Gen. Math. Notes, Vol. 3, No. 2, April 2011, pp.66-72
ISSN 2219-7184; Copyright © ICSRS Publication, 2011
www.i-csrs.org
Available free online at http://www.geman.in

Some Theorems on Fixed Point

Sampada Navshinde ${ }^{1}$ and J. Achari ${ }^{2}$
${ }^{1}$ Asst. Prof. SGGSI\&T, Nanded-431605, (Maharashtra) India
E-mail: snavshinde@gmail.com
${ }^{2}$ Retired H.O.D.Mathematics, N.E.S.'Science College, Nanded-431605,(Maharashtra) India

(Received: 24-12-10/ Accepted: 23-3-11)

Abstract

Fixed point theorems for a class of mappings using rational symmetric expression involving four points of the space under consideration have been studied.

Keywords: Clouser, Common fixed point, commuting mappings.

1 Introduction

The chief aim of this paper is to introduce a class of mappings by using rational symmetric expression and which involve four points of the space under consideration. A fixed point theorem with this mapping has been proved. Finally some related results with this type of mappings have been proved.

Let (M,d) be a complete metric space. Let $\psi_{i}: \tilde{P} \rightarrow[0, \infty)$ (P is the range of d and \tilde{P} is the closure of P) be an upper semicontinuous function from the right on P and satisfies the condition

$$
\begin{equation*}
\psi_{i}(t)<\frac{t}{3} \quad \text { for } \quad t>0 \quad \text { and } \quad \psi_{i}(0)=0 \quad i=1,2,3 \tag{1.1}
\end{equation*}
$$

Also, let f be a mapping of M into itself such that

$$
\begin{align*}
d\left(f u_{1}, f u_{2}\right) \leq & \frac{\psi_{1}\left(d\left(u_{2}, f u_{4}\right)\right)\left[1+\psi_{1}\left(d\left(u_{1}, f u_{3}\right)\right)\right]}{1+\psi_{1}\left(d\left(u_{1}, u_{2}\right)\right)} \\
+ & \frac{\psi_{2}\left(d\left(u_{1}, f u_{4}\right)\right)\left[1+\psi_{2}\left(d\left(u_{2}, f u_{3}\right)\right)\right]}{1+\psi_{2}\left(d\left(u_{1}, u_{2}\right)\right)} \\
& \quad+\frac{\psi_{3}\left(d\left(u_{1}, f u_{3}\right)\right)\left[1+\psi_{3}\left(d\left(u_{2}, f u_{4}\right)\right)\right]}{1+\psi_{3}\left(d\left(u_{1}, u_{2}\right)\right)} \tag{1.2}
\end{align*}
$$

for $u_{1}, u_{2}, u_{3}, u_{4} \in M$.

2 The Main Results

Theorem 2.1. If f be mapping of M into itself satisfying (1.2), then f has a unique fixed point.

Proof. Let $x, y \in M$ and we define $u_{1}=f y, u_{2}=f x, u_{3}=x, u_{4}=y$ Then (1.2) takes the form

$$
\begin{align*}
d(f(f y), f(f x)) \leq & \frac{\psi_{1}(d(f x, f y))\left[1+\psi_{1}(d(f y, f x))\right]}{1+\psi_{1}(d(f y, f x))} \\
& +\frac{\psi_{2}(d(f y, f y))\left[1+\psi_{2}(d(f x, f x))\right]}{1+\psi_{2}(d(f y, f x))} \\
& +\frac{\psi_{3}(d(f y, f x))\left[1+\psi_{3}(d(f x, f y))\right]}{1+\psi_{3}(d(f y, f x))} \\
\leq & \psi_{1}(d(f x, f y))+\psi_{3}(d(f x, f y)) \tag{2.1}
\end{align*}
$$

Let $x_{0} \in M$ be arbitrary and construct a sequence $\left\{x_{n}\right\}$ defined by $f x_{n-1}=x_{n}, \quad f x_{n}=x_{n+1}, \quad f x_{n+1}, \quad n=1,2, \cdots$
Let us put $x=x_{n-1}, \quad y=x_{n}$ in (2.1), then we have,

$$
\begin{align*}
d\left(f\left(f x_{n}\right), f\left(f x_{n-1}\right)\right) & \leq \psi_{1}\left(d\left(f x_{n-1}, f x_{n}\right)\right)+\psi_{3}\left(d\left(f x_{n-1}, f x_{n}\right)\right) \\
\text { i.e. } d\left(x_{n+1}, x_{n+2}\right) & \leq \psi_{1}\left(d\left(x_{n}, x_{n+1}\right)\right)+\psi_{3}\left(d\left(x_{n}, x_{n+1}\right)\right) \tag{2.2}
\end{align*}
$$

