

Gen. Math. Notes, Vol. 6, No. 2, October 2011, pp.33-44 ISSN 2219-7184; Copyright ©ICSRS Publication, 2011 www.i-csrs.org Available free online at http://www.geman.in

On Lacunary Strongly Convergent Difference Sequence Spaces Defined by a Sequence of φ -Functions

Metin Başarır 1 and Selma Altundağ 2

^{1,2}Department of Mathematics, Sakarya University 54187, Sakarya/TURKEY ¹E-mail: basarir@sakarya.edu.tr ²E-mail: scaylan@sakarya.edu.tr

(Received: 10-12-10/ Accepted: 9-10-11)

Abstract

In this paper, we introduce the new sequence spaces with lacunary strong convergence using by a sequence of modulus functions and a sequence of φ functions. We also study some connections between lacunary $(A, \varphi_k, \Delta_u^m)$ statistically convergence and lacunary strong $(A, \varphi_k, \Delta_u^m)$ - convergence.

Keywords: Difference sequence, modulus function, φ -function, lacunary sequence, statistical convergence.

1 Introduction

Let w be the set of all sequences of real or complex numbers and l_{∞} , c and c_0 be, respectively, the Banach spaces of bounded, convergent and null sequences $x = (x_k)$ with the usual norm $||x|| = \sup |x_k|$.

By a lacunary $\theta = (k_r)$; $r = 0, 1, 2, \dots$ where $k_0 = 0$, we shall mean an increasing sequence of non-negative integers with $k_r - k_{r-1} \to \infty$ as $r \to \infty$. The intervals determined by θ will be denoted by $I_r = (k_{r-1}, k_r]$ and $h_r = k_r - k_{r-1}$. The ratio $\frac{k_r}{k_{r-1}}$ will be denoted by q_r . In [1], the space of lacunary

strongly convergent sequences N_{θ} was defined as follows:

$$N_{\theta} = \left\{ x = (x_i) : \lim_{r \to \infty} h_r^{-1} \sum_{i \in I_r} |x_i - s| = 0 \text{ for some } s \right\}.$$

A modulus function f is a function from acting $[0, \infty)$ to $[0, \infty)$ such that (i) f(x) = 0 if and only if x = 0,

- (ii) $f(x+y) \le f(x) + f(y)$ for all $x, y \ge 0$,
- (iii) f increasing,
- (iv) f is continuous from at the right zero.

Since $|f(x) - f(y)| \leq f(|x - y|)$, it follows from condition (iv) that f is continuous on $[0, \infty)$. Furthermore, we have $f(nx) \leq nf(x)$ for all $n \in N$, from condition (ii) and so

$$f(x) = f(nx\frac{1}{n}) \le nf(\frac{x}{n}).$$

Hence, for all $n \in N$

$$\frac{1}{n}f(x) \le f(\frac{x}{n}).$$

A modulus may be bounded or unbounded. For example, $f(x) = x^p$, for $0 is unbounded, but <math>f(x) = \frac{x}{1+x}$ is bounded. Ruckle [9] and Maddox [10], used a modulus f to construct some sequence spaces.

Furthermore, modulus function has been discussed in [5], [11], [12], [13] and [14] and many others.

The difference sequence space $X(\Delta)$ was first introduced by Kızmaz [2] as follows:

$$X(\Delta) = \{x = (x_k) \in w : (\Delta x_k) \in X\}$$

for $X = l_{\infty}$, c and c; where $\Delta x_k = x_k - x_{k+1}$ for all $k \in N$.

The notion of difference sequence spaces was further generalized by Et and Colak [3] as follows:

$$X(\Delta^m) = \{x = (x_k) \in w : (\Delta^m x_k) \in X\}$$

for $X = l_{\infty}$, c and c; where $\Delta^m x_k = \Delta^{m-1} x_k - \Delta^{m-1} x_{k+1}$ and $\Delta^0 x_k = x_k$ for all $k \in N$. Taking $X = l_{\infty}(p)$, c(p) and $c_0(p)$, these sequence spaces has been generalized by Et and Başarır [4].

The generalized difference has the following binomial representation:

$$\Delta^m x_k = \sum_{v=0}^m \left(-1\right)^v \left(\begin{array}{c}m\\v\end{array}\right) x_{k+v}$$

for all $k \in N$.

Subsequently, difference sequence spaces have been discussed by several authors [18], [14], [6] and [7].

By a φ -function we understood a continuous non-decreasing function $\varphi(v)$ defined for v > 0 and such that $\varphi(0) = 0, \varphi(v) > 0$ for v > 0 and $\varphi(v) \to \infty$ as $v \to \infty$.

