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Abstract
Let R be a σ−prime ring and F be a nonzero left (right) centralizer of R.

This work includes two parts. In the first part, when I is a nonzero σ−ideal
of R we prove that (i) if F commutes with σ on I and [x,R]IF (x) = (0) for
all x ∈ I, then R is commutative. (ii) If r ∈ Saσ(R) or F commutes with σ
on I and [F (x), r] = 0 for all x ∈ I, then r ∈ Z(R). (iii) If r ∈ Saσ(R) such
that F ([x, r]) = 0 for all x ∈ R, then r ∈ Z(R). (iv) If R is a 2−torsion free
σ-prime ring and F ([x, y]) = 0 for all x, y ∈ R, then R is a commutative ring.
In the second part, when R is a 2−torsion free and U is a nonzero σ−square
closed Lie ideal of R such that U * Z(R) we prove that: (i) if r ∈ U ∩Saσ(R)
and [F (x), r] = 0 for all x ∈ U , then r ∈ Z(R). (ii) If r ∈ U ∩ Saσ(R) and
F ([x, r]) = 0 for all x ∈ U , then r ∈ Z(R).
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1 Introduction

Throughout this paper, R will represent an associative ring with center Z(R).
R is said to be 2−torsion free if whenever 2x = 0, then x = 0. An additive
mapping σ : R→ R is called an involution if σ is an anti-homomorphism and
σ(σ(x)) = x for all x ∈ R. R is called σ−prime ring where σ is an involution
of R if aRb = aRσ(b) = (0) implies that a = 0 or b = 0. A nonempty subset
A of R is called σ−invariant if σ (A) ⊆ A. An ideal I of R is a σ−ideal if I
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is a σ−invariant. A Lie ideal U of R is a σ−Lie ideal if U is a σ−invariant.
U is called a σ−square closed Lie ideal of R if U is a σ−Lie ideal and u2 ∈ U
for all u ∈ U . In all that follows Saσ(R) denote the set of all symmetric or
skew symmetric elements of R; i.e., Saσ(R) = {x ∈ R | σ(x) = ±x}. For any
x, y ∈ R, xy − yx will be denoted by [x, y]. An additive mapping F : R → R
is called a left (right) centralizer in case F (xy) = F (x)y (F (xy) = xF (y)) for
all x, y ∈ R.

An additive mapping d : R → R is called a derivation if d(xy) = d(x)y +
xd(y) holds for all x, y ∈ R. When R is a σ−prime ring, I is a σ−ideal of R
and d is a nonzero derivation of R, in [2] and [3], Oukhitite and Salhi show
that (i) if d commutes with σ on I and [x,R]Id(x) = (0) for all x ∈ I, then
R is commutative. (ii) If r ∈ Saσ(R) satisfies [d(x), r] = 0 for all x ∈ I, then
r ∈ Z(R). Furthermore, if a ∈ Saσ(R) and d ([R, a]) = (0), then a ∈ Z(R). In
particular, if d(xy)− d(yx) = 0 for all x, y ∈ R, then R is commutative ring.

In this paper, we tackle the hypothesis of [2] and [3] for a nonzero left (right)
centralizer of R on a σ−ideal of R. Moreover, we get some results under the
same conditions for a nonzero σ−square closed Lie ideal of R.

In all that follows, we assume that R is a σ−prime ring, I is a nonzero
σ−ideal of R, U is a nonzero σ−square closed Lie ideal of R such that U *
Z(R) and F is a nonzero left (right) centralizer of R.

We shall use basic commutator identities:

[xy, z] = x[y, z] + [x, z]y
[x, yz] = y[x, z] + [x, y]z.

The material in this work is a part of first author’s Master’s Thesis which
is supervised by Prof. Dr. Neşet Aydın.

2 Results

Lemma 2.1. [1, 3) of Teorem 2.2] For a σ−prime ring R, if I is a nonzero
σ−ideal and aIb = aIσ(b) = (0), then a = 0 or b = 0.

Lemma 2.2. [4, Lemma 4] If U * Z(R) is a σ−Lie ideal of a 2−torsion
free σ−prime ring R and a, b ∈ R such that aUb = σ(a)Ub = (0), then a = 0
or b = 0.

Lemma 2.3. [5, Lemma 2.7] Let R be a 2−torsion free σ−prime ring and U
be a σ−Lie ideal of R. If a ∈ R such that [a, U ] ⊆ Z(R) then either U ⊆ Z(R)
or a ∈ Z(R).
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Lemma 2.4. Suppose that F commutes with σ on I. If [x,R]IF (x) = (0)
for all x ∈ I, then R is commutative.