Now set $C_{n}=d\left(x_{n-1}, x_{n}\right)$. Then

$$
\begin{align*}
C_{n+2} & =d\left(x_{n+1}, x_{n+2}\right) \\
& \leq \psi_{1}\left(d\left(x_{n}, x_{n+1}\right)\right)+\psi_{3}\left(d\left(x_{n}, x_{n+1}\right)\right) \\
& \leq \psi_{1}\left(C_{n+1}\right)+\psi_{3}\left(C_{n+1}\right) \tag{2.3}
\end{align*}
$$

From (2.3) it follows that C_{n} decreases with n and hence $C_{n} \rightarrow C$ say as $n \rightarrow \infty$. Then since ψ_{i} is upper semicontinous we obtain in the limit as $n \rightarrow \infty$

$$
C \leq \psi_{1}(C)+\psi_{3}(C)<\frac{2}{3} C
$$

which is impossible unless $C=0$.
Next, we shall show that the sequence $\left\{x_{n}\right\}$ is Cauchy. Suppose that it is not so. Then there exist an $\epsilon>0$ and sequence of integers $\{m(k)\},\{n(k)\}$ with $m(k)>n(k) \geq k$ such that

$$
\begin{equation*}
d_{k}=d\left(x_{m(k)}, x_{n(k)}\right) \geq \epsilon, k=1,2,3, \cdots \tag{2.4}
\end{equation*}
$$

If $\mathrm{m}(\mathrm{k})$ is the smallest integer exceding $\mathrm{n}(\mathrm{k})$ for which (2.4) holds, then from the well ordering principle we have,

$$
\begin{equation*}
d\left(x_{m(k)-1}, x_{n(k)}\right) \leq \epsilon \tag{2.5}
\end{equation*}
$$

Then $d_{k}=d\left(x_{m(k)}, x_{m(k)-1}\right)+d\left(x_{m(k)-1}, x_{n(k)}\right) \leq C_{m(k)}+\epsilon<C_{k}+\epsilon$ which implies that $d_{k} \rightarrow$ दas $n \rightarrow \infty$.
Also we have,

$$
\begin{aligned}
d_{k}= & d\left(x_{m}, x_{n}\right) \\
\leq & d\left(x_{m}, x_{m+1}\right)+d\left(x_{m+1}, x_{n+1}\right)+d\left(x_{n+1}, x_{n}\right) \\
\leq & C_{m+1}+C_{n+1}+d\left(f x_{n}, f x_{m}\right) \\
\leq & C_{m+1}+C_{n+1}+\frac{\psi_{1}\left(d\left(x_{m}, f x_{m-1}\right)\right)\left[1+\psi_{1}\left(d\left(x_{n}, f x_{n-1}\right)\right)\right]}{1+\psi_{1}\left(d\left(x_{n}, x_{m}\right)\right)} \\
& +\frac{\psi_{2}\left(d\left(x_{n}, f x_{m-1}\right)\right)\left[1+\psi_{2}\left(d\left(x_{m}, f x_{n-1}\right)\right)\right]}{1+\psi_{2}\left(d\left(x_{n}, x_{m}\right)\right)} \\
& +\frac{\psi_{3}\left(d\left(x_{n}, f x_{n-1}\right)\right)\left[1+\psi_{3}\left(d\left(x_{m}, f x_{m-1}\right)\right)\right]}{1+\psi_{3}\left(d\left(x_{n}, x_{m}\right)\right)}
\end{aligned}
$$

(By putting $u_{1}=x_{n}, u_{2}=x_{m}, u_{3}=x_{n-1}, u_{4}=x_{m-1}$)

$$
\begin{aligned}
d_{k}=d\left(x_{m}, x_{n}\right) & \leq C_{m+1}+C_{n+1}+\psi_{2}\left(d\left(x_{n} x_{m}\right)\right)+\psi_{3}\left(d\left(x_{n}, x_{m}\right)\right) \\
& \leq C_{m+1}+C_{n+1}+\psi_{2}\left(d_{k}\right)+\psi_{3}\left(d_{k}\right)
\end{aligned}
$$

letting $\mathrm{k} \rightarrow \infty$ we have

$$
\epsilon \leq \psi_{2}(\epsilon)+\psi_{3}(\epsilon)<\frac{2}{3} \epsilon
$$

which is a contradiction if $\epsilon>0$.
This leads us to conclude that $\left\{x_{n}\right\}$ is a Cauchy sequence and since M is complete, there exists a point $z \in M$ such that $x_{n} \rightarrow z$ as $n \rightarrow \infty$. We shall show that z is a fixed point of f .

