Gen. Math. Notes, Vol. 6, No. 2, October 2011, pp.33-44
ISSN 2219-7184; Copyright © ICSRS Publication, 2011
www.i-csrs.org
Available free online at http://www.geman.in

On Lacunary Strongly Convergent Difference Sequence Spaces Defined by a Sequence of φ-Functions

Metin Başarır ${ }^{1}$ and Selma Altundağ ${ }^{2}$
${ }^{1,2}$ Department of Mathematics, Sakarya University
54187, Sakarya/TURKEY
${ }^{1}$ E-mail: basarir@sakarya.edu.tr
${ }^{2}$ E-mail: scaylan@sakarya.edu.tr

(Received: 10-12-10/ Accepted: 9-10-11)

Abstract

In this paper, we introduce the new sequence spaces with lacunary strong convergence using by a sequence of modulus functions and a sequence of φ functions. We also study some connections between lacunary $\left(A, \varphi_{k}, \Delta_{u}^{m}\right)$ statistically convergence and lacunary strong $\left(A, \varphi_{k}, \Delta_{u}^{m}\right)$ - convergence .

Keywords: Difference sequence, modulus function, φ-function, lacunary sequence, statistical convergence.

1 Introduction

Let w be the set of all sequences of real or complex numbers and l_{∞}, c and c_{0} be, respectively, the Banach spaces of bounded, convergent and null sequences $x=\left(x_{k}\right)$ with the usual norm $\|x\|=\sup _{k}\left|x_{k}\right|$.

By a lacunary $\theta=\left(k_{r}\right) ; r=0,1,2, \ldots$ where $k_{0}=0$, we shall mean an increasing sequence of non-negative integers with $k_{r}-k_{r-1} \rightarrow \infty$ as $r \rightarrow \infty$. The intervals determined by θ will be denoted by $I_{r}=\left(k_{r-1}, k_{r}\right]$ and $h_{r}=$ $k_{r}-k_{r-1}$. The ratio $\frac{k_{r}}{k_{r-1}}$ will be denoted by q_{r}. In [1], the space of lacunary
strongly convergent sequences N_{θ} was defined as follows:

$$
N_{\theta}=\left\{x=\left(x_{i}\right): \lim _{r \rightarrow \infty} h_{r}^{-1} \sum_{i \in I_{r}}\left|x_{i}-s\right|=0 \text { for some } s\right\} .
$$

A modulus function f is a function from acting $[0, \infty)$ to $[0, \infty)$ such that
(i) $f(x)=0$ if and only if $x=0$,
(ii) $f(x+y) \leq f(x)+f(y)$ for all $x, y \geq 0$,
(iii) f increasing,
(iv) f is continuous from at the right zero.

Since $|f(x)-f(y)| \leq f(|x-y|)$, it follows from condition (iv) that f is continuous on $[0, \infty)$. Furthermore, we have $f(n x) \leq n f(x)$ for all $n \in N$, from condition (ii) and so

$$
f(x)=f\left(n x \frac{1}{n}\right) \leq n f\left(\frac{x}{n}\right)
$$

Hence, for all $n \in N$

$$
\frac{1}{n} f(x) \leq f\left(\frac{x}{n}\right)
$$

A modulus may be bounded or unbounded. For example, $f(x)=x^{p}$, for $0<p \leq 1$ is unbounded, but $f(x)=\frac{x}{1+x}$ is bounded. Ruckle [9] and Maddox [10], used a modulus f to construct some sequence spaces.

Furthermore, modulus function has been discussed in [5], [11], [12], [13] and [14] and many others.

The difference sequence space $X(\Delta)$ was first introduced by Kızmaz [2] as follows:

$$
X(\Delta)=\left\{x=\left(x_{k}\right) \in w:\left(\Delta x_{k}\right) \in X\right\}
$$

for $X=l_{\infty}, c$ and c; where $\Delta x_{k}=x_{k}-x_{k+1}$ for all $k \in N$.
The notion of difference sequence spaces was further generalized by Et and Colak [3] as follows:

$$
X\left(\Delta^{m}\right)=\left\{x=\left(x_{k}\right) \in w:\left(\Delta^{m} x_{k}\right) \in X\right\}
$$

for $X=l_{\infty}, c$ and c; where $\Delta^{m} x_{k}=\Delta^{m-1} x_{k}-\Delta^{m-1} x_{k+1}$ and $\Delta^{0} x_{k}=x_{k}$ for all $k \in N$. Taking $X=l_{\infty}(p), c(p)$ and $c_{0}(p)$, these sequence spaces has been generalized by Et and Başarır [4].

The generalized difference has the following binomial representation:

$$
\Delta^{m} x_{k}=\sum_{v=0}^{m}(-1)^{v}\binom{m}{v} x_{k+v}
$$

for all $k \in N$.

Subsequently, difference sequence spaces have been discussed by several authors [18], [14], [6] and [7].

By a φ-function we understood a continuous non-decreasing function $\varphi(v)$ defined for $v \geq 0$ and such that $\varphi(0)=0, \varphi(v)>0$ for $v>0$ and $\varphi(v) \rightarrow \infty$ as $v \rightarrow \infty$.