In [15], [16], [17] and [19]; some sequence spaces was studied using by φ function.

Let $\varphi = (\varphi_k)$ and $\psi = (\psi_k)$ be sequences of φ -functions. A sequence of φ -functions φ is called non weaker than a sequence of φ -function ψ and we write $\psi \prec \varphi$ (or $\psi_k \prec \varphi_k$ for all k) if there are constants c, b, n, l > 0 such that $c\psi_k(lv) \prec b\varphi_k(nv)$ (for all, large or small v, respectively).

Two sequences of φ -functions φ and ψ are called equivalent and we write $\varphi \sim \psi$ (or $\psi_k \prec \varphi_k$ for all k) if there are positive constants b_1, b_2, c, k_1, k_2, l such that $b_1\varphi_k(k_1v) \leq c\psi_k(lv) \leq b_2\varphi_k(k_2v)$ (for all, large or small v, respectively).

A sequence of φ -functions φ is said to satisfy the Δ_2 -condition (for all, large or small v, respectively) if for some constant l > 1 there is satisfied the inequality $\varphi_k(2v) \leq l\varphi_k(v)$ for all k. For a φ -function satisfying the Δ_2 -condition, there is L > 0 such that

$$\varphi_k\left(cv\right) \le L\varphi_k\left(v\right) \tag{1}$$

for v large enough. Indeed, for every c > 0 there is an integer s such that $c \leq 2^s$ and

$$\varphi_k\left(cv\right) \le \varphi_k\left(2^s v\right) \le l^s \varphi_k\left(v\right) \tag{2}$$

for v large enough.

Let $A = (a_{nk})$ be an infinite matrix such that;

a) A is non-negative, i.e. $a_{nk} \ge 0$ for n, k = 1, 2, ...,

b) for an arbitrary positive integer n (or k) there exists a positive integer k_0 (or n_0) such that $a_{nk} \neq 0$ (or $a_{n_0k} \neq 0$), respectively,

c) there exists $\lim_{n} a_{nk} = 0$ for $k = 1, 2, \ldots, ,$

- d) $\sup_{n} \sum_{k=1}^{\infty} a_{nk} < \infty$, e) $\sup_{n} a_{nk} \to 0$ as $k \to \infty$.

In the present paper, we introduce and study some properties of the following difference sequence space that is defined by using a sequence of φ -functions and a sequence of modulus functions.

2 Main Results

Let $\theta = (k_r)$ be a lacunary sequence, $\varphi = (\varphi_k)$ and $f = (f_n)$ be given a sequence of φ -functions and a sequence of modulus functions, respectively, m

be a positive integer and $u = (u_k)$ be any sequence such that $u_k \neq 0$ for all k. Moreover, let a matrix $A = (a_{nk})$ be given in the above. Then we define,

$$V_{\theta}^{0}\left(\left(A,\varphi_{k},\Delta_{u}^{m}\right),f_{n}\right) = \left\{x = \left(x_{k}\right) \in w: \lim_{r} \frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(\sum_{k=1}^{\infty} a_{nk}\varphi_{k}\left(\left|\Delta_{u}^{m}x_{k}\right|\right)\right) = 0\right\}$$

where $\Delta_u^m x_k = u_k \Delta^m x_k = (u_k \Delta^{m-1} x_k - u_{k+1} \Delta^{m-1} x_{k+1})$ such that $\Delta_u^m x_k = u_k \Delta^m x_k = u_k \Delta^m x_k$ $\sum_{n=0}^{m} (-1)^n \binom{m}{n} u_{k+n} x_{k+n}, \ \Delta_u^0 x_k = (u_k x_k) \text{ and } \Delta_u x_k = (u_k x_k - u_{k+1} x_{k+1}).$ Throughout this paper, the sequence of modulus functions $f = (f_n)$ satisfy

the condition $\lim_{v \to 0^+} \inf_n f_n(v) = 0$. If $x \in V^0_{\theta}((A, \varphi_k, \Delta^m_u), f_n)$ then the sequence x is said to be lacunary strongly $(A, \varphi_k, \Delta^m_u)$ - convergent to zero with respect to a sequence of modulus f.

