

Gen. Math. Notes, Vol. 33, No. 2, April 2016, pp.72-77 ISSN 2219-7184; Copyright ©ICSRS Publication, 2016 www.i-csrs.org Available free online at http://www.geman.in

Left (Right) Centralizer of σ -Square Closed Lie Ideals of σ -Prime Rings

Ayşe Mutlu¹ and Neşet $Aydın^2$

^{1,2}Department of Mathematics Çanakkale Onsekiz Mart University, Çanakkale, Turkey ¹E-mail: mutluaysee@gmail.com ²E-mail: neseta@comu.edu.tr

(Received: 4-3-16 / Accepted: 10-4-16)

Abstract

Let R be a σ -prime ring and F be a nonzero left (right) centralizer of R. This work includes two parts. In the first part, when I is a nonzero σ -ideal of R we prove that (i) if F commutes with σ on I and [x, R]IF(x) = (0) for all $x \in I$, then R is commutative. (ii) If $r \in Sa_{\sigma}(R)$ or F commutes with σ on I and [F(x), r] = 0 for all $x \in I$, then $r \in Z(R)$. (iii) If $r \in Sa_{\sigma}(R)$ such that F([x, r]) = 0 for all $x \in R$, then $r \in Z(R)$. (iv) If R is a 2-torsion free σ -prime ring and F([x, y]) = 0 for all $x, y \in R$, then R is a commutative ring. In the second part, when R is a 2-torsion free and U is a nonzero σ -square closed Lie ideal of R such that $U \nsubseteq Z(R)$ we prove that: (i) if $r \in U \cap Sa_{\sigma}(R)$ and [F(x), r] = 0 for all $x \in U$, then $r \in Z(R)$. (ii) If $r \in U \cap Sa_{\sigma}(R)$ and F([x, r]) = 0 for all $x \in U$, then $r \in Z(R)$.

Keywords: σ -prime ring, σ -ideal, centralizer.

1 Introduction

Throughout this paper, R will represent an associative ring with center Z(R). R is said to be 2-torsion free if whenever 2x = 0, then x = 0. An additive mapping $\sigma : R \to R$ is called an *involution* if σ is an anti-homomorphism and $\sigma(\sigma(x)) = x$ for all $x \in R$. R is called σ -prime ring where σ is an involution of R if $aRb = aR\sigma(b) = (0)$ implies that a = 0 or b = 0. A nonempty subset A of R is called σ -invariant if $\sigma(A) \subseteq A$. An ideal I of R is a σ -ideal if I is a σ -invariant. A Lie ideal U of R is a σ -Lie ideal if U is a σ -invariant. U is called a σ -square closed Lie ideal of R if U is a σ -Lie ideal and $u^2 \in U$ for all $u \in U$. In all that follows $Sa_{\sigma}(R)$ denote the set of all symmetric or skew symmetric elements of R; i.e., $Sa_{\sigma}(R) = \{x \in R \mid \sigma(x) = \pm x\}$. For any $x, y \in R, xy - yx$ will be denoted by [x, y]. An additive mapping $F : R \to R$ is called a *left (right) centralizer* in case F(xy) = F(x)y (F(xy) = xF(y)) for all $x, y \in R$.

An additive mapping $d: R \to R$ is called a *derivation* if d(xy) = d(x)y + xd(y) holds for all $x, y \in R$. When R is a σ -prime ring, I is a σ -ideal of R and d is a nonzero derivation of R, in [2] and [3], Oukhitite and Salhi show that (i) if d commutes with σ on I and [x, R]Id(x) = (0) for all $x \in I$, then R is commutative. (ii) If $r \in Sa_{\sigma}(R)$ satisfies [d(x), r] = 0 for all $x \in I$, then $r \in Z(R)$. Furthermore, if $a \in Sa_{\sigma}(R)$ and d([R, a]) = (0), then $a \in Z(R)$. In particular, if d(xy) - d(yx) = 0 for all $x, y \in R$, then R is commutative ring.

In this paper, we tackle the hypothesis of [2] and [3] for a nonzero left (right) centralizer of R on a σ -ideal of R. Moreover, we get some results under the same conditions for a nonzero σ -square closed Lie ideal of R.