In [15], [16], [17] and [19]; some sequence spaces was studied using by φ function.

Let $\varphi=\left(\varphi_{k}\right)$ and $\psi=\left(\psi_{k}\right)$ be sequences of φ-functions. A sequence of φ-functions φ is called non weaker than a sequence of φ-function ψ and we write $\psi \prec \varphi$ (or $\psi_{k} \prec \varphi_{k}$ for all k) if there are constants $c, b, n, l>0$ such that $c \psi_{k}(l v) \prec b \varphi_{k}(n v)$ (for all, large or small v, respectively).

Two sequences of φ-functions φ and ψ are called equivalent and we write $\varphi \sim \psi\left(\right.$ or $\psi_{k} \prec \varphi_{k}$ for all $\left.k\right)$ if there are positive constants $b_{1}, b_{2}, c, k_{1}, k_{2}, l$ such that $b_{1} \varphi_{k}\left(k_{1} v\right) \leq c \psi_{k}(l v) \leq b_{2} \varphi_{k}\left(k_{2} v\right)$ (for all, large or small v, respectively).

A sequence of φ-functions φ is said to satisfy the Δ_{2}-condition (for all, large or small v, respectively) if for some constant $l>1$ there is satisfied the inequality $\varphi_{k}(2 v) \leq l \varphi_{k}(v)$ for all k. For a φ-function satisfying the Δ_{2}-condition, there is $L>0$ such that

$$
\begin{equation*}
\varphi_{k}(c v) \leq L \varphi_{k}(v) \tag{1}
\end{equation*}
$$

for v large enough. Indeed, for every $c>0$ there is an integer s such that $c \leq 2^{s}$ and

$$
\begin{equation*}
\varphi_{k}(c v) \leq \varphi_{k}\left(2^{s} v\right) \leq l^{s} \varphi_{k}(v) \tag{2}
\end{equation*}
$$

for v large enough.
Let $A=\left(a_{n k}\right)$ be an infinite matrix such that;
a) A is non-negative, i.e. $a_{n k} \geq 0$ for $n, k=1,2, \ldots$,
b) for an arbitrary positive integer n (or k) there exists a positive integer k_{0} (or n_{0}) such that $a_{n k} \neq 0$ (or $a_{n_{0} k} \neq 0$), respectively,
c) there exists $\lim _{n} a_{n k}=0$ for $k=1,2, \ldots$,
d) $\sup _{n} \sum_{k=1}^{\infty} a_{n k}<\infty$,
e) $\sup a_{n k} \rightarrow 0$ as $k \rightarrow \infty$.

In the present paper, we introduce and study some properties of the following difference sequence space that is defined by using a sequence of φ-functions and a sequence of modulus functions.

2 Main Results

Let $\theta=\left(k_{r}\right)$ be a lacunary sequence, $\varphi=\left(\varphi_{k}\right)$ and $f=\left(f_{n}\right)$ be given a sequence of φ-functions and a sequence of modulus functions, respectively, m
be a positive integer and $u=\left(u_{k}\right)$ be any sequence such that $u_{k} \neq 0$ for all k. Moreover, let a matrix $A=\left(a_{n k}\right)$ be given in the above. Then we define,

$$
V_{\theta}^{0}\left(\left(A, \varphi_{k}, \Delta_{u}^{m}\right), f_{n}\right)=\left\{x=\left(x_{k}\right) \in w: \lim _{r} \frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(\sum_{k=1}^{\infty} a_{n k} \varphi_{k}\left(\left|\Delta_{u}^{m} x_{k}\right|\right)\right)=0\right\}
$$

where $\Delta_{u}^{m} x_{k}=u_{k} \Delta^{m} x_{k}=\left(u_{k} \Delta^{m-1} x_{k}-u_{k+1} \Delta^{m-1} x_{k+1}\right) \quad$ such that $\Delta_{u}^{m} x_{k}=$ $\sum_{n=0}^{m}(-1)^{n}\binom{m}{n} u_{k+n} x_{k+n}, \Delta_{u}^{0} x_{k}=\left(u_{k} x_{k}\right)$ and $\Delta_{u} x_{k}=\left(u_{k} x_{k}-u_{k+1} x_{k+1}\right)$.

Throughout this paper, the sequence of modulus functions $f=\left(f_{n}\right)$ satisfy the condition $\lim _{v \rightarrow 0^{+}} \sup _{n} f_{n}(v)=0$.

If $x \in V_{\theta}^{0}\left(\left(A, \varphi_{k}, \Delta_{u}^{m}\right), f_{n}\right)$ then the sequence x is said to be lacunary strongly $\left(A, \varphi_{k}, \Delta_{u}^{m}\right)$ - convergent to zero with respect to a sequence of modulus f.