If we take $\theta = (2^r)$ then we have

$$V^{0}\left(\left(A,\varphi_{k},\Delta_{u}^{m}\right),f_{n}\right)=\left\{x\in w:\lim_{k}\frac{1}{k}\sum_{n=1}^{k}f_{n}\left(\sum_{k=1}^{\infty}a_{nk}\varphi_{k}\left(\left|\Delta_{u}^{m}x_{k}\right|\right)\right)=0\right\}.$$

When $\varphi_k(x) = x$ for all x and k, $u_k = 1$ for all k, we obtain

$$V_{\theta}^{0}((A,\Delta^{m}), f_{n}) = \left\{ x \in w : \lim_{r} \frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(\sum_{k=1}^{\infty} a_{nk}\left(|\Delta^{m} x_{k}|\right)\right) = 0 \right\}.$$

If $f_n(x) = x$ for all x and n, $u_k = 1$ for all k, we write

$$V^0_{\theta}(A,\varphi_k,\Delta^m) = \left\{ x \in w : \lim_r \frac{1}{h_r} \sum_{n \in I_r} \left(\sum_{k=1}^{\infty} a_{nk} \varphi_k\left(|\Delta^m x_k|\right) \right) = 0 \right\}.$$

When A = I and $u_k = 1$ for all k, we get the following sequence space,

$$V_{\theta}^{0}\left(\left(I,\varphi_{k},\Delta^{m}\right),f_{n}\right) = \left\{x \in w: \lim_{r}\frac{1}{h_{r}}\sum_{n \in I_{r}}f_{n}\left(\varphi_{n}\left(\left|\Delta^{m}x_{n}\right|\right)\right) = 0\right\}.$$

If we take A = I, $\varphi_k(x) = x$ for all x and k and $u_k = 1$ for all k then we have

$$V_{\theta}^{0}((I,\Delta^{m}), f_{n}) = \left\{ x \in w : \lim_{r} \frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}(|\Delta^{m} x_{n}|) = 0 \right\}.$$

If we take A = I, $\varphi_k(x) = x$ for all x and k and $u_k = 1$ for all k, $f_n(x) = f(x)$ for all x and n

$$V_{\theta}^{0}((I,\Delta^{m}),f) = \left\{ x \in w : \lim_{r} \frac{1}{h_{r}} \sum_{n \in I_{r}} f(|\Delta^{m} x_{n}|) = 0 \right\}.$$

If we take A = I, $\varphi_k(x) = x$ for all x and k, $f_n(x) = x$ for all x and n and $u_k = 1$ for all k then we have

$$V_{\theta}^{0}(I, \Delta^{m}) = \left\{ x \in w : \lim_{r} \frac{1}{h_{r}} \sum_{n \in I_{r}} (|\Delta^{m} x_{n}|) = 0 \right\}.$$

If we define the matrix $A = (a_{nk})$ as follows:

$$a_{nk} = \frac{1}{n}$$
 for $n \ge k$ and $a_{nk} = 0$ for $n < k$

then we have the sequence space,

$$V_{\theta}^{0}\left(\left(C,\varphi_{k},\Delta_{u}^{m}\right),f_{n}\right)=\left\{x\in w:\lim_{r}\frac{1}{h_{r}}\sum_{n\in I_{r}}f_{n}\left(\frac{1}{n}\sum_{k=1}^{n}\varphi_{k}\left(\left|\Delta_{u}^{m}x_{k}\right|\right)\right)=0\right\}.$$

Now we have,

Theorem 2.1 Let us suppose that $\varphi = (\varphi_k)$ and $\psi = (\psi_k)$ be two sequences of φ -functions and $\psi = (\psi_k(v))$ satisfies the Δ_2 -condition for large v.

(i) If $\psi \prec \varphi$ then $V^0_{\theta}((A, \varphi_k, \Delta^m_u), f_n) \subset V^0_{\theta}((A, \psi_k, \Delta^m_u), f_n)$.

(ii) If two sequences of φ -functions $(\varphi_k(v))$ and $(\psi_k(v))$ are equivalent for large v and they satisfy the Δ_2 -condition for large v then $V^0_{\theta}((A, \varphi_k, \Delta^m_u), f_n) = V^0_{\theta}((A, \psi_k, \Delta^m_u), f_n).$

Proof. (i) Let $x = (x_k) \in V^0_{\theta}((A, \varphi_k, \Delta^m_u), f_n)$. Then

$$\lim_{r} \frac{1}{h_r} \sum_{n \in I_r} f_n\left(\sum_{k=1}^{\infty} a_{nk} \varphi_k\left(|\Delta_u^m x_k|\right)\right) = 0.$$

