Gen. Math. Notes, Vol. 33, No. 2, April 2016, pp.72-77
ISSN 2219-7184; Copyright © ICSRS Publication, 2016
www.i-csrs.org
Available free online at http://www.geman.in

Left (Right) Centralizer of $\sigma-$ Square Closed Lie Ideals of σ-Prime Rings

Ayşe Mutlu ${ }^{1}$ and Neşet Aydın ${ }^{2}$
1,2 Department of Mathematics
Çanakkale Onsekiz Mart University, Çanakkale, Turkey
${ }^{1}$ E-mail: mutluaysee@gmail.com
${ }^{2}$ E-mail: neseta@comu.edu.tr

(Received: 4-3-16 / Accepted: 10-4-16)

Abstract

Let R be a σ-prime ring and F be a nonzero left (right) centralizer of R. This work includes two parts. In the first part, when I is a nonzero σ-ideal of R we prove that (i) if F commutes with σ on I and $[x, R] I F(x)=(0)$ for all $x \in I$, then R is commutative. (ii) If $r \in S a_{\sigma}(R)$ or F commutes with σ on I and $[F(x), r]=0$ for all $x \in I$, then $r \in Z(R)$. (iii) If $r \in S a_{\sigma}(R)$ such that $F([x, r])=0$ for all $x \in R$, then $r \in Z(R)$. (iv) If R is a 2 -torsion free σ-prime ring and $F([x, y])=0$ for all $x, y \in R$, then R is a commutative ring. In the second part, when R is a 2 -torsion free and U is a nonzero σ-square closed Lie ideal of R such that $U \nsubseteq Z(R)$ we prove that: (i) if $r \in U \cap S a_{\sigma}(R)$ and $[F(x), r]=0$ for all $x \in U$, then $r \in Z(R)$. (ii) If $r \in U \cap S a_{\sigma}(R)$ and $F([x, r])=0$ for all $x \in U$, then $r \in Z(R)$.

Keywords: $\sigma-$ prime ring, $\sigma-i d e a l$, centralizer.

1 Introduction

Throughout this paper, R will represent an associative ring with center $Z(R)$. R is said to be 2 -torsion free if whenever $2 x=0$, then $x=0$. An additive mapping $\sigma: R \rightarrow R$ is called an involution if σ is an anti-homomorphism and $\sigma(\sigma(x))=x$ for all $x \in R$. R is called σ-prime ring where σ is an involution of R if $a R b=a R \sigma(b)=(0)$ implies that $a=0$ or $b=0$. A nonempty subset A of R is called σ-invariant if $\sigma(A) \subseteq A$. An ideal I of R is a σ-ideal if I
is a σ-invariant. A Lie ideal U of R is a σ-Lie ideal if U is a σ-invariant. U is called a σ-square closed Lie ideal of R if U is a σ-Lie ideal and $u^{2} \in U$ for all $u \in U$. In all that follows $S a_{\sigma}(R)$ denote the set of all symmetric or skew symmetric elements of R; i.e., $S a_{\sigma}(R)=\{x \in R \mid \sigma(x)= \pm x\}$. For any $x, y \in R, x y-y x$ will be denoted by $[x, y]$. An additive mapping $F: R \rightarrow R$ is called a left (right) centralizer in case $F(x y)=F(x) y(F(x y)=x F(y))$ for all $x, y \in R$.

An additive mapping $d: R \rightarrow R$ is called a derivation if $d(x y)=d(x) y+$ $x d(y)$ holds for all $x, y \in R$. When R is a σ-prime ring, I is a σ-ideal of R and d is a nonzero derivation of R, in [2] and [3], Oukhitite and Salhi show that (i) if d commutes with σ on I and $[x, R] \operatorname{Id}(x)=(0)$ for all $x \in I$, then R is commutative. (ii) If $r \in S a_{\sigma}(R)$ satisfies $[d(x), r]=0$ for all $x \in I$, then $r \in Z(R)$. Furthermore, if $a \in S a_{\sigma}(R)$ and $d([R, a])=(0)$, then $a \in Z(R)$. In particular, if $d(x y)-d(y x)=0$ for all $x, y \in R$, then R is commutative ring.

In this paper, we tackle the hypothesis of [2] and [3] for a nonzero left (right) centralizer of R on a σ-ideal of R. Moreover, we get some results under the same conditions for a nonzero σ-square closed Lie ideal of R.