If we take $\theta=\left(2^{r}\right)$ then we have

$$
V^{0}\left(\left(A, \varphi_{k}, \Delta_{u}^{m}\right), f_{n}\right)=\left\{x \in w: \lim _{k} \frac{1}{k} \sum_{n=1}^{k} f_{n}\left(\sum_{k=1}^{\infty} a_{n k} \varphi_{k}\left(\left|\Delta_{u}^{m} x_{k}\right|\right)\right)=0\right\} .
$$

When $\varphi_{k}(x)=x$ for all x and $k, u_{k}=1$ for all k, we obtain

$$
V_{\theta}^{0}\left(\left(A, \Delta^{m}\right), f_{n}\right)=\left\{x \in w: \lim _{r} \frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(\sum_{k=1}^{\infty} a_{n k}\left(\left|\Delta^{m} x_{k}\right|\right)\right)=0\right\} .
$$

If $f_{n}(x)=x$ for all x and $n, u_{k}=1$ for all k, we write

$$
V_{\theta}^{0}\left(A, \varphi_{k}, \Delta^{m}\right)=\left\{x \in w: \lim _{r} \frac{1}{h_{r}} \sum_{n \in I_{r}}\left(\sum_{k=1}^{\infty} a_{n k} \varphi_{k}\left(\left|\Delta^{m} x_{k}\right|\right)\right)=0\right\}
$$

When $A=I$ and $u_{k}=1$ for all k, we get the following sequence space,

$$
V_{\theta}^{0}\left(\left(I, \varphi_{k}, \Delta^{m}\right), f_{n}\right)=\left\{x \in w: \lim _{r} \frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(\varphi_{n}\left(\left|\Delta^{m} x_{n}\right|\right)\right)=0\right\}
$$

If we take $A=I, \varphi_{k}(x)=x$ for all x and k and $u_{k}=1$ for all k then we have

$$
V_{\theta}^{0}\left(\left(I, \Delta^{m}\right), f_{n}\right)=\left\{x \in w: \lim _{r} \frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(\left|\Delta^{m} x_{n}\right|\right)=0\right\}
$$

On Lacunary Strongly Convergent...

If we take $A=I, \varphi_{k}(x)=x$ for all x and k and $u_{k}=1$ for all $k, f_{n}(x)=$ $f(x)$ for all x and n

$$
V_{\theta}^{0}\left(\left(I, \Delta^{m}\right), f\right)=\left\{x \in w: \lim _{r} \frac{1}{h_{r}} \sum_{n \in I_{r}} f\left(\left|\Delta^{m} x_{n}\right|\right)=0\right\}
$$

If we take $A=I, \varphi_{k}(x)=x$ for all x and $k, f_{n}(x)=x$ for all x and n and $u_{k}=1$ for all k then we have

$$
V_{\theta}^{0}\left(I, \Delta^{m}\right)=\left\{x \in w: \lim _{r} \frac{1}{h_{r}} \sum_{n \in I_{r}}\left(\left|\Delta^{m} x_{n}\right|\right)=0\right\} .
$$

If we define the matrix $A=\left(a_{n k}\right)$ as follows:

$$
a_{n k}=\frac{1}{n} \text { for } n \geq k \text { and } a_{n k}=0 \text { for } n<k
$$

then we have the sequence space,

$$
V_{\theta}^{0}\left(\left(C, \varphi_{k}, \Delta_{u}^{m}\right), f_{n}\right)=\left\{x \in w: \lim _{r} \frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(\frac{1}{n} \sum_{k=1}^{n} \varphi_{k}\left(\left|\Delta_{u}^{m} x_{k}\right|\right)\right)=0\right\}
$$

Now we have,
Theorem 2.1 Let us suppose that $\varphi=\left(\varphi_{k}\right)$ and $\psi=\left(\psi_{k}\right)$ be two sequences of φ-functions and $\psi=\left(\psi_{k}(v)\right)$ satisfies the Δ_{2}-condition for large v.
(i) If $\psi \prec \varphi$ then $V_{\theta}^{0}\left(\left(A, \varphi_{k}, \Delta_{u}^{m}\right), f_{n}\right) \subset V_{\theta}^{0}\left(\left(A, \psi_{k}, \Delta_{u}^{m}\right), f_{n}\right)$.
(ii) If two sequences of φ-functions $\left(\varphi_{k}(v)\right)$ and $\quad\left(\psi_{k}(v)\right)$ are equivalent for large v and they satisfy the Δ_{2}-condition for large v then $V_{\theta}^{0}\left(\left(A, \varphi_{k}, \Delta_{u}^{m}\right), f_{n}\right)=V_{\theta}^{0}\left(\left(A, \psi_{k}, \Delta_{u}^{m}\right), f_{n}\right)$.

Proof. (i) Let $x=\left(x_{k}\right) \in V_{\theta}^{0}\left(\left(A, \varphi_{k}, \Delta_{u}^{m}\right), f_{n}\right)$. Then

$$
\lim _{r} \frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(\sum_{k=1}^{\infty} a_{n k} \varphi_{k}\left(\left|\Delta_{u}^{m} x_{k}\right|\right)\right)=0
$$