By assumption, $\psi \prec \varphi$, we have

$$\psi_k\left(|x_k|\right) \le b\varphi_k\left(c\left|x_k\right|\right) \tag{3}$$

for b, c > 0, all k, and $|x_k| > v_0$. Let us denotes x = x' + x'', where for all m, $x' = \left(\Delta_u^m x'_k\right)$ and $\Delta_u^m x'_k = \Delta_u^m x_k$ for $|\Delta_u^m x_k| < v_0$ and $\Delta_u^m x'_k = 0$ remaining

values of k. It is easy to see that $x' \in V^0_{\theta}((A, \psi_k, \Delta^m_u), f_n)$. Furthermore, by the assumptions and the inequality (3) we get

$$\begin{aligned} \frac{1}{h_r} \sum_{n \in I_r} f_n \left(\sum_{k=1}^{\infty} a_{nk} \psi_k \left(|\Delta_u^m x_k''| \right) \right) &\leq \frac{1}{h_r} \sum_{n \in I_r} f_n \left(b \sum_{k=1}^{\infty} a_{nk} \varphi_k \left(c \left| \Delta_u^m x_k'' \right| \right) \right) \\ &\leq \frac{1}{h_r} \sum_{n \in I_r} f_n \left(b L \sum_{k=1}^{\infty} a_{nk} \psi_k \left(|\Delta_u^m x_k''| \right) \right) \\ &\leq \frac{K}{h_r} \sum_{n \in I_r} f_n \left(\sum_{k=1}^{\infty} a_{nk} \varphi_k \left(|\Delta_u^m x_k''| \right) \right) \end{aligned}$$

where the constants K and L are connected with properties of f and φ functions. We recall that a φ -function satisfying the Δ_2 -condition implies (1) and (2).

Finally, we obtain $x'' = (x''_k) \in V^0_{\theta}((A, \psi_k, \Delta^m_u), f_n)$ and in consequence $x \in V^0_{\theta}((A, \psi_k, \Delta^m_u), f_n).$

(ii) The identity $V^0_{\theta}((A, \varphi_k, \Delta^m_u), f_n) = V^0_{\theta}((A, \psi_k, \Delta^m_u), f_n)$ is proved by using the same argument.

Theorem 2.2 Let the sequence $\varphi = (\varphi_k(v))$ of φ -functions satisfies the Δ_2 -condition for all k and for large v then $V^0_{\theta}((A, \varphi_k, \Delta^m_u), f_n)$ is linear space.

Proof. Firstly we prove that if $x = (x_k) \in V^0_{\theta}((A, \varphi_k, \Delta^m_u), f_n)$ and α is an arbitrary number then $\alpha x \in V^0_{\theta}((A, \varphi_k, \Delta^m_u), f_n)$. Let us remark that for $0 < \alpha < 1$ we get

$$\frac{1}{h_r} \sum_{n \in I_r} f_n \left(\sum_{k=1}^{\infty} a_{nk} \varphi_k \left(|\Delta_u^m \alpha x_k| \right) \right) \le \frac{1}{h_r} \sum_{n \in I_r} f_n \left(\sum_{k=1}^{\infty} a_{nk} \varphi_k \left(|\Delta_u^m x_k| \right) \right)$$

Moreover, if $\alpha > 1$ then we may find a positive number s such that $\alpha < 2^s$ and we obtain

$$\frac{1}{h_r} \sum_{n \in I_r} f_n \left(\sum_{k=1}^{\infty} a_{nk} \varphi_k \left(|\Delta_u^m \alpha x_k| \right) \right) \le \frac{1}{h_r} \sum_{n \in I_r} f_n \left(d^s \sum_{k=1}^{\infty} a_{nk} \varphi_k \left(|\Delta_u^m x_k| \right) \right)$$
$$\le \frac{K}{h_r} \sum_{n \in I_r} f_n \left(\sum_{k=1}^{\infty} a_{nk} \varphi_k \left(|\Delta_u^m x_k| \right) \right)$$

where d and K are constants connected with the properties of φ and f functions. We recall that a φ -function satisfying the Δ_2 -condition implies (1) and (2). Hence we obtain $\alpha x \in V^0_{\theta}((A, \varphi_k, \Delta^m_u), f_n)$.