In all that follows, we assume that R is a σ-prime ring, I is a nonzero σ-ideal of R, U is a nonzero σ-square closed Lie ideal of R such that $U \nsubseteq$ $Z(R)$ and F is a nonzero left (right) centralizer of R.

We shall use basic commutator identities:

$$
\begin{aligned}
& {[x y, z]=x[y, z]+[x, z] y} \\
& {[x, y z]=y[x, z]+[x, y] z .}
\end{aligned}
$$

The material in this work is a part of first author's Master's Thesis which is supervised by Prof. Dr. Neşet Aydın.

2 Results

Lemma 2.1. [1, 3) of Teorem 2.2] For a σ-prime ring R, if I is a nonzero $\sigma-i d e a l$ and $a I b=a I \sigma(b)=(0)$, then $a=0$ or $b=0$.

Lemma 2.2. [4, Lemma 4] If $U \nsubseteq Z(R)$ is a σ-Lie ideal of a 2-torsion free σ-prime ring R and $a, b \in R$ such that $a U b=\sigma(a) U b=(0)$, then $a=0$ or $b=0$.

Lemma 2.3. [5, Lemma 2.7] Let R be a 2 -torsion free σ-prime ring and U be a σ-Lie ideal of R. If $a \in R$ such that $[a, U] \subseteq Z(R)$ then either $U \subseteq Z(R)$ or $a \in Z(R)$.

Lemma 2.4. Suppose that F commutes with σ on I. If $[x, R] I F(x)=(0)$ for all $x \in I$, then R is commutative.

Proof. Since $t=x-\sigma(x) \in I$ for $x \in I$, then $[t, r] \operatorname{IF}(t)=(0)$ for all $r \in R$. Since $t \in S a_{\sigma}(R) \cap I$ and F commutes with σ on I, we obtain $[t, r] I F(t)=$ $[t, r] I \sigma(F(t))=(0)$ for all $r \in R$. According to Lemma 2.1 we obtain,

$$
[t, r]=0 \text { or } F(t)=0, \forall r \in R
$$

If $[t, r]=0$ for all $r \in R$, we have $[x, r]=[\sigma(x), r]$ for all $r \in R, x \in$ I. Replacing x by $\sigma(x)$ in hypothesis and using the last equation, we get $[x, r] \operatorname{IF}(x)=[x, r] \operatorname{I} \sigma(F(x))=(0)$ for all $r \in R, x \in I$. Using again Lemma 2.1, consequently either

$$
x \in Z(R) \text { or } F(x)=0, \forall x \in I
$$

If $F(t)=0$, we get $F(x)=\sigma(F(x))$ since F commutes with σ on I. Thus, we have $[x, r] I F(x)=[x, r] I \sigma(F(x))=(0)$ for all $r \in R$. Once again using Lemma 2.1, we get $x \in Z(R)$ or $F(x)=0$. So, in both cases

$$
x \in Z(R) \text { or } F(x)=0, \forall x \in I
$$

Let us consider that $A=\{x \in I \mid F(x)=0\}$ and $B=\{x \in I \mid x \in Z(R)\}$. It is clear that A and B are additive subgroups of I such that $I=A \cup B$. But a group can not be union of two its proper subgroups and therefore $I=A$ or $I=B$. If $I=A$, then $F(x)=0$ for all $x \in I$. Since I is a σ-ideal, we obtain $F=0$. It is a contradiction. Hence, $I=B$ so that $I \subseteq Z(R)$. Thus, $[x, r]=0$ for all $x \in I$ and $r \in R$. If we replace x by $y x$ where $y \in R$, to obtain $[y, r] I=(0)$. Since I is a σ-ideal, consequently we get $[y, r]=0$ for all $y, r \in R$. Therefore, R is a commutative ring.

Lemma 2.5. Let $r \in S a_{\sigma}(R)$ or F commutes with σ on I. If $[F(x), r]=0$ for all $x \in I$, then $r \in Z(R)$.