Proof. Since t = x − σ(x) ∈ I for x ∈ I, then [t, r]IF (t) = (0) for all r ∈ R.
Since t ∈ Saσ(R) ∩ I and F commutes with σ on I, we obtain [t, r]IF (t) =
[t, r] Iσ(F (t)) = (0) for all r ∈ R. According to Lemma 2.1 we obtain,

[t, r] = 0 or F (t) = 0, ∀r ∈ R

If [t, r] = 0 for all r ∈ R, we have [x, r] = [σ(x), r] for all r ∈ R, x ∈
I. Replacing x by σ (x) in hypothesis and using the last equation, we get
[x, r]IF (x) = [x, r]Iσ(F (x)) = (0) for all r ∈ R, x ∈ I. Using again Lemma
2.1, consequently either

x ∈ Z(R) or F (x) = 0, ∀x ∈ I

If F (t) = 0, we get F (x) = σ(F (x)) since F commutes with σ on I. Thus,
we have [x, r]IF (x) = [x, r]Iσ (F (x)) = (0) for all r ∈ R. Once again using
Lemma 2.1, we get x ∈ Z(R) or F (x) = 0. So, in both cases

x ∈ Z(R) or F (x) = 0, ∀x ∈ I

Let us consider that A = {x ∈ I | F (x) = 0} and B = {x ∈ I | x ∈ Z(R)}. It
is clear that A and B are additive subgroups of I such that I = A ∪ B. But
a group can not be union of two its proper subgroups and therefore I = A
or I = B. If I = A, then F (x) = 0 for all x ∈ I. Since I is a σ−ideal, we
obtain F = 0. It is a contradiction. Hence, I = B so that I ⊆ Z(R). Thus,
[x, r] = 0 for all x ∈ I and r ∈ R. If we replace x by yx where y ∈ R, to
obtain [y, r]I = (0). Since I is a σ−ideal, consequently we get [y, r] = 0 for all
y, r ∈ R. Therefore, R is a commutative ring.

Lemma 2.5. Let r ∈ Saσ(R) or F commutes with σ on I. If [F (x), r] = 0
for all x ∈ I, then r ∈ Z(R).

Proof. Taking xy with y ∈ I instead of x in hypothesis, we conclude 0 =
[F (xy), r] = [F (x)y, r] = F (x)[y, r] + [F (x), r]y for all x, y ∈ I. By using
[F (x), r] = 0 for all x ∈ I in the last equation, it follows that F (x)[y, r] = 0
for all x, y ∈ I. If we replace y by yk where k ∈ R in the last equality, we get

0 = F (x)[yk, r] = F (x)y[k, r] + F (x)[y, r]k for all x, y ∈ I and all k ∈ R.

In this equation if we use F (x)[y, r] = 0 for all x, y ∈ I, we obtain F (x)y[k, r] =
0 for all x, y ∈ I and all k ∈ R. Therefore

F (x)I[k, r] = (0)
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First of all assume that r ∈ Saσ(R). We obtain that F (x)Iσ([k, r]) = (0).
Using Lemma 2.1, we get F (x) = 0 for all x ∈ I or r ∈ Z(R). Assume that
F (x) = 0 for all x ∈ I. If we replace x by tx where t ∈ R, to obtain F (t)x = 0
for all t ∈ R and x ∈ I. Since I is a σ−ideal, we conclude that F = 0, a
contradiction. So that, r ∈ Z(R). In the second case, if F commutes with
σ on I, we get F (x)I[k, r] = σ(F (x))I[k, r] = (0) . Using Lemma 2.1, we get
F (x) = 0 or r ∈ Z(R) for all x ∈ I. If F (x) = 0 for x ∈ I, then F = 0, a
contradiction. Therefore, r ∈ Z(R).

Lemma 2.6. If r ∈ Saσ(R) such that F ([x, r]) = 0 for all x ∈ R, then r ∈
Z(R).

Proof. Assume that r 6∈ Z (R) . If F (r) = 0, we have F (x)r = 0 for all x ∈ R.
In this equation, replace x by xy where y ∈ R, we get F (x)yr = 0 for all
y ∈ R. Since r ∈ Saσ(R), it yields F (x)Rr = F (x)Rσ(r) = (0). Since R
is a σ−prime ring, we get r = 0, a contradiction. Thus, F (r) 6= 0. For any
x ∈ R, we obtain F ([rx, r]) = 0 from the hypothesis. Consequently, we have
F (r)[x, r] = 0 for all x ∈ R. If we replace x by sx where s ∈ R in last equality,
we get F (r)s[x, r] = 0 for all x, s ∈ R. Using by r ∈ Saσ(R) and the σ-
primeness of R yields [x, r] = 0 which proves r ∈ Z(R), a contradiction. So, r
∈ Z(R).

From this point on, R is a 2−torsion free σ−prime ring.

Theorem 2.7. If F ([x, y]) = 0 for all x, y ∈ R, then R is a commutative
ring.

Proof. For y ∈ Saσ(R), we have F ([x, y]) = 0 for all x ∈ R from the hy-
pothesis. Applying the Lemma 2.6, we conclude y ∈ Z(R). For any r ∈ R,
r + σ(r) and r − σ(r) are elements of Saσ(R), yields r + σ(r) ∈ Z(R) and
r − σ(r) ∈ Z(R). So that, 2r ∈ Z(R). Since R is 2−torsion free, yields
r ∈ Z(R) for all r ∈ R. Therefore, R is a commutative ring.