Secondly, let $x, y \in V^0_{\theta}((A, \varphi_k, \Delta^m_u), f_n)$ and α, β arbitrary numbers. We will show that $\alpha x + \beta y \in V^0_{\theta}((A, \varphi_k, \Delta^m_u), f_n)$.

$$\begin{split} \frac{1}{h_r} \sum_{n \in I_r} f_n \left(\sum_{k=1}^{\infty} a_{nk} \varphi_k \left(\left| \Delta_u^m \left(\alpha x_k + \beta y_k \right) \right| \right) \right) &\leq \frac{K_1}{h_r} \sum_{n \in I_r} f_n \left(\sum_{k=1}^{\infty} a_{nk} \varphi_k \left(\left| \Delta_u^m x_k \right| \right) \right) \\ &+ \frac{K_2}{h_r} \sum_{n \in I_r} f_n \left(\sum_{k=1}^{\infty} a_{nk} \varphi_k \left(\left| \Delta_u^m y_k \right| \right) \right) \end{split}$$

where the constants K_1 and K_2 are defined as above. In consequence, $\alpha x + \beta y \in V^0_{\theta}((A, \varphi_k, \Delta^m_u), f_n).$

Now, we give the following Proposition that is necessary for proof of the Theorem 2.4.

Proposition 2.3 ([5]) Let f be a modulus and let $0 < \delta < 1$. Then for each $v \ge \delta$ we have $f(v) \le 2f(1)\delta^{-1}v$.

Theorem 2.4 Let $\varphi = (\varphi_k)$ and $f = (f_n)$ be given a sequence of φ functions and a sequence of modulus functions, respectively and $\sup_n f_n(1) < \infty$. Then $V^0_{\theta}(A, \varphi_k, \Delta^m_u) \subset V^0_{\theta}((A, \varphi_k, \Delta^m_u), f_n)$.

Proof. Let $x \in V^0_{\theta}(A, \varphi_k, \Delta^m_u)$ and put $\sup_n f_n(1) = M$. For a given $\varepsilon > 0$ we choose $0 < \delta < 1$ such that $f_n(x) < \varepsilon$ for every $x \in [0, \delta]$ and for all n. We can write

$$\frac{1}{h_r}\sum_{n\in I_r} f_n\left(\sum_{k=1}^{\infty} a_{nk}\varphi_k\left(|\Delta_u^m x_k|\right)\right) = S_1 + S_2$$

where

$$S_1 = \frac{1}{h_r} \sum_{n \in I_r} f_n \left(\sum_{k=1}^{\infty} a_{nk} \varphi_k \left(|\Delta_u^m x_k| \right) \right)$$

and this sum is taken over

$$\sum_{k=1}^{\infty} a_{nk} \varphi_k \left(\left| \Delta_u^m x_k \right| \right) \le \delta$$

and

$$S_2 = \frac{1}{h_r} \sum_{n \in I_r} f_n \left(\sum_{k=1}^{\infty} a_{nk} \varphi_k \left(|\Delta_u^m x_k| \right) \right)$$

and this sum is taken over

Metin Başarır et al.

$$\sum_{k=1}^{\infty} a_{nk} \varphi_k \left(\left| \Delta_u^m x_k \right| \right) > \delta.$$

By the definition of the modulus f we have

$$S_{1} \leq \frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(\delta\right) < \frac{1}{h_{r}}\left(h_{r}\varepsilon\right) = \varepsilon$$

and moreover

$$S_2 \le 2M \frac{1}{\delta} \frac{1}{h_r} \sum_{n \in I_r} \sum_{k=1}^{\infty} a_{nk} \varphi_k \left(|\Delta_u^m x_k| \right)$$

by Proposition 2.3. Finally we have $x \in V^0_{\theta}((A, \varphi_k, \Delta^m_u), f_n)$. This completes the proof.

Theorem 2.5 Let $\varphi = (\varphi_k)$ and $f = (f_n)$ be given a sequence of φ functions and a sequence of modulus functions, respectively. If $\lim_{v \to \infty} \inf_{v} \frac{f_n(v)}{v} >$ $0 \ then$

$$V_{\theta}^{0}\left(\left(A,\varphi_{k},\Delta_{u}^{m}\right),f_{n}\right)=V_{\theta}^{0}\left(A,\varphi_{k},\Delta_{u}^{m}\right).$$

Proof. If $\lim_{v\to\infty} \inf_n \frac{f_n(v)}{v} > 0$ then there exists a number c > 0 such that $f_n(v) > cv$ for v > 0 and $n \in N$. Let $x \in V^0_{\theta}((A, \varphi_k, \Delta^m_u), f_n)$. Clearly

$$\frac{1}{h_r} \sum_{n \in I_r} f_n \left(\sum_{k=1}^{\infty} a_{nk} \varphi_k \left(|\Delta_u^m x_k| \right) \right) \ge \frac{1}{h_r} \sum_{n \in I_r} c \left(\sum_{k=1}^{\infty} a_{nk} \varphi_k \left(|\Delta_u^m x_k| \right) \right)$$
$$= \frac{c}{h_r} \sum_{n \in I_r} \left(\sum_{k=1}^{\infty} a_{nk} \varphi_k \left(|\Delta_u^m x_k| \right) \right).$$

Therefore $x \in V^0_{\theta}(A, \varphi_k, \Delta^m_u)$. By using Theorem 2.4, the proof is completed.