By assumption, $\psi \prec \varphi$, we have

$$
\begin{equation*}
\psi_{k}\left(\left|x_{k}\right|\right) \leq b \varphi_{k}\left(c\left|x_{k}\right|\right) \tag{3}
\end{equation*}
$$

for $b, c>0$, all k, and $\left|x_{k}\right|>v_{0}$. Let us denotes $x=x^{\prime}+x^{\prime \prime}$, where for all m, $x^{\prime}=\left(\Delta_{u}^{m} x_{k}^{\prime}\right)$ and $\Delta_{u}^{m} x_{k}^{\prime}=\Delta_{u}^{m} x_{k}$ for $\left|\Delta_{u}^{m} x_{k}\right|<v_{0}$ and $\Delta_{u}^{m} x_{k}^{\prime}=0$ remaining
values of k. It is easy to see that $x^{\prime} \in V_{\theta}^{0}\left(\left(A, \psi_{k}, \Delta_{u}^{m}\right), f_{n}\right)$. Furthermore, by the assumptions and the inequality (3) we get

$$
\begin{aligned}
\frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(\sum_{k=1}^{\infty} a_{n k} \psi_{k}\left(\left|\Delta_{u}^{m} x_{k}^{\prime \prime}\right|\right)\right) & \leq \frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(b \sum_{k=1}^{\infty} a_{n k} \varphi_{k}\left(c\left|\Delta_{u}^{m} x_{k}^{\prime \prime}\right|\right)\right) \\
\leq & \frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(b L \sum_{k=1}^{\infty} a_{n k} \psi_{k}\left(\left|\Delta_{u}^{m} x_{k}^{\prime \prime}\right|\right)\right) \\
& \leq \frac{K}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(\sum_{k=1}^{\infty} a_{n k} \varphi_{k}\left(\left|\Delta_{u}^{m} x_{k}^{\prime \prime}\right|\right)\right)
\end{aligned}
$$

where the constants K and L are connected with properties of f and φ functions. We recall that a φ-function satisfying the Δ_{2}-condition implies (1) and (2).

Finally, we obtain $x^{\prime \prime}=\left(x_{k}^{\prime \prime}\right) \in V_{\theta}^{0}\left(\left(A, \psi_{k}, \Delta_{u}^{m}\right), f_{n}\right)$ and in consequence $x \in V_{\theta}^{0}\left(\left(A, \psi_{k}, \Delta_{u}^{m}\right), f_{n}\right)$.
(ii) The identity $V_{\theta}^{0}\left(\left(A, \varphi_{k}, \Delta_{u}^{m}\right), f_{n}\right)=V_{\theta}^{0}\left(\left(A, \psi_{k}, \Delta_{u}^{m}\right), f_{n}\right)$ is proved by using the same argument.

Theorem 2.2 Let the sequence $\varphi=\left(\varphi_{k}(v)\right)$ of φ-functions satisfies the Δ_{2}-condition for all k and for large v then $V_{\theta}^{0}\left(\left(A, \varphi_{k}, \Delta_{u}^{m}\right), f_{n}\right)$ is linear space.

Proof. Firstly we prove that if $x=\left(x_{k}\right) \in V_{\theta}^{0}\left(\left(A, \varphi_{k}, \Delta_{u}^{m}\right), f_{n}\right)$ and α is an arbitrary number then $\alpha x \in V_{\theta}^{0}\left(\left(A, \varphi_{k}, \Delta_{u}^{m}\right), f_{n}\right)$. Let us remark that for $0<\alpha<1$ we get

$$
\frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(\sum_{k=1}^{\infty} a_{n k} \varphi_{k}\left(\left|\Delta_{u}^{m} \alpha x_{k}\right|\right)\right) \leq \frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(\sum_{k=1}^{\infty} a_{n k} \varphi_{k}\left(\left|\Delta_{u}^{m} x_{k}\right|\right)\right)
$$

Moreover, if $\alpha>1$ then we may find a positive number such that $\alpha<2^{s}$ and we obtain

$$
\begin{aligned}
\frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(\sum_{k=1}^{\infty} a_{n k} \varphi_{k}\left(\left|\Delta_{u}^{m} \alpha x_{k}\right|\right)\right) \leq & \frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(d^{s} \sum_{k=1}^{\infty} a_{n k} \varphi_{k}\left(\left|\Delta_{u}^{m} x_{k}\right|\right)\right) \\
& \leq \frac{K}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(\sum_{k=1}^{\infty} a_{n k} \varphi_{k}\left(\left|\Delta_{u}^{m} x_{k}\right|\right)\right)
\end{aligned}
$$

where d and K are constants connected with the properties of φ and f functions. We recall that a φ-function satisfying the Δ_{2}-condition implies (1) and (2). Hence we obtain $\alpha x \in V_{\theta}^{0}\left(\left(A, \varphi_{k}, \Delta_{u}^{m}\right), f_{n}\right)$.

Secondly, let $x, y \in V_{\theta}^{0}\left(\left(A, \varphi_{k}, \Delta_{u}^{m}\right), f_{n}\right)$ and α, β arbitrary numbers. We will show that $\alpha x+\beta y \in V_{\theta}^{0}\left(\left(A, \varphi_{k}, \Delta_{u}^{m}\right), f_{n}\right)$.

$$
\begin{aligned}
\frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(\sum_{k=1}^{\infty} a_{n k} \varphi_{k}\left(\left|\Delta_{u}^{m}\left(\alpha x_{k}+\beta y_{k}\right)\right|\right)\right) \leq & \frac{K_{1}}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(\sum_{k=1}^{\infty} a_{n k} \varphi_{k}\left(\left|\Delta_{u}^{m} x_{k}\right|\right)\right) \\
& +\frac{K_{2}}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(\sum_{k=1}^{\infty} a_{n k} \varphi_{k}\left(\left|\Delta_{u}^{m} y_{k}\right|\right)\right)
\end{aligned}
$$

where the constants K_{1} and K_{2} are defined as above. In consequence, $\alpha x+\beta y \in V_{\theta}^{0}\left(\left(A, \varphi_{k}, \Delta_{u}^{m}\right), f_{n}\right)$.