Now putting $u_{1}=x_{n-1}, u_{2}=z, u_{3}=x_{n+1}, \quad u_{4}=x_{n}$ in (1.2) we have,

$$
\begin{align*}
& d\left(f x_{n-1}, f z\right) \\
& \leq \frac{\psi_{1}\left(d\left(z, f x_{n}\right)\right)\left[1+\psi_{1}\left(d\left(x_{n-1}, f x_{n+1}\right)\right)\right]}{1+\psi_{1}\left(d\left(x_{n-1}, z\right)\right)} \\
&+\frac{\psi_{2}\left(d\left(x_{n-1}, f x_{n}\right)\right)\left[1+\psi_{2}\left(d\left(z, f x_{n+1}\right)\right)\right]}{1+\psi_{2}\left(d\left(x_{n-1}, z\right)\right)} \\
&+\frac{\psi_{3}\left(d\left(x_{n-1}, f x_{n+1}\right)\right)\left[1+\psi_{3}\left(d\left(z, f x_{n}\right)\right)\right]}{1+\psi_{3}\left(d\left(x_{n-1}, z\right)\right)} \\
& \leq \frac{\psi_{1}\left(d\left(z, x_{n+1}\right)\right)\left[1+\psi_{1}\left(d\left(x_{n-1}, x_{n+2}\right)\right)\right]}{1+\psi_{1}\left(d\left(x_{n-1}, z\right)\right)} \\
&+\frac{\psi_{2}\left(d\left(x_{n-1}, x_{n+1}\right)\right)\left[1+\psi_{2}\left(d\left(z, x_{n+2}\right)\right)\right]}{1+\psi_{2}\left(d\left(x_{n-1}, z\right)\right)} \\
&+\frac{\psi_{3}\left(d\left(x_{n-1}, x_{n+2}\right)\right)\left[1+\psi_{3}\left(d\left(z, x_{n+1}\right)\right)\right]}{1+\psi_{3}\left(d\left(x_{n-1}, z\right)\right)} \tag{2.6}
\end{align*}
$$

Letting $n \rightarrow \infty$ we get $d(z, f z) \leq 0$ which implies $z=f z$. Thus z is a fixed point of f .
If possible, let there be another fixed point $w(\neq z)$, then putting $u_{1}=u_{4}=$ $z, \quad u_{2}=u_{3}=w$ in (1.2) we get,

$$
\begin{aligned}
d(z, w)= & d(f z, f w) \\
\leq & \frac{\psi_{1}(d(w, f z))\left[1+\psi_{1}(d(z, f w))\right]}{1+\psi_{1}(d(z, w))}+\frac{\psi_{2}(d(z, f z))\left[1+\psi_{2}(d(w, f w))\right]}{1+\psi_{2}(d(z, w))} \\
& +\frac{\psi_{3}(d(z, f w))\left[1+\psi_{3}(d(w, f z))\right]}{1+\psi_{3}(d(z, w))} \\
\leq & \psi_{1}(d(z, w))+\psi_{2}(d(z, w))<\frac{2}{3} d(z, w)
\end{aligned}
$$

which is impossible. Hence $z=w$.
Theorem 2.2. Let (M, d) be a complete metric space and f_{k} $(k=1,2, \cdots, n)$ be a family of mappings of M into itself. If $f_{k}(k=1,2, \cdots$,n) satisfies
(i) $f_{k} f_{m}=f_{m} f_{k} \quad(m, k=1,2, \cdots n)$
(ii) there is a system of positive integers $m_{1}, m_{2}, \cdot m_{n}$ such that