Theorem 2.6 Let $\theta = (k_r)$ be a lacunary sequence and $f = (f_n)$ be a sequence of modulus functions.

(i) If $\liminf q_r > 1$ then $V^0((A, \varphi_k, \Delta_u^m), f_n) \subset V^0_\theta((A, \varphi_k, \Delta_u^m), f_n)$. (ii) If $\limsup q_r < \infty$ then $V^0_\theta((A, \varphi_k, \Delta_u^m), f_n) \subset V^0((A, \varphi_k, \Delta_u^m), f_n)$. (iii) If $1 < \liminf q_r \le \limsup q_r < \infty$ then $V^0_\theta((A, \varphi_k, \Delta_u^m), f_n) = V^0((A, \varphi_k, \Delta_u^m), f_n)$.

Proof. This can be proved by using the same techniques in [11] and hence we omit the proof.

The next result follows from Theorem 2.5 and Theorem 2.6.

Corollary 2.7 If $\lim_{v\to\infty} \inf_{n} \frac{f_n(v)}{v} > 0$ and $1 < \liminf_{v \to \infty} q_r < \infty$ then $V^0_{\theta}(A, \varphi_k, \Delta^m_u) = V^0((A, \varphi_k, \Delta^m_u), f_n).$

3 $S^0_{\theta}(A, \varphi_k, \Delta^m_u)$ -Statistical Convergence

Let the matrix $A = (a_{nk})$ be given as previously, $\theta = (k_r)$ be a lacunary sequence, the sequence of φ -functions $\varphi = (\varphi_k)$ and a positive number $\varepsilon > 0$ be given. We write,

$$K_{\theta}^{r}\left(\left(A,\varphi_{k},\Delta_{u}^{m}\right),\varepsilon\right)=\left\{n\in I_{r}:\sum_{k=1}^{\infty}a_{nk}\varphi_{k}\left(\left|\Delta_{u}^{m}x_{k}\right|\right)\geq\varepsilon\right\}.$$

The sequence x is said to be lacunary $(A, \varphi_k, \Delta_u^m)$ - statistically convergent to a number zero if for every $\varepsilon > 0$

$$\lim_{r} \frac{1}{h_{r}} \mu\left(K_{\theta}^{r}\left(\left(A, \varphi_{k}, \Delta_{u}^{m}\right), \varepsilon\right)\right) = 0$$

where $\mu(K_{\theta}^{r}(((A, \varphi_{k}, \Delta_{u}^{m}), \varepsilon)))$ denotes the number of element belonging to $K_{\theta}^{r}(((A, \varphi_{k}, \Delta_{u}^{m}), \varepsilon)))$. We denote by $S_{\theta}^{0}(A, \varphi_{k}, \Delta_{u}^{m})$, the set of sequences $x = (x_{k})$ which are lacunary $(A, \varphi_{k}, \Delta_{u}^{m})$ -statistically convergent to a number zero. We write

$$S^{0}_{\theta}\left(A,\varphi_{k},\Delta^{m}_{u}\right) = \left\{x = \left(x_{k}\right) : \lim_{r} \frac{1}{h_{r}}\mu\left(K^{r}_{\theta}\left(\left(A,\varphi_{k},\Delta^{m}_{u}\right),\varepsilon\right)\right) = 0\right\}.$$

When we take $\theta = (2^r)$, $S_{\theta}^0(A, \varphi_k, \Delta_u^m)$ reduces to $S^0(A, \varphi_k, \Delta_u^m)$.

If we take A = I and $\varphi_k(x) = x$ for all k and x, then $S^0_{\theta}(A, \varphi_k, \Delta^m_u)$ reduces to $S^0_{\theta}(\Delta^m_u)$ defined by

$$S^0_{\theta}\left(\Delta^m_u\right) = \left\{ x = (x_k) : \lim_r \frac{1}{h_r} \mu\left(\left\{k \in I_r : \left(|\Delta^m_u x_k|\right) \ge \varepsilon\right\}\right) = 0 \right\}$$

Now we have,

Theorem 3.1 Let $\theta = (k_r)$ be a lacunary sequence, $\varphi = (\varphi_k(v))$ and $\psi = (\psi_k(v))$ are two sequences of φ -functions.