Now, we give the following Proposition that is necessary for proof of the Theorem 2.4.

Proposition 2.3 ([5]) Let f be a modulus and let $0<\delta<1$. Then for each $v \geq \delta$ we have $f(v) \leq 2 f(1) \delta^{-1} v$.

Theorem 2.4 Let $\varphi=\left(\varphi_{k}\right)$ and $f=\left(f_{n}\right)$ be given a sequence of φ functions and a sequence of modulus functions, respectively and $\sup _{n} f_{n}(1)<\infty$. Then $V_{\theta}^{0}\left(A, \varphi_{k}, \Delta_{u}^{m}\right) \subset V_{\theta}^{0}\left(\left(A, \varphi_{k}, \Delta_{u}^{m}\right), f_{n}\right)$.

Proof. Let $x \in V_{\theta}^{0}\left(A, \varphi_{k}, \Delta_{u}^{m}\right)$ and put $\sup _{n} f_{n}(1)=M$. For a given $\varepsilon>0$ we choose $0<\delta<1$ such that $f_{n}(x)<\varepsilon$ for every $x \in[0, \delta]$ and for all n. We can write

$$
\frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(\sum_{k=1}^{\infty} a_{n k} \varphi_{k}\left(\left|\Delta_{u}^{m} x_{k}\right|\right)\right)=S_{1}+S_{2}
$$

where

$$
S_{1}=\frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(\sum_{k=1}^{\infty} a_{n k} \varphi_{k}\left(\left|\Delta_{u}^{m} x_{k}\right|\right)\right)
$$

and this sum is taken over

$$
\sum_{k=1}^{\infty} a_{n k} \varphi_{k}\left(\left|\Delta_{u}^{m} x_{k}\right|\right) \leq \delta
$$

and

$$
S_{2}=\frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(\sum_{k=1}^{\infty} a_{n k} \varphi_{k}\left(\left|\Delta_{u}^{m} x_{k}\right|\right)\right)
$$

and this sum is taken over

$$
\sum_{k=1}^{\infty} a_{n k} \varphi_{k}\left(\left|\Delta_{u}^{m} x_{k}\right|\right)>\delta
$$

By the definition of the modulus f we have

$$
S_{1} \leq \frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}(\delta)<\frac{1}{h_{r}}\left(h_{r} \varepsilon\right)=\varepsilon
$$

and moreover

$$
S_{2} \leq 2 M \frac{1}{\delta} \frac{1}{h_{r}} \sum_{n \in I_{r}} \sum_{k=1}^{\infty} a_{n k} \varphi_{k}\left(\left|\Delta_{u}^{m} x_{k}\right|\right)
$$

by Proposition 2.3. Finally we have $x \in V_{\theta}^{0}\left(\left(A, \varphi_{k}, \Delta_{u}^{m}\right), f_{n}\right)$. This completes the proof.

Theorem 2.5 Let $\varphi=\left(\varphi_{k}\right)$ and $f=\left(f_{n}\right)$ be given a sequence of φ functions and a sequence of modulus functions, respectively. If $\lim _{v \rightarrow \infty} \inf _{n} \frac{f_{n}(v)}{v}>$ 0 then

$$
V_{\theta}^{0}\left(\left(A, \varphi_{k}, \Delta_{u}^{m}\right), f_{n}\right)=V_{\theta}^{0}\left(A, \varphi_{k}, \Delta_{u}^{m}\right) .
$$

Proof. If $\lim _{v \rightarrow \infty} \inf _{n} \frac{f_{n}(v)}{v}>0$ then there exists a number $c>0$ such that $f_{n}(v)>c v$ for $v>0$ and $n \in N$. Let $x \in V_{\theta}^{0}\left(\left(A, \varphi_{k}, \Delta_{u}^{m}\right), f_{n}\right)$. Clearly

$$
\begin{aligned}
\frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(\sum_{k=1}^{\infty} a_{n k} \varphi_{k}\left(\left|\Delta_{u}^{m} x_{k}\right|\right)\right) & \geq \frac{1}{h_{r}} \sum_{n \in I_{r}} c\left(\sum_{k=1}^{\infty} a_{n k} \varphi_{k}\left(\left|\Delta_{u}^{m} x_{k}\right|\right)\right) \\
& =\frac{c}{h_{r}} \sum_{n \in I_{r}}\left(\sum_{k=1}^{\infty} a_{n k} \varphi_{k}\left(\left|\Delta_{u}^{m} x_{k}\right|\right)\right) .
\end{aligned}
$$

Therefore $x \in V_{\theta}^{0}\left(A, \varphi_{k}, \Delta_{u}^{m}\right)$. By using Theorem 2.4, the proof is completed.