$$
\begin{aligned}
& d\left(f_{1}^{m_{1}} f_{2}^{m_{2}} \cdots f_{n}^{m_{n}} u_{1}, f_{1}^{m_{1}} f_{2}^{m_{2}} \cdots f_{n}^{m_{n}} u_{2}\right) \\
& \leq \frac{\psi_{1}\left(d\left(u_{2}, f_{1}^{m_{1}} f_{2}^{m_{2}} \cdots f_{n}^{m_{n}} u_{4}\right)\right)\left[1+\psi_{1}\left(d\left(u_{1}, f_{1}^{m_{1}} f_{2}^{m_{2}} \cdots f_{n}^{m_{n}} u_{3}\right)\right)\right]}{1+\psi_{1}\left(d\left(u_{1}, u_{2}\right)\right)} \\
&+\frac{\psi_{2}\left(d\left(u_{1}, f_{1}^{m_{1}} f_{2}^{m_{2}} \cdots f_{n}^{m_{n}} u_{4}\right)\right)\left[1+\psi_{2}\left(d\left(u_{2}, f_{1}^{m_{1}} f_{2}^{m_{2}} \cdots f_{n}^{m_{n}} u_{3}\right)\right)\right]}{1+\psi_{2}\left(d\left(u_{1}, u_{2}\right)\right)} \\
&+\frac{\psi_{3}\left(d\left(u_{1}, f_{1}^{m_{1}} f_{2}^{m_{2}} \cdots f_{n}^{m_{n}} u_{3}\right)\right)\left[1+\psi_{3}\left(d\left(u_{2}, f_{1}^{m_{1}} f_{2}^{m_{2}} \cdots f_{n}^{m_{n}} u_{4}\right)\right)\right]}{1+\psi_{3}\left(d\left(u_{1}, u_{2}\right)\right)}
\end{aligned}
$$

for $u_{1}, u_{2}, u_{3}, u_{4} \in M$ and $\psi_{i}(t)$ satisfies (1.1), then $f_{k}(k=1,2, \cdots n)$ have a unique common fixed point.

Proof. Let $f=f_{1}^{m_{1}} f_{2}^{m_{2}} \cdots f_{n}^{m_{n}}$. Then (ii) takes the form (iii)

$$
\begin{aligned}
d\left(f u_{1}, f u_{2}\right) \leq & \frac{\psi_{1}\left(d\left(u_{2}, f u_{4}\right)\right)\left[1+\psi_{1}\left(d\left(u_{1}, f u_{3}\right)\right)\right]}{1+\psi_{1}\left(d\left(u_{1}, u_{2}\right)\right)} \\
& +\frac{\psi_{2}\left(d\left(u_{1}, f u_{4}\right)\right)\left[1+\psi_{2}\left(d\left(u_{2}, f u_{3}\right)\right)\right]}{1+\psi_{2}\left(d\left(u_{1}, u_{2}\right)\right)} \\
& +\frac{\psi_{3}\left(d\left(u_{1}, f u_{3}\right)\right)\left[1+\psi_{3}\left(d\left(u_{2}, f u_{4}\right)\right)\right]}{1+\psi_{3}\left(d\left(u_{1}, u_{2}\right)\right)}
\end{aligned}
$$

Then by Theorem [2.1], f has a unique fixed point z in M . Therefore $f z=z$, then we have,

$$
f_{k}(f z)=f_{k} z, \quad k=1,2, \cdots n
$$

By commutativity of f_{k} we have,

$$
f\left(f_{k} z\right)=f_{k} z, \quad k=1,2, \cdots n
$$

Since f has a unique common fixed point z, we obtain $f_{k} z, \quad k=1,2, \cdots n$. Hence z is a common fixed point of the family f_{k}. Let z, w be common fixed point of f_{k}, then by (ii) we have by putting $u_{1}=u_{4}=z, u_{2}=u_{3}=w$

$$
\begin{aligned}
d(z, w)= & d(f z, f w) \\
\leq & \frac{\psi_{1}(d(w, f z))\left[1+\psi_{1}(d(z, f w))\right]}{1+\psi_{1}(d(z, w))}+\frac{\psi_{2}(d(z, f z))\left[1+\psi_{2}(d(w, f w))\right]}{1+\psi_{2}(d(z, w))} \\
& +\frac{\psi_{3}(d(z, f w))\left[1+\psi_{3}(d(w, f z))\right]}{1+\psi_{3}(d(z, w))} \\
\leq & \psi_{1}(d(z, w))+\psi_{2}(d(z, w))<\frac{2}{3} d(z, w)
\end{aligned}
$$

which implies $z=w$. Hence the proof.

Theorem 2.3. Let M be a metric space with d and p and $f_{k} \quad(k=1,2, \cdots, n)$ be a family of mappings of M into itself.
Suppose that
(i) $d(x, y) \leq p(x, y)$ to all $x, y \in M$
(ii) M is f-orbitally complete w.r.t. d.
(iii) $f_{k} f_{m}=f_{m} f_{k} \quad(m, k=1,2, \cdots n)$
(iv) there is a system of positive integers $m_{1}, m_{2}, \cdot m_{n}$ such that