Lemma 2.8. If r ∈ U ∩ Saσ(R) and [F (u), r] = 0 for all u ∈ U, then r ∈
Z(R).

Proof. For all u, v ∈ U, (u + v)2 ∈ U together with [u, v] ∈ U yields 2uv ∈
U. Taking 2uv with u, v ∈ U instead of u in hypothesis, we obtain 2[F (uv), r] =
0. Since R is 2−torsion free, consequently we have F (u) [v, r] = 0 for all
u, v ∈ U . Replace v by 2wv where w ∈ U in this equation and by using the
hypothesis, we get F (u)w[v, r] = 0 for all u, v, w ∈ U . Since r ∈ Saσ(R) and
by using Lemma 2.2, we have either F (u) = 0 or [v, r] = 0 for all u, v ∈ U . If
F (u) = 0 for all u ∈ U, then F = 0, a contradiction. So that, [U, r] = (0). By
using Lemma 2.3, we conclude r ∈ Z(R).
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Lemma 2.9. If r ∈ U ∩ Saσ(R) and F ([u, r]) = 0 for all u ∈ U, then r ∈
Z(R).

Proof. Assume that r 6∈ Z (R) . From the hypothesis, we have F ([u, r]) = 0 for
all u ∈ U . If F (r) = 0, then we get F (u)r = 0 for all u ∈ U . Replacing u by 2vu
where v ∈ U in last equality and by using R is 2−torsion free, we get F (v)ur =
0 for all u, v ∈ U . Since r ∈ Saσ(R), it yields F (v)Ur = F (v)Uσ(r) = (0).
From the Lemma 2.2, we get F = 0 or r = 0, a contradiction. Therefore
F (r) 6= 0. For any u ∈ U, from the hypothesis, we obtain F ([2ru, r]) = 0. Since
R is 2-torsion free ring, we have F (r)[u, r] = 0 for all u ∈ U. Replacing u by
2vu where v ∈ U in last equality, we get F (r)v[u, r] = 0 for all u, v ∈ U . By
using r ∈ Saσ(R) and Lemma 2.2, we have [u, r] = 0 for all u ∈ U. By using
Lemma 2.3, we get a contradiction. So that, r ∈ Z(R).

Theorem 2.10. Let F be a left (right) centralizer and commute with σ on
U. If [u,R]UF (u) = (0) for all u ∈ U , then F = 0.

Proof. Since t = u − σ(u) ∈ U for all u ∈ U , then [t, r]UF (t) = (0) for
all r ∈ R. Since t ∈ Saσ(R) ∩ U and F commutes with σ on U , we obtain
[t, r]UF (t) = [t, r]Uσ(F (t)) = (0) for all r ∈ R. According to Lemma 2.2, we
get

[t, r] = 0 or F (t) = 0, ∀r ∈ R

First of all, if [t, r] = 0 for all r ∈ R, we have [u, r] = [σ(u), r] for all r ∈ R,
u ∈ U. Replacing u by σ (u) in hypothesis and using the last equation, we
get [u, r]UF (u) = [u, r]Uσ(F (u)) = (0) for all r ∈ R, for all u ∈ U. By using
Lemma 2.2, we see that either

u ∈ Z(R) or F (u) = 0, ∀u ∈ U

In the second, if F (t) = 0, we get F (u) = σ(F (u)) since F commutes with σ
on U . Thus, we have [u, r]UF (u) = [u, r]Uσ (F (u)) = (0) for all r ∈ R. Once
again, using Lemma 2.2, we get [u, r] = 0 or F (u) = 0. So, in both cases

[u, r] = 0 or F (u) = 0, ∀u ∈ U

Let us consider that A = {u ∈ U | u ∈ Z(R)} and B = {u ∈ U | F (u) = 0}. It
is clear that A and B are additive subgroups of U such that U = A ∪ B. But
a group can not be union of two its proper subgroups and therefore U = A
or U = B. If U = A, then U ⊆ Z(R), a contradiction. Hence, U = B. So,
F (u) = 0 for all u ∈ U . If replace u by 2uv where v ∈ U , we have 2F (u)v = 0.
Since R is 2−torsion free and using Lemma 2.2, we get F = 0.



Left (Right) Centralizer of σ−Square Closed... 77

References

[1] L. Oukhtite and S. Salhi, σ−Prime rings with a special kind of automor-
phism, Int. J. Contemp. Math. Sci., 2(3) (2007), 127-133.

[2] L. Oukhtite and S. Salhi, Derivations and commutaivity of σ−prime rings,
Int. J. Contemp. Math. Sci., 1(9) (2006), 439-448.

[3] L. Oukhtite and S. Salhi, On commutative of σ−prime rings, Glasnik
Matematicki, 41(1) (2006), 57-64.

[4] L. Oukhtite and S. Salhi, Centralizing automorphisms and Jordan left
derivations on σ−prime rings, Advances in Algebra, 1(1) (2008), 19-26.

[5] M. Ashraf and A. Khan, Commutativitiy of ∗−prime rings with generalized
derivations, Rend. Semin. Mat. Univ. Padova, 125(2011), 71-79.