In all that follows, we assume that R is a σ -prime ring, I is a nonzero σ -ideal of R, U is a nonzero σ -square closed Lie ideal of R such that $U \not\subseteq Z(R)$ and F is a nonzero left (right) centralizer of R.

We shall use basic commutator identities:

[xy, z] = x[y, z] + [x, z]y[x, yz] = y[x, z] + [x, y]z.

The material in this work is a part of first author's Master's Thesis which is supervised by Prof. Dr. Neşet Aydın.

2 Results

Lemma 2.1. [1, 3) of Teorem 2.2] For a σ -prime ring R, if I is a nonzero σ -ideal and $aIb = aI\sigma(b) = (0)$, then a = 0 or b = 0.

Lemma 2.2. [4, Lemma 4] If $U \not\subseteq Z(R)$ is a σ -Lie ideal of a 2-torsion free σ -prime ring R and $a, b \in R$ such that $aUb = \sigma(a)Ub = (0)$, then a = 0 or b = 0.

Lemma 2.3. [5, Lemma 2.7] Let R be a 2-torsion free σ -prime ring and U be a σ -Lie ideal of R. If $a \in R$ such that $[a, U] \subseteq Z(R)$ then either $U \subseteq Z(R)$ or $a \in Z(R)$.

Lemma 2.4. Suppose that F commutes with σ on I. If [x, R]IF(x) = (0) for all $x \in I$, then R is commutative.

Proof. Since $t = x - \sigma(x) \in I$ for $x \in I$, then [t, r]IF(t) = (0) for all $r \in R$. Since $t \in Sa_{\sigma}(R) \cap I$ and F commutes with σ on I, we obtain $[t, r]IF(t) = [t, r]I\sigma(F(t)) = (0)$ for all $r \in R$. According to Lemma 2.1 we obtain,

$$[t,r] = 0 \text{ or } F(t) = 0, \ \forall r \in \mathbb{R}$$

If [t,r] = 0 for all $r \in R$, we have $[x,r] = [\sigma(x),r]$ for all $r \in R$, $x \in I$. Replacing x by $\sigma(x)$ in hypothesis and using the last equation, we get $[x,r]IF(x) = [x,r]I\sigma(F(x)) = (0)$ for all $r \in R$, $x \in I$. Using again Lemma 2.1, consequently either

$$x \in Z(R)$$
 or $F(x) = 0, \forall x \in I$

If F(t) = 0, we get $F(x) = \sigma(F(x))$ since F commutes with σ on I. Thus, we have $[x, r]IF(x) = [x, r]I\sigma(F(x)) = (0)$ for all $r \in R$. Once again using Lemma 2.1, we get $x \in Z(R)$ or F(x) = 0. So, in both cases

$$x \in Z(R)$$
 or $F(x) = 0, \forall x \in I$

Let us consider that $A = \{x \in I \mid F(x) = 0\}$ and $B = \{x \in I \mid x \in Z(R)\}$. It is clear that A and B are additive subgroups of I such that $I = A \cup B$. But a group can not be union of two its proper subgroups and therefore I = Aor I = B. If I = A, then F(x) = 0 for all $x \in I$. Since I is a σ -ideal, we obtain F = 0. It is a contradiction. Hence, I = B so that $I \subseteq Z(R)$. Thus, [x,r] = 0 for all $x \in I$ and $r \in R$. If we replace x by yx where $y \in R$, to obtain [y,r]I = (0). Since I is a σ -ideal, consequently we get [y,r] = 0 for all $y, r \in R$. Therefore, R is a commutative ring. \Box

Lemma 2.5. Let $r \in Sa_{\sigma}(R)$ or F commutes with σ on I. If [F(x), r] = 0 for all $x \in I$, then $r \in Z(R)$.