Theorem 2.6 Let $\theta=\left(k_{r}\right)$ be a lacunary sequence and $f=\left(f_{n}\right)$ be a sequence of modulus functions.
(i) If $\liminf q_{r}>1$ then $V^{0}\left(\left(A, \varphi_{k}, \Delta_{u}^{m}\right), f_{n}\right) \subset V_{\theta}^{0}\left(\left(A, \varphi_{k}, \Delta_{u}^{m}\right), f_{n}\right)$.
(ii) If $\lim \sup q_{r}<\infty$ then $V_{\theta}^{0}\left(\left(A, \varphi_{k}, \Delta_{u}^{m}\right), f_{n}\right) \subset V^{0}\left(\left(A, \varphi_{k}, \Delta_{u}^{m}\right), f_{n}\right)$.
(iii) If $1<\liminf q_{r} \leq \limsup q_{r}<\infty$ then $V_{\theta}^{0}\left(\left(A, \varphi_{k}, \Delta_{u}^{m}\right), f_{n}\right)=V^{0}\left(\left(A, \varphi_{k}, \Delta_{u}^{m}\right), f_{n}\right)$.

Proof. This can be proved by using the same techniques in [11] and hence we omit the proof.

The next result follows from Theorem 2.5 and Theorem 2.6.
Corollary 2.7 If $\lim _{v \rightarrow \infty} \inf _{n} \frac{f_{n}(v)}{v}>0$ and $1<\liminf q_{r} \leq \limsup q_{r}<\infty$ then $V_{\theta}^{0}\left(A, \varphi_{k}, \Delta_{u}^{m}\right)=V^{0}\left(\left(A, \varphi_{k}, \Delta_{u}^{m}\right), f_{n}\right)$.

On Lacunary Strongly Convergent...

$3 S_{\theta}^{0}\left(A, \varphi_{k}, \Delta_{u}^{m}\right)$-Statistical Convergence

Let the matrix $A=\left(a_{n k}\right)$ be given as previously, $\theta=\left(k_{r}\right)$ be a lacunary sequence, the sequence of φ-functions $\varphi=\left(\varphi_{k}\right)$ and a positive number $\varepsilon>0$ be given. We write,

$$
K_{\theta}^{r}\left(\left(A, \varphi_{k}, \Delta_{u}^{m}\right), \varepsilon\right)=\left\{n \in I_{r}: \sum_{k=1}^{\infty} a_{n k} \varphi_{k}\left(\left|\Delta_{u}^{m} x_{k}\right|\right) \geq \varepsilon\right\}
$$

The sequence x is said to be lacunary $\left(A, \varphi_{k}, \Delta_{u}^{m}\right)$ - statistically convergent to a number zero if for every $\varepsilon>0$

$$
\lim _{r} \frac{1}{h_{r}} \mu\left(K_{\theta}^{r}\left(\left(A, \varphi_{k}, \Delta_{u}^{m}\right), \varepsilon\right)\right)=0
$$

where $\mu\left(K_{\theta}^{r}\left(\left(\left(A, \varphi_{k}, \Delta_{u}^{m}\right), \varepsilon\right)\right)\right)$ denotes the number of element belonging to $K_{\theta}^{r}\left(\left(\left(A, \varphi_{k}, \Delta_{u}^{m}\right), \varepsilon\right)\right)$. We denote by $S_{\theta}^{0}\left(A, \varphi_{k}, \Delta_{u}^{m}\right)$, the set of sequences $x=$ $\left(x_{k}\right)$ which are lacunary $\left(A, \varphi_{k}, \Delta_{u}^{m}\right)$-statistically convergent to a number zero. We write

$$
S_{\theta}^{0}\left(A, \varphi_{k}, \Delta_{u}^{m}\right)=\left\{x=\left(x_{k}\right): \lim _{r} \frac{1}{h_{r}} \mu\left(K_{\theta}^{r}\left(\left(A, \varphi_{k}, \Delta_{u}^{m}\right), \varepsilon\right)\right)=0\right\} .
$$

When we take $\theta=\left(2^{r}\right), S_{\theta}^{0}\left(A, \varphi_{k}, \Delta_{u}^{m}\right)$ reduces to $S^{0}\left(A, \varphi_{k}, \Delta_{u}^{m}\right)$.
If we take $A=I$ and $\varphi_{k}(x)=x$ for all k and x, then $S_{\theta}^{0}\left(A, \varphi_{k}, \Delta_{u}^{m}\right)$ reduces to $S_{\theta}^{0}\left(\Delta_{u}^{m}\right)$ defined by

$$
S_{\theta}^{0}\left(\Delta_{u}^{m}\right)=\left\{x=\left(x_{k}\right): \lim _{r} \frac{1}{h_{r}} \mu\left(\left\{k \in I_{r}:\left(\left|\Delta_{u}^{m} x_{k}\right|\right) \geq \varepsilon\right\}\right)=0\right\}
$$

Now we have,
Theorem 3.1 Let $\theta=\left(k_{r}\right)$ be a lacunary sequence, $\varphi=\left(\varphi_{k}(v)\right)$ and $\psi=$ $\left(\psi_{k}(v)\right)$ are two sequences of φ-functions.
(i) If $\psi \prec \varphi$ and φ_{k} satisfies the Δ_{2}-condition for large v and for all k then $S_{\theta}^{0}\left(A, \psi_{k}, \Delta_{u}^{m}\right) \subset S_{\theta}^{0}\left(A, \varphi_{k}, \Delta_{u}^{m}\right)$.
(ii) If $\varphi \sim \psi$ and φ_{k} and ψ_{k} satisfy the Δ_{2}-condition for large v and for all k then $S_{\theta}^{0}\left(A, \psi_{k}, \Delta_{u}^{m}\right)=S_{\theta}^{0}\left(A, \varphi_{k}, \Delta_{u}^{m}\right)$.