$$
\begin{aligned}
& p\left(f_{1}^{m_{1}} f_{2}^{m_{2}} \cdots f_{n}^{m_{n}} u_{1}, f_{1}^{m_{1}} f_{2}^{m_{2}} \cdots f_{n}^{m_{n}} u_{2}\right) \\
& \leq \frac{\psi_{1}\left(p\left(u_{2}, f_{1}^{m_{1}} f_{2}^{m_{2}} \cdots f_{n}^{m_{n}} u_{4}\right)\right)\left[1+\psi_{1}\left(p\left(u_{1}, f_{1}^{m_{1}} f_{2}^{m_{2}} \cdots f_{n}^{m_{n}} u_{3}\right)\right)\right]}{1+\psi_{1}\left(p\left(u_{1}, u_{2}\right)\right)} \\
&+\frac{\psi_{2}\left(p\left(u_{1}, f_{1}^{m_{1}} f_{2}^{m_{2}} \cdots f_{n}^{m_{n}} u_{4}\right)\right)\left[1+\psi_{2}\left(p\left(u_{2}, f_{1}^{m_{1}} f_{2}^{m_{2}} \cdots f_{n}^{m_{n}} u_{3}\right)\right)\right]}{1+\psi_{2}\left(p\left(u_{1}, u_{2}\right)\right)} \\
&+\frac{\psi_{3}\left(p\left(u_{1}, f_{1}^{m_{1}} f_{2}^{m_{2}} \cdots f_{n}^{m_{n}} u_{3}\right)\right)\left[1+\psi_{3}\left(p\left(u_{2}, f_{1}^{m_{1}} f_{2}^{m_{2}} \cdots f_{n}^{m_{n}} u_{4}\right)\right)\right]}{1+\psi_{3}\left(p\left(u_{1}, u_{2}\right)\right)}
\end{aligned}
$$

for $u_{1}, u_{2}, u_{3}, u_{4} \in M$ and $\psi_{i}(t)<\frac{t}{3}$ for $t>0$ and $\psi_{i}(0)=0$, $i=1,2,3$ Then $f_{k} \quad(k=1,2, \cdots, n)$ have a unique common fixed point.

Proof. As in Theorem [2.1] put $f=f_{1}^{m_{1}} f_{2}^{m_{2}} \cdots f_{n}^{m_{n}}$ then(iv) takes the form

$$
\begin{aligned}
p\left(f u_{1}, f u_{2}\right) \leq & \frac{\psi_{1}\left(p\left(u_{2}, f u_{4}\right)\right)\left[1+\psi_{1}\left(p\left(u_{1}, f u_{3}\right)\right)\right]}{1+\psi_{1}\left(p\left(u_{1}, u_{2}\right)\right)} \\
& +\frac{\psi_{2}\left(p\left(u_{1}, f u_{4}\right)\right)\left[1+\psi_{2}\left(p\left(u_{2}, f u_{3}\right)\right)\right]}{1+\psi_{2}\left(p\left(u_{1}, u_{2}\right)\right)} \\
& +\frac{\psi_{3}\left(p\left(u_{1}, f u_{3}\right)\right)\left[1+\psi_{3}\left(p\left(u_{2}, f u_{4}\right)\right)\right]}{1+\psi_{3}\left(p\left(u_{1}, u_{2}\right)\right)}
\end{aligned}
$$

for $u_{1}, u_{2}, u_{3}, u_{4} \in M$
Following the lines of arguments of the proof of Theorem [2.1], it can be shown that the sequence of iterates $\left\{x_{n}\right\}$ is Cauchy with respect to p. Since $d(x, y) \leq p(x, y)$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}$, so $\left\{x_{n}\right\}$ is Cauchy with respect to d also. Again M being f-orbitally complete with respect to d, so we have $\left\{x_{n}\right\}$ has a limit u in M. From the proof of Theorem [2.1] it can be easily shown that u is the unique common fixed point of the family f_{k}.

Acknowledgements

The authors thank the referee for his/her suggestions and comments.

References

[1] J. Achari, Resultate der Mathematik, (1) (1979), 1-6.
[2] J. Achari, Comp. Rend. L'Acad. Bulgar Sci, (32) 1979, 703-706.
[3] Lj.B. Ciric, Proc. Amer. Math. Soc.,(45) (1974), 267-273.
[4] M. Edelstein, Proc. Amer. Math. Soc, (12) (1961), 7-10.
[5] R. Kannan, Amer. Math. Monthly, (76) (1969), 405-408.
[6] F. Pittnauer, Archive der Math, (26) (1975), 421-426.
[7] F. Pittnauer, Periodica Math. Hungarica, (12) (1979), 1-6.
[8] S. Reich, Canad. Math. Bull., (14) (1971), 121-124.
[9] B.E. Rhoades, A fixed point theorem in metric space, .
[10] C.S. Wong, Pacific J. Math., (48) (1973), 299-312.