(i) If $\psi \prec \varphi$ and φ_k satisfies the Δ_2 -condition for large v and for all k then $S^0_{\theta}(A, \psi_k, \Delta^m_u) \subset S^0_{\theta}(A, \varphi_k, \Delta^m_u).$

(ii) If $\varphi \sim \psi$ and φ_k and ψ_k satisfy the Δ_2 -condition for large v and for all k then $S^0_{\theta}(A, \psi_k, \Delta^m_u) = S^0_{\theta}(A, \varphi_k, \Delta^m_u)$.

Proof. (i) Let $x \in S^0_{\theta}(A, \psi_k, \Delta^m_u)$. By assumption we have $\psi_k(|\Delta^m_u x_k|) \leq b\varphi_k(c |\Delta^m_u x_k|)$ and we have for all n and m,

$$\sum_{k=1}^{\infty} a_{nk} \psi_k \left(|\Delta_u^m x_k| \right) \le b \sum_{k=1}^{\infty} a_{nk} \varphi_k \left(c \left| \Delta_u^m x_k \right| \right) \le K \sum_{k=1}^{\infty} a_{nk} \varphi_k \left(|\Delta_u^m x_k| \right)$$

for b, c > 0, where the constant K is connected with properties of φ functions. Thus the condition $\sum_{k=1}^{\infty} a_{nk}\psi_k (|\Delta_u^m x_k|) \ge \varepsilon$ implies the condition $\sum_{k=1}^{\infty} a_{nk}\varphi_k (|\Delta_u^m x_k|) \ge \varepsilon$ and in consequence we get

$$K^{r}_{\theta}\left(\left(A,\varphi_{k},\Delta^{m}_{u}\right),\varepsilon\right)\subset K^{r}_{\theta}\left(\left(A,\psi_{k},\Delta^{m}_{u}\right),\varepsilon\right)$$

and

$$\lim_{r} \frac{1}{h_{r}} \mu\left(K_{\theta}^{r}\left(\left(A, \varphi_{k}, \Delta_{u}^{m}\right), \varepsilon\right)\right) \leq \lim_{r} \frac{1}{h_{r}} \mu\left(K_{\theta}^{r}\left(\left(A, \psi_{k}, \Delta_{u}^{m}\right), \varepsilon\right)\right).$$

This completes the proof.

(ii) The identity $S^0_{\theta}(A, \psi_k, \Delta^m_u) = S^0_{\theta}(A, \varphi_k, \Delta^m_u)$ is proved by using the same argument.

Theorem 3.2 Let $f = (f_n)$ be given a sequence of modulus functions. If $\inf_n f_n(v) > 0$ then

$$V^{0}_{\theta}\left(\left(A,\varphi_{k},\Delta^{m}_{u}\right),f_{n}\right)\subset S^{0}_{\theta}\left(A,\varphi_{k},\Delta^{m}_{u}\right).$$

Proof. If $\inf_{n} f_{n}(v) > 0$ then there exists a number $\alpha > 0$ such that $f_{n}(v) \geq \alpha$ for v > 0 and $n \in N$. Let $x \in V^{0}_{\theta}((A, \varphi_{k}, \Delta_{u}^{m}), f_{n})$.

$$\frac{1}{h_r} \sum_{n \in I_r} f_n \left(\sum_{k=1}^{\infty} a_{nk} \varphi_k \left(|\Delta_u^m x_k| \right) \right) \ge \frac{1}{h_r} \sum_{\substack{n \in I_r \\ \sum_{k=1}^{\infty} a_{nk} \varphi_k \left(|\Delta_u^m x_k| \right) \ge \varepsilon}} f_n \left(\sum_{k=1}^{\infty} a_{nk} \varphi_k \left(|\Delta_u^m x_k| \right) \right) \ge \frac{1}{h_r} \sum_{k=1}^{\infty} a_{nk} \varphi_k \left(|\Delta_u^m x_k| \right) \ge \varepsilon \right)$$

and it follows that $x \in S^0_{\theta}(A, \varphi_k, \Delta^m_u)$.

Theorem 3.3 Let $f = (f_n)$ be given a sequence of modulus functions. If $\sup_{v} \sup_{n} f_n(v) < \infty$ then $S^0_{\theta}(A, \varphi_k, \Delta^m_u) \subset V^0_{\theta}((A, \varphi_k, \Delta^m_u), f_n)$.