Proof. (i) Let $x \in S_{\theta}^{0}\left(A, \psi_{k}, \Delta_{u}^{m}\right)$. By assumption we have $\psi_{k}\left(\left|\Delta_{u}^{m} x_{k}\right|\right) \leq b \varphi_{k}\left(c\left|\Delta_{u}^{m} x_{k}\right|\right)$ and we have for all n and m,

$$
\sum_{k=1}^{\infty} a_{n k} \psi_{k}\left(\left|\Delta_{u}^{m} x_{k}\right|\right) \leq b \sum_{k=1}^{\infty} a_{n k} \varphi_{k}\left(c\left|\Delta_{u}^{m} x_{k}\right|\right) \leq K \sum_{k=1}^{\infty} a_{n k} \varphi_{k}\left(\left|\Delta_{u}^{m} x_{k}\right|\right)
$$

for $b, c>0$, where the constant K is connected with properties of φ functions. Thus the condition $\sum_{k=1}^{\infty} a_{n k} \psi_{k}\left(\left|\Delta_{u}^{m} x_{k}\right|\right) \geq \varepsilon$ implies the condition $\sum_{k=1}^{\infty} a_{n k} \varphi_{k}\left(\left|\Delta_{u}^{m} x_{k}\right|\right) \geq \varepsilon$ and in consequence we get

$$
K_{\theta}^{r}\left(\left(A, \varphi_{k}, \Delta_{u}^{m}\right), \varepsilon\right) \subset K_{\theta}^{r}\left(\left(A, \psi_{k}, \Delta_{u}^{m}\right), \varepsilon\right)
$$

and

$$
\lim _{r} \frac{1}{h_{r}} \mu\left(K_{\theta}^{r}\left(\left(A, \varphi_{k}, \Delta_{u}^{m}\right), \varepsilon\right)\right) \leq \lim _{r} \frac{1}{h_{r}} \mu\left(K_{\theta}^{r}\left(\left(A, \psi_{k}, \Delta_{u}^{m}\right), \varepsilon\right)\right) .
$$

This completes the proof.
(ii) The identity $S_{\theta}^{0}\left(A, \psi_{k}, \Delta_{u}^{m}\right)=S_{\theta}^{0}\left(A, \varphi_{k}, \Delta_{u}^{m}\right)$ is proved by using the same argument.

Theorem 3.2 Let $f=\left(f_{n}\right)$ be given a sequence of modulus functions. If $\inf _{n} f_{n}(v)>0$ then

$$
V_{\theta}^{0}\left(\left(A, \varphi_{k}, \Delta_{u}^{m}\right), f_{n}\right) \subset S_{\theta}^{0}\left(A, \varphi_{k}, \Delta_{u}^{m}\right)
$$

Proof. If $\inf _{n} f_{n}(v)>0$ then there exists a number $\alpha>0$ such that $f_{n}(v) \geq \alpha$ for $v>0$ and $n \in N$. Let $x \in V_{\theta}^{0}\left(\left(A, \varphi_{k}, \Delta_{u}^{m}\right), f_{n}\right)$.

$$
\begin{aligned}
\frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(\sum_{k=1}^{\infty} a_{n k} \varphi_{k}\left(\left|\Delta_{u}^{m} x_{k}\right|\right)\right) \geq \frac{1}{h_{r}} & \sum_{n \in I_{r}} f_{n}\left(\sum_{k=1}^{\infty} a_{n k} \varphi_{k}\left(\left|\Delta_{u}^{m} x_{k}\right|\right)\right) \\
& \sum_{k=1}^{\infty} a_{n k} \varphi_{k}\left(\left|\Delta_{u}^{m} x_{k}\right|\right) \geq \varepsilon \\
\geq & \frac{\alpha}{h_{r}}\left|\left\{n \in I_{r}: \sum_{k=1}^{\infty} a_{n k} \varphi_{k}\left(\left|\Delta_{u}^{m} x_{k}\right|\right) \geq \varepsilon\right\}\right|
\end{aligned}
$$

and it follows that $x \in S_{\theta}^{0}\left(A, \varphi_{k}, \Delta_{u}^{m}\right)$.
Theorem 3.3 Let $f=\left(f_{n}\right)$ be given a sequence of modulus functions. If $\sup _{v} \sup _{n} f_{n}(v)<\infty$ then $S_{\theta}^{0}\left(A, \varphi_{k}, \Delta_{u}^{m}\right) \subset V_{\theta}^{0}\left(\left(A, \varphi_{k}, \Delta_{u}^{m}\right), f_{n}\right)$.