Proof. Taking xy with $y \in I$ instead of x in hypothesis, we conclude 0 = [F(xy), r] = [F(x)y, r] = F(x)[y, r] + [F(x), r]y for all $x, y \in I$. By using [F(x), r] = 0 for all $x \in I$ in the last equation, it follows that F(x)[y, r] = 0 for all $x, y \in I$. If we replace y by yk where $k \in R$ in the last equality, we get

$$0 = F(x)[yk,r] = F(x)y[k,r] + F(x)[y,r]k \text{ for all } x, y \in I \text{ and all } k \in R.$$

In this equation if we use F(x)[y,r] = 0 for all $x, y \in I$, we obtain F(x)y[k,r] = 0 for all $x, y \in I$ and all $k \in R$. Therefore

$$F(x)I[k,r] = (0)$$

First of all assume that $r \in Sa_{\sigma}(R)$. We obtain that $F(x)I\sigma([k,r]) = (0)$. Using Lemma 2.1, we get F(x) = 0 for all $x \in I$ or $r \in Z(R)$. Assume that F(x) = 0 for all $x \in I$. If we replace x by tx where $t \in R$, to obtain F(t)x = 0 for all $t \in R$ and $x \in I$. Since I is a σ -ideal, we conclude that F = 0, a contradiction. So that, $r \in Z(R)$. In the second case, if F commutes with σ on I, we get $F(x)I[k,r] = \sigma(F(x))I[k,r] = (0)$. Using Lemma 2.1, we get F(x) = 0 or $r \in Z(R)$ for all $x \in I$. If F(x) = 0 for $x \in I$, then F = 0, a contradiction. Therefore, $r \in Z(R)$.

Lemma 2.6. If $r \in Sa_{\sigma}(R)$ such that F([x,r]) = 0 for all $x \in R$, then $r \in Z(R)$.

Proof. Assume that $r \notin Z(R)$. If F(r) = 0, we have F(x)r = 0 for all $x \in R$. In this equation, replace x by xy where $y \in R$, we get F(x)yr = 0 for all $y \in R$. Since $r \in Sa_{\sigma}(R)$, it yields $F(x)Rr = F(x)R\sigma(r) = (0)$. Since R is a σ -prime ring, we get r = 0, a contradiction. Thus, $F(r) \neq 0$. For any $x \in R$, we obtain F([rx,r]) = 0 from the hypothesis. Consequently, we have F(r)[x,r] = 0 for all $x \in R$. If we replace x by sx where $s \in R$ in last equality, we get F(r)s[x,r] = 0 for all $x, s \in R$. Using by $r \in Sa_{\sigma}(R)$ and the σ -primeness of R yields [x,r] = 0 which proves $r \in Z(R)$, a contradiction. So, $r \in Z(R)$.

From this point on, R is a 2-torsion free σ -prime ring.

Theorem 2.7. If F([x,y]) = 0 for all $x, y \in R$, then R is a commutative ring.

Proof. For $y \in Sa_{\sigma}(R)$, we have F([x, y]) = 0 for all $x \in R$ from the hypothesis. Applying the Lemma 2.6, we conclude $y \in Z(R)$. For any $r \in R$, $r + \sigma(r)$ and $r - \sigma(r)$ are elements of $Sa_{\sigma}(R)$, yields $r + \sigma(r) \in Z(R)$ and $r - \sigma(r) \in Z(R)$. So that, $2r \in Z(R)$. Since R is 2-torsion free, yields $r \in Z(R)$ for all $r \in R$. Therefore, R is a commutative ring.

Lemma 2.8. If $r \in U \cap Sa_{\sigma}(R)$ and [F(u), r] = 0 for all $u \in U$, then $r \in Z(R)$.

Proof. For all $u, v \in U$, $(u + v)^2 \in U$ together with $[u, v] \in U$ yields $2uv \in U$. Taking 2uv with $u, v \in U$ instead of u in hypothesis, we obtain 2[F(uv), r] = 0. Since R is 2-torsion free, consequently we have F(u)[v,r] = 0 for all $u, v \in U$. Replace v by 2wv where $w \in U$ in this equation and by using the hypothesis, we get F(u)w[v,r] = 0 for all $u, v, w \in U$. Since $r \in Sa_{\sigma}(R)$ and by using Lemma 2.2, we have either F(u) = 0 or [v,r] = 0 for all $u, v \in U$. If F(u) = 0 for all $u \in U$, then F = 0, a contradiction. So that, [U,r] = (0). By using Lemma 2.3, we conclude $r \in Z(R)$.

Lemma 2.9. If $r \in U \cap Sa_{\sigma}(R)$ and F([u, r]) = 0 for all $u \in U$, then $r \in Z(R)$.

