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1 Introduction

The concept of fuzzy sets was introduced by Zadeh[11] following the con-
cept of fuzzy sets, fuzzy metric spaces have been introduced by Kramosil and
Michalek [4] and George and Veeramani [3] modified the notion of fuzzy met-
ric spaces with the help of continuous t-norms. As a generalization of fuzzy
sets, Atanassove [2] introduced and studied the concept of intuitionistic fuzzy
sets. Park [6] using the idea of intuitionistic fuzzy sets defined the notion of
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intuitionistic fuzzy metric spaces with the help of continuous t-norms and con-
tinuous t-conorms as a generalized fuzzy metric spaces, George and Veeramani
[3] showed that every metric induces an intuitionistic fuzzy metric, every fuzzy
metric space in an intuitionistic fuzzy metric space.

In 2006, Sedghi and Shobe [8] defined M-fuzzy metric spaces and proved
a common fixed point theorem for four weakly compatible mappings in this
spaces. In 2012, Veerapandi etc.,[11] defined common fixed point theorem
for sequence of mappings in M-fuzzy metric spaces. Our result is generalized
some common fixed point theorem for the sequence of mappings in complete
intuitionistic generalized fuzzy metric spaces. Our results intuitionistically
fuzzify the result of Veerapandi etc., [11].

2 Preliminaries

Definition 2.1 A binary operation ∗ : [0, 1]× [0, 1]→ [0, 1] is a continuous
t-norm if it satisfies the following conditions :

(1) ∗ is associative and commutative,

(2) ∗ is continuous,

(3) a ∗ 1 = a for all a ∈ [0, 1],

(4) a ∗ b ≤ c ∗ d Whenever a ≤ c and b ≤ d, for each a, b, c, d ∈ [0, 1].

Two typical examples of a continuous t-norm are a ∗ b = ab and
a ∗ b = min {a, b}

Definition 2.2 A binary operation � : [0, 1]× [0, 1]→ [0, 1] is a continuous
t-conorm if it satisfies the following conditions :

(1) � is associative and commutative,

(2) � is continuous,

(3) a � 0 = a for all a ∈ [0, 1],

(4) a � b ≤ c � d Whenever a ≤ c and b ≤ d, for each a, b, c, d ∈ [0, 1].

Two typical examples of a continuous t-conorm are a� b = min {1, a + b} and
a � b = max {a, b}

Definition 2.3 A 5-tuple (X,M,N, ∗, �) is called an intuitionistic general-
ized fuzzy metric space if X is an arbitrary (non-empty) set, ∗ is a continuous
t-norm, � a continuous t-conorm and M,N are fuzzy sets on X3 × (0,∞),
satisfying the following conditions:
for each x, y, z, a ∈ X and t, s > 0.
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a) M(x, y, z, t) + N (x, y, z, t) ≤ 1,

b) M(x, y, z, t) > 0,

c) M(x, y, z, t) = 1 if and only if x = y = z,

d) M(x, y, z, t) = M (p {x, y, z} , t) where p is permutation function,

e) M(x, y, z, a, t) ∗M (a, z, z, s) ≤M (x, y, z, t + s),

f) M(x, y, z, .) : (0,∞)→ [0, 1] is continuous,

g) N(x, y, z, t) > 0,

h) N(x, y, z, t) = 0 if and only if x = y = z,

i) N(x, y, z, t) = N (p {x, y, z} , t) where p is permutation function,

j) N(x, y, z, a, t) �N (a, z, z, s) ≥ N (x, y, z, t + s),

k) N(x, y, z, .) : (0,∞)→ [0, 1] is continuous.

Then (M,N) is called an intuitionistic generalized fuzzy metric on X.

Definition 2.4 Let (X,M,N, ∗, �) be an intuitionistic generalized fuzzy met-
ric space. Then M,N is called of first type if for every x, y ∈ X we have
M(x, x, y, t) ≥M(x, y, z, t) for every z ∈ X and
N(x, x, y, t) ≤ N(x, y, z, t)
Also it is called of second type if for every x, y, z ∈ X we have
M(x, y, z, t) = M(x, y, t) ∗M(y, z, t) ∗M(z, x, t) and
N(x, y, z, t) = N(x, y, t) �N(y, z, t) �N(z, x, t)

Lemma 2.5 Let (X,M,N, ∗, �) be an intuitionistic generalized fuzzy metric
space. Then M(x, y, z, t) and N(x, y, z, t) are non-decreasing with respect to t,
for all x, y, z in X.

Definition 2.6 Let (X,M,N, ∗, �) be a intuitionistic generalized fuzzy met-
ric spaces and {xn} be a sequence in X.