Proof. We suppose $T(v)=\sup _{n} f_{n}(v)$ and $T=\sup _{v} T(v)$. Let $x \in$ $S_{\theta}^{0}\left(A, \varphi_{k}, \Delta_{u}^{m}\right)$. Since $f_{n}(v) \leq T$ for $n_{n}^{n} \in N$ and $v>0$, we have

$$
\frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(\sum_{k=1}^{\infty} a_{n k} \varphi_{k}\left(\left|\Delta_{u}^{m} x_{k}\right|\right)\right) \geq \frac{1}{h_{r}} \sum_{n \in I_{r}}^{\sum_{k=1}^{\infty} a_{n k} \varphi_{k}\left(\left|\Delta_{u}^{m} x_{k}\right|\right) \geq \varepsilon}
$$

$$
\begin{aligned}
& +\frac{1}{h_{r}} \quad \sum_{n \in I_{r}} \quad f_{n}\left(\sum_{k=1}^{\infty} a_{n k} \varphi_{k}\left(\left|\Delta_{u}^{m} x_{k}\right|\right)\right) \\
& \sum_{k=1}^{\infty} a_{n k} \varphi_{k}\left(\left|\Delta_{u}^{m} x_{k}\right|\right)<\varepsilon \\
& \leq \frac{T}{h_{r}}\left|\left\{n \in I_{r}: \sum_{k=1}^{\infty} a_{n k} \varphi_{k}\left(\left|\Delta_{u}^{m} x_{k}\right|\right) \geq \varepsilon\right\}\right|+T(\varepsilon) .
\end{aligned}
$$

Taking the limit as $\varepsilon \rightarrow 0$, it follows that $x \in V_{\theta}^{0}\left(\left(A, \varphi_{k}, \Delta_{u}^{m}\right), f_{n}\right)$.
Corollary 3.4 Let $f=\left(f_{n}\right)$ be given a sequence of modulus functions. If $\inf _{n} f_{n}(v)>0 \quad(v>0)$ and $\sup _{v} \sup _{n} f_{n}(v)<\infty$ then $S_{\theta}^{0}\left(A, \varphi_{k}, \Delta_{u}^{m}\right)=$ $V_{\theta}^{0}\left(\left(A, \varphi_{k}, \Delta_{u}^{m}\right), f_{n}\right)$.

References

[1] A.R. Freedman, J.J. Sember and M. Raphael, Some Cesaro-type summability spaces, Proc. London Math. Soc., 37(3) (1978), 508-520.
[2] H. Kızmaz, On certain sequence spaces, Canad. Math. Bull., 24(1981), 169-176.
[3] M. Et and R. Çolak, On some generalized difference sequence spaces, Soochow Journal of Math., 21(4) (1995), 377-386.
[4] M. Et and M. Başarır, On some new generalized difference sequence spaces, Period. Math. Hung., 35(1997), 169-175.
[5] S. Pehlivan and B. Fisher, Some sequence spaces defined by a modulus function, Math. Slovaca, 44(1994).
[6] A.H.A. Bataineh, On a generalized difference sequence spaces defined by a modulus function and statistical convergence, Commun. Korean Math. Soc., 21(2) (2006), 261-272.
[7] E. Malkowsky and S.D. Parashar, Matrix transformations in spaces of bounded and convergent difference sequences of order m, Analysis, 17 (1997), 87-97.
[8] E. Kolk and A. Mölder, Inclusion theorems for some sets of sequences defined by φ-functions, Math. Slovaca, 54(3) (2004), 267-279.
[9] W.H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math., 25(1973), 973-978.
[10] I.J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Camb. Phil. Soc., 100(1986), 161-166.
[11] S. Pehlivan and B. Fisher, Lacunary strong convergence with respect to a sequence of modulus functions, Comment. Math. Univ. Carolinae, 36(1) (1995), 71-78.
[12] T. Bilgin, On statistical convergence, An. Univ. Timisoara Ser. Math. Inform., 32(1) (1994), 3-7.
[13] V. Karakaya and N. Şimşek, On lacunary invariant sequence spaces defined by a sequence of modulus functions, App. Math. And Comp., 156(2004), 597-603.
[14] E. Savaş, On some generalized sequence spaces defined by a modulus, Indian J. Pure and Appl. Math., 30(5) (1999), 459-464.
[15] M. Başarır and S. Altundağ, Some difference sequence spaces defined by a sequence of φ-functions, Rendiconti del Circolo Matematico di Palermo, 57(2008), 149-160.
[16] A. Waszak, Some remarks on strong convergence in modular spaces of sequences, Fasc. Math., 35(2005), 151-162.
[17] A. Waszak, On the strong convergence in some sequence spaces, Fasc. Math., 73(2002), 125-137.
[18] M. Et, Y. Altın and H. Altınok, On some generalized difference sequence spaces defined by a modulus function, Filomat, 17(2003), 23-33.
[19] M. Başarır, On lacunary strong σ-convergence with respect to a sequence of φ-functions, Fasc. Math., 43(2010), 19-32.