Proof. We suppose $T(v) = \sup_{n} f_n(v)$ and $T = \sup_{v} T(v)$. Let $x \in S^0_{\theta}(A, \varphi_k, \Delta^m_u)$. Since $f_n(v) \leq T$ for $n \in N$ and v > 0, we have

$$\frac{1}{h_r} \sum_{n \in I_r} f_n \left(\sum_{k=1}^{\infty} a_{nk} \varphi_k \left(|\Delta_u^m x_k| \right) \right) \ge \frac{1}{h_r} \sum_{\substack{n \in I_r \\ \sum_{k=1}^{\infty} a_{nk} \varphi_k \left(|\Delta_u^m x_k| \right) \ge \varepsilon}} f_n \left(\sum_{k=1}^{\infty} a_{nk} \varphi_k \left(|\Delta_u^m x_k| \right) \right)$$

$$+\frac{1}{h_r}\sum_{\substack{n\in I_r\\\sum_{k=1}^{\infty}a_{nk}\varphi_k(|\Delta_u^m x_k|)<\varepsilon}}f_n\left(\sum_{k=1}^{\infty}a_{nk}\varphi_k(|\Delta_u^m x_k|)\right)$$
$$\leq \frac{T}{h_r}\left|\left\{n\in I_r:\sum_{k=1}^{\infty}a_{nk}\varphi_k(|\Delta_u^m x_k|)\geq\varepsilon\right\}\right|+T(\varepsilon).$$

Taking the limit as $\varepsilon \to 0$, it follows that $x \in V^0_{\theta}((A, \varphi_k, \Delta^m_u), f_n)$.

Corollary 3.4 Let $f = (f_n)$ be given a sequence of modulus functions. If $\inf_n f_n(v) > 0$ (v > 0) and $\sup_v \sup_n f_n(v) < \infty$ then $S^0_{\theta}(A, \varphi_k, \Delta^m_u) = V^0_{\theta}((A, \varphi_k, \Delta^m_u), f_n).$

References

- A.R. Freedman, J.J. Sember and M. Raphael, Some Cesaro-type summability spaces, Proc. London Math. Soc., 37(3) (1978), 508-520.
- [2] H. Kızmaz, On certain sequence spaces, Canad. Math. Bull., 24(1981), 169-176.
- [3] M. Et and R. Çolak, On some generalized difference sequence spaces, Soochow Journal of Math., 21(4) (1995), 377-386.
- [4] M. Et and M. Başarır, On some new generalized difference sequence spaces, *Period. Math. Hung.*, 35(1997), 169-175.
- [5] S. Pehlivan and B. Fisher, Some sequence spaces defined by a modulus function, *Math. Slovaca*, 44(1994).
- [6] A.H.A. Bataineh, On a generalized difference sequence spaces defined by a modulus function and statistical convergence, *Commun. Korean Math. Soc.*, 21(2) (2006), 261-272.
- [7] E. Malkowsky and S.D. Parashar, Matrix transformations in spaces of bounded and convergent difference sequences of order m, *Analysis*, 17 (1997), 87-97.
- [8] E. Kolk and A. Mölder, Inclusion theorems for some sets of sequences defined by φ -functions, *Math. Slovaca*, 54(3) (2004), 267-279.
- [9] W.H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, *Canad. J. Math.*, 25(1973), 973-978.

- [10] I.J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Camb. Phil. Soc., 100(1986), 161-166.
- [11] S. Pehlivan and B. Fisher, Lacunary strong convergence with respect to a sequence of modulus functions, *Comment. Math. Univ. Carolinae*, 36(1) (1995), 71-78.
- [12] T. Bilgin, On statistical convergence, An. Univ. Timisoara Ser. Math. Inform., 32(1) (1994), 3-7.
- [13] V. Karakaya and N. Şimşek, On lacunary invariant sequence spaces defined by a sequence of modulus functions, *App. Math. And Comp.*, 156(2004), 597-603.
- [14] E. Savaş, On some generalized sequence spaces defined by a modulus, Indian J. Pure and Appl. Math., 30(5) (1999), 459-464.
- [15] M. Başarır and S. Altundağ, Some difference sequence spaces defined by a sequence of φ functions, *Rendiconti del Circolo Matematico di Palermo*, 57(2008), 149-160.
- [16] A. Waszak, Some remarks on strong convergence in modular spaces of sequences, *Fasc. Math.*, 35(2005), 151-162.
- [17] A. Waszak, On the strong convergence in some sequence spaces, Fasc. Math., 73(2002), 125-137.
- [18] M. Et, Y. Altın and H. Altınok, On some generalized difference sequence spaces defined by a modulus function, *Filomat*, 17(2003), 23-33.
- [19] M. Başarır, On lacunary strong σ -convergence with respect to a sequence of φ -functions, *Fasc. Math.*, 43(2010), 19-32.