Proof. Taking $x y$ with $y \in I$ instead of x in hypothesis, we conclude $0=$ $[F(x y), r]=[F(x) y, r]=F(x)[y, r]+[F(x), r] y$ for all $x, y \in I$. By using $[F(x), r]=0$ for all $x \in I$ in the last equation, it follows that $F(x)[y, r]=0$ for all $x, y \in I$. If we replace y by $y k$ where $k \in R$ in the last equality, we get

$$
0=F(x)[y k, r]=F(x) y[k, r]+F(x)[y, r] k \text { for all } x, y \in I \text { and all } k \in R .
$$

In this equation if we use $F(x)[y, r]=0$ for all $x, y \in I$, we obtain $F(x) y[k, r]=$ 0 for all $x, y \in I$ and all $k \in R$. Therefore

$$
F(x) I[k, r]=(0)
$$

First of all assume that $r \in S a_{\sigma}(R)$. We obtain that $F(x) I \sigma([k, r])=(0)$. Using Lemma 2.1, we get $F(x)=0$ for all $x \in I$ or $r \in Z(R)$. Assume that $F(x)=0$ for all $x \in I$. If we replace x by $t x$ where $t \in R$, to obtain $F(t) x=0$ for all $t \in R$ and $x \in I$. Since I is a σ-ideal, we conclude that $F=0$, a contradiction. So that, $r \in Z(R)$. In the second case, if F commutes with σ on I, we get $F(x) I[k, r]=\sigma(F(x)) I[k, r]=(0)$. Using Lemma 2.1, we get $F(x)=0$ or $r \in Z(R)$ for all $x \in I$. If $F(x)=0$ for $x \in I$, then $F=0$, a contradiction. Therefore, $r \in Z(R)$.

Lemma 2.6. If $r \in S a_{\sigma}(R)$ such that $F([x, r])=0$ for all $x \in R$, then $r \in$ $Z(R)$.

Proof. Assume that $r \notin Z(R)$. If $F(r)=0$, we have $F(x) r=0$ for all $x \in R$. In this equation, replace x by $x y$ where $y \in R$, we get $F(x) y r=0$ for all $y \in R$. Since $r \in S a_{\sigma}(R)$, it yields $F(x) R r=F(x) R \sigma(r)=(0)$. Since R is a σ-prime ring, we get $r=0$, a contradiction. Thus, $F(r) \neq 0$. For any $x \in R$, we obtain $F([r x, r])=0$ from the hypothesis. Consequently, we have $F(r)[x, r]=0$ for all $x \in R$. If we replace x by $s x$ where $s \in R$ in last equality, we get $F(r) s[x, r]=0$ for all $x, s \in R$. Using by $r \in S a_{\sigma}(R)$ and the σ primeness of R yields $[x, r]=0$ which proves $r \in Z(R)$, a contradiction. So, r $\in Z(R)$.

From this point on, R is a 2 -torsion free $\sigma-$ prime ring.
Theorem 2.7. If $F([x, y])=0$ for all $x, y \in R$, then R is a commutative ring.

Proof. For $y \in S a_{\sigma}(R)$, we have $F([x, y])=0$ for all $x \in R$ from the hypothesis. Applying the Lemma 2.6, we conclude $y \in Z(R)$. For any $r \in R$, $r+\sigma(r)$ and $r-\sigma(r)$ are elements of $S a_{\sigma}(R)$, yields $r+\sigma(r) \in Z(R)$ and $r-\sigma(r) \in Z(R)$. So that, $2 r \in Z(R)$. Since R is $2-$ torsion free, yields $r \in Z(R)$ for all $r \in R$. Therefore, R is a commutative ring.

Lemma 2.8. If $r \in U \cap S a_{\sigma}(R)$ and $[F(u), r]=0$ for all $u \in U$, then $r \in$ $Z(R)$.

Proof. For all $u, v \in U,(u+v)^{2} \in U$ together with $[u, v] \in U$ yields $2 u v \in$ U. Taking $2 u v$ with $u, v \in U$ instead of u in hypothesis, we obtain $2[F(u v), r]=$ 0 . Since R is 2 -torsion free, consequently we have $F(u)[v, r]=0$ for all $u, v \in U$. Replace v by $2 w v$ where $w \in U$ in this equation and by using the hypothesis, we get $F(u) w[v, r]=0$ for all $u, v, w \in U$. Since $r \in S a_{\sigma}(R)$ and by using Lemma 2.2, we have either $F(u)=0$ or $[v, r]=0$ for all $u, v \in U$. If $F(u)=0$ for all $u \in U$, then $F=0$, a contradiction. So that, $[U, r]=(0)$. By using Lemma 2.3, we conclude $r \in Z(R)$.