Proof. Assume that $r \notin Z(R)$. From the hypothesis, we have F([u,r]) = 0 for all $u \in U$. If F(r) = 0, then we get F(u)r = 0 for all $u \in U$. Replacing u by 2vuwhere $v \in U$ in last equality and by using R is 2-torsion free, we get F(v)ur =0 for all $u, v \in U$. Since $r \in Sa_{\sigma}(R)$, it yields $F(v)Ur = F(v)U\sigma(r) = (0)$. From the Lemma 2.2, we get F = 0 or r = 0, a contradiction. Therefore $F(r) \neq 0$. For any $u \in U$, from the hypothesis, we obtain F([2ru, r]) = 0. Since R is 2-torsion free ring, we have F(r)[u, r] = 0 for all $u \in U$. Replacing u by 2vu where $v \in U$ in last equality, we get F(r)v[u, r] = 0 for all $u, v \in U$. By using $r \in Sa_{\sigma}(R)$ and Lemma 2.2, we have [u, r] = 0 for all $u \in U$. By using Lemma 2.3, we get a contradiction. So that, $r \in Z(R)$.

Theorem 2.10. Let F be a left (right) centralizer and commute with σ on U. If [u, R]UF(u) = (0) for all $u \in U$, then F = 0.

Proof. Since $t = u - \sigma(u) \in U$ for all $u \in U$, then [t, r]UF(t) = (0) for all $r \in R$. Since $t \in Sa_{\sigma}(R) \cap U$ and F commutes with σ on U, we obtain $[t, r]UF(t) = [t, r]U\sigma(F(t)) = (0)$ for all $r \in R$. According to Lemma 2.2, we get

$$[t,r] = 0 \text{ or } F(t) = 0, \ \forall r \in R$$

First of all, if [t, r] = 0 for all $r \in R$, we have $[u, r] = [\sigma(u), r]$ for all $r \in R$, $u \in U$. Replacing u by $\sigma(u)$ in hypothesis and using the last equation, we get $[u, r]UF(u) = [u, r]U\sigma(F(u)) = (0)$ for all $r \in R$, for all $u \in U$. By using Lemma 2.2, we see that either

$$u \in Z(R)$$
 or $F(u) = 0, \ \forall u \in U$

In the second, if F(t) = 0, we get $F(u) = \sigma(F(u))$ since F commutes with σ on U. Thus, we have $[u, r]UF(u) = [u, r]U\sigma(F(u)) = (0)$ for all $r \in R$. Once again, using Lemma 2.2, we get [u, r] = 0 or F(u) = 0. So, in both cases

$$[u,r] = 0 \text{ or } F(u) = 0, \ \forall u \in U$$

Let us consider that $A = \{u \in U \mid u \in Z(R)\}$ and $B = \{u \in U \mid F(u) = 0\}$. It is clear that A and B are additive subgroups of U such that $U = A \cup B$. But a group can not be union of two its proper subgroups and therefore U = Aor U = B. If U = A, then $U \subseteq Z(R)$, a contradiction. Hence, U = B. So, F(u) = 0 for all $u \in U$. If replace u by 2uv where $v \in U$, we have 2F(u)v = 0. Since R is 2-torsion free and using Lemma 2.2, we get F = 0. Left (Right) Centralizer of σ -Square Closed...

References

- [1] L. Oukhtite and S. Salhi, σ -Prime rings with a special kind of automorphism, *Int. J. Contemp. Math. Sci.*, 2(3) (2007), 127-133.
- [2] L. Oukhtite and S. Salhi, Derivations and commutaivity of σ -prime rings, Int. J. Contemp. Math. Sci., 1(9) (2006), 439-448.
- [3] L. Oukhtite and S. Salhi, On commutative of σ -prime rings, *Glasnik Matematicki*, 41(1) (2006), 57-64.
- [4] L. Oukhtite and S. Salhi, Centralizing automorphisms and Jordan left derivations on σ -prime rings, Advances in Algebra, 1(1) (2008), 19-26.
- [5] M. Ashraf and A. Khan, Commutativitiy of *-prime rings with generalized derivations, *Rend. Semin. Mat. Univ. Padova*, 125(2011), 71-79.