , n) be a family of mappings of M into itself. If fk (k =1,2,· · ·
,n) satisfies
(i) fkfm = fmfk (m, k = 1, 2, · · ·n)
(ii) there is a system of positive integers m1,m2, ·mn such that
d(fm1

1 fm2
2 · · · fmn

n u1, f
m1
1 fm2

2 · · · fmn
n u2)

≤ ψ1(d(u2, f
m1
1 fm2

2 · · · fmn
n u4))[1 + ψ1(d(u1, f

m1
1 fm2

2 · · · fmn
n u3))]

1 + ψ1(d(u1, u2))

+
ψ2(d(u1, f

m1
1 fm2

2 · · · fmn
n u4))[1 + ψ2(d(u2, f

m1
1 fm2

2 · · · fmn
n u3))]

1 + ψ2(d(u1, u2))

+
ψ3(d(u1, f

m1
1 fm2

2 · · · fmn
n u3))[1 + ψ3(d(u2, f

m1
1 fm2

2 · · · fmn
n u4))]

1 + ψ3(d(u1, u2))
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for u1, u2, u3, u4 ∈ M and ψi(t) satisfies (1.1) , then fk (k = 1, 2, · · ·n)
have a unique common fixed point.

Proof. Let f = fm1
1 fm2

2 · · · fmn
n . Then (ii) takes the form (iii)

d(fu1, fu2) ≤
ψ1(d(u2, fu4))[1 + ψ1(d(u1, fu3))]

1 + ψ1(d(u1, u2))

+
ψ2(d(u1, fu4))[1 + ψ2(d(u2, fu3))]

1 + ψ2(d(u1, u2))

+
ψ3(d(u1, fu3))[1 + ψ3(d(u2, fu4))]

1 + ψ3(d(u1, u2))

Then by Theorem [2.1], f has a unique fixed point z in M. Therefore fz = z,
then we have,

fk(fz) = fkz, k = 1, 2, · · ·n
By commutativity of fk we have,

f(fkz) = fkz, k = 1, 2, · · ·n
Since f has a unique common fixed point z, we obtain fkz, k = 1, 2, · · ·n.
Hence z is a common fixed point of the family fk. Let z,w be common fixed
point of fk, then by (ii) we have by putting u1 = u4 = z, u2 = u3 = w

d(z, w) = d(fz, fw)

≤ ψ1(d(w, fz))[1 + ψ1(d(z, fw))]

1 + ψ1(d(z, w))
+

ψ2(d(z, fz))[1 + ψ2(d(w, fw))]

1 + ψ2(d(z, w))

+
ψ3(d(z, fw))[1 + ψ3(d(w, fz))]

1 + ψ3(d(z, w))

≤ ψ1(d(z, w)) + ψ2(d(z, w)) <
2

3
d(z, w)

which implies z = w. Hence the proof.

Theorem 2.3. Let M be a metric space with d and p and fk (k = 1, 2, · · · , n)
be a family of mappings of M into itself.
Suppose that
(i) d(x, y) ≤ p(x, y) to all x,y ∈ M
(ii) M is f-orbitally complete w.r.t. d.
(iii) fkfm = fmfk (m, k = 1, 2, · · ·n)
(iv) there is a system of positive integers m1,m2, ·mn such that
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p(fm1
1 fm2

2 · · · fmn
n u1, f

m1
1 fm2

2 · · · fmn
n u2)

≤ ψ1(p(u2, f
m1
1 fm2

2 · · · fmn
n u4))[1 + ψ1(p(u1, f

m1
1 fm2

2 · · · fmn
n u3))]

1 + ψ1(p(u1, u2))

+
ψ2(p(u1, f

m1
1 fm2

2 · · · fmn
n u4))[1 + ψ2(p(u2, f

m1
1 fm2

2 · · · fmn
n u3))]

1 + ψ2(p(u1, u2))

+
ψ3(p(u1, f

m1
1 fm2

2 · · · fmn
n u3))[1 + ψ3(p(u2, f

m1
1 fm2

2 · · · fmn
n u4))]

1 + ψ3(p(u1, u2))

for u1, u2, u3, u4 ∈ M and ψi(t) <
t
3

for t > 0 and ψi(0) = 0
, i = 1, 2, 3 Then fk (k = 1, 2, · · · , n) have a unique common fixed point.

Proof. As in Theorem [2.1] put f = fm1
1 fm2

2 · · · fmn
n then(iv) takes the

form

p(fu1, fu2) ≤
ψ1(p(u2, fu4))[1 + ψ1(p(u1, fu3))]

1 + ψ1(p(u1, u2))

+
ψ2(p(u1, fu4))[1 + ψ2(p(u2, fu3))]

1 + ψ2(p(u1, u2))

+
ψ3(p(u1, fu3))[1 + ψ3(p(u2, fu4))]

1 + ψ3(p(u1, u2))

for u1, u2, u3, u4 ∈ M
Following the lines of arguments of the proof of Theorem [2.1], it can be
shown that the sequence of iterates {xn} is Cauchy with respect to p. Since
d(x, y) ≤ p(x, y) for all x,y ∈ M , so {xn} is Cauchy with respect to d also.
Again M being f-orbitally complete with respect to d, so we have {xn} has a
limit u in M. From the proof of Theorem [2.1] it can be easily shown that u is
the unique common fixed point of the family fk .
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