Lemma 2.9. If $r \in U \cap S a_{\sigma}(R)$ and $F([u, r])=0$ for all $u \in U$, then $r \in$ $Z(R)$.

Proof. Assume that $r \notin Z(R)$. From the hypothesis, we have $F([u, r])=0$ for all $u \in U$. If $F(r)=0$, then we get $F(u) r=0$ for all $u \in U$. Replacing u by $2 v u$ where $v \in U$ in last equality and by using R is 2 -torsion free, we get $F(v) u r=$ 0 for all $u, v \in U$. Since $r \in S a_{\sigma}(R)$, it yields $F(v) U r=F(v) U \sigma(r)=(0)$. From the Lemma 2.2, we get $F=0$ or $r=0$, a contradiction. Therefore $F(r) \neq 0$. For any $u \in U$, from the hypothesis, we obtain $F([2 r u, r])=0$. Since R is 2-torsion free ring, we have $F(r)[u, r]=0$ for all $u \in U$. Replacing u by $2 v u$ where $v \in U$ in last equality, we get $F(r) v[u, r]=0$ for all $u, v \in U$. By using $r \in S a_{\sigma}(R)$ and Lemma 2.2, we have $[u, r]=0$ for all $u \in U$. By using Lemma 2.3, we get a contradiction. So that, $r \in Z(R)$.

Theorem 2.10. Let F be a left (right) centralizer and commute with σ on U. If $[u, R] U F(u)=(0)$ for all $u \in U$, then $F=0$.

Proof. Since $t=u-\sigma(u) \in U$ for all $u \in U$, then $[t, r] U F(t)=(0)$ for all $r \in R$. Since $t \in S a_{\sigma}(R) \cap U$ and F commutes with σ on U, we obtain $[t, r] U F(t)=[t, r] U \sigma(F(t))=(0)$ for all $r \in R$. According to Lemma 2.2, we get

$$
[t, r]=0 \text { or } F(t)=0, \forall r \in R
$$

First of all, if $[t, r]=0$ for all $r \in R$, we have $[u, r]=[\sigma(u), r]$ for all $r \in R$, $u \in U$. Replacing u by $\sigma(u)$ in hypothesis and using the last equation, we get $[u, r] U F(u)=[u, r] U \sigma(F(u))=(0)$ for all $r \in R$, for all $u \in U$. By using Lemma 2.2, we see that either

$$
u \in Z(R) \text { or } F(u)=0, \forall u \in U
$$

In the second, if $F(t)=0$, we get $F(u)=\sigma(F(u))$ since F commutes with σ on U. Thus, we have $[u, r] U F(u)=[u, r] U \sigma(F(u))=(0)$ for all $r \in R$. Once again, using Lemma 2.2, we get $[u, r]=0$ or $F(u)=0$. So, in both cases

$$
[u, r]=0 \text { or } F(u)=0, \forall u \in U
$$

Let us consider that $A=\{u \in U \mid u \in Z(R)\}$ and $B=\{u \in U \mid F(u)=0\}$. It is clear that A and B are additive subgroups of U such that $U=A \cup B$. But a group can not be union of two its proper subgroups and therefore $U=A$ or $U=B$. If $U=A$, then $U \subseteq Z(R)$, a contradiction. Hence, $U=B$. So, $F(u)=0$ for all $u \in U$. If replace u by $2 u v$ where $v \in U$, we have $2 F(u) v=0$. Since R is 2 -torsion free and using Lemma 2.2, we get $F=0$.

References

[1] L. Oukhtite and S. Salhi, σ-Prime rings with a special kind of automorphism, Int. J. Contemp. Math. Sci., 2(3) (2007), 127-133.
[2] L. Oukhtite and S. Salhi, Derivations and commutaivity of σ-prime rings, Int. J. Contemp. Math. Sci., 1(9) (2006), 439-448.
[3] L. Oukhtite and S. Salhi, On commutative of σ-prime rings, Glasnik Matematicki, 41(1) (2006), 57-64.
[4] L. Oukhtite and S. Salhi, Centralizing automorphisms and Jordan left derivations on $\sigma-$ prime rings, Advances in Algebra, 1(1) (2008), 19-26.
[5] M. Ashraf and A. Khan, Commutativitiy of $*-$ prime rings with generalized derivations, Rend. Semin. Mat. Univ. Padova, 125(2011), 71-79.