(a) {xn} is said to be converge to a point x ∈ X if
lim
n→∞

M(x, x, xn, t) = 1 and lim
n→∞

N(x, x, xn, t) = 0 for all t > 0.

(b) {xn} is called Cauchy sequence if lim
n→∞

M(xn+p, xn+p, xn, t) = 1 and

lim
n→∞

N(xn+p, xn+p, xn, t) = 0 for all t > 0 and p > 0.

(c) A intuitionistic fuzzy metric space in which every Cauchy sequence is
convergent is said to be complete.
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3 Main Results

Theorem 3.1 Let (X,M,N, ∗, �) be a complete intuitionistic generalized
fuzzy metric space and Tn : X → X be a sequence of mappings such that for
all t > 0 and 0 < k < 1 satisfying the condition.

3M
(
Tix, Tjy, Tjy, t

)
≤
{
M
(
x, y, y,

t

k

)
+ M

(
x, x, Tix,

t

k

)
+ M

(
y, y, Tjy,

t

k

)}
and 3N

(
Tix, Tjy, Tjy, t

)
≥
{
N
(
x, y, y,

t

k

)
+ N

(
x, x, Tix,

t

k

)
+ N

(
y, y, Tjy,

t

k

)}
for all i 6= j for all x, y ∈ X. Then {Tn} have a unique common fixed point.
Proof: Let x0 ∈ X be any arbitrary element.
Define a sequence {xn} in X as xn+1 = Tn+1xn for n = 0, 1, 2, ...
Now we prove that {xn} is a Cauchy sequence in X. For n ≥ 0, we have

3M(xn+1, xn+2, xn+2, t) = 3M(Tn+1xn, Tn+2xn+1, Tn+2xn+1, t)

≥

 M
(
xn, xn+1, xn+1,

t
k

)
+ M

(
xn, xn, Tn+1xn,

t
k

)
+

M
(
xn+1, xn+1, Tn+2xn+1,

t
k

) 
=

 M
(
xn, xn+1, xn+1,

t
k

)
+ M

(
xn, xn, xn+1,

t
k

)
+

M
(
xn+1, xn+1, xn+2,

t
k

) 
= 2M

(
xn, xn+1, xn+1,

t

k

)
+ M

(
xn+1, xn+2, xn+2,

t

k

)
≥ 2M

(
xn, xn+1, xn+1,

t

k

)
+ M(xn+1, xn+2, xn+2, t)

Therefore 2M(xn+1, xn+2, xn+2, t) ≥ 2M
(
xn, xn+1, xn+1,

t
k

)
That is M(xn+1, xn+2, xn+2, t) ≥M

(
xn, xn+1, xn+1,

t
k

)
and

3N(xn+1, xn+2, xn+2, t) = 3N(Tn+1xn, Tn+2xn+1, Tn+2xn+1, t)

≤

 N
(
xn, xn+1, xn+1,

t
k

)
+ N

(
xn, xn, Tn+1xn,

t
k

)
+

N
(
xn+1, xn+1, Tn+2xn+1,

t
k

) 
=

 N
(
xn, xn+1, xn+1,

t
k

)
+ N

(
xn, xn, xn+1,

t
k

)
+

N
(
xn+1, xn+1, xn+2,

t
k

) 
= 2N

(
xn, xn+1, xn+1,

t

k

)
+ N

(
xn+1, xn+2, xn+2,

t

k

)
≤ 2N

(
xn, xn+1, xn+1,

t

k

)
+ N(xn+1, xn+2, xn+2, t)
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Therefore 2N(xn+1, xn+2, xn+2, t) ≤ 2N
(
xn, xn+1, xn+1,

t
k

)
That is N(xn+1, xn+2, xn+2, t) ≤ N

(
xn, xn+1, xn+1,

t
k

)
Contuining this way, we get

M(xn+1, xn+2, xn+2, t) ≥M
(
xn, xn+1, xn+1,

t

k

)
≥M

(
xn−1, xn, xn,

t

k2

)
...

≥M
(
x0, x1, x1,

t

kn+1

)
Now for any positive integer p and t > 0, we have

M(xn, xn+p, xn+p, t) ≥M
(
xn, xn+1, xn+1,

t

p

)
∗ p times ∗M

(
xn+p−1, xn+p, xn+p,

t

p

)
≥M

(
x0, x1, x1,

t

pkn

)
∗ p times ∗M

(
x0, x1, x1,

t

pkn+p−1

)
Therefore
lim
n→∞

M(xn, xn+p, xn+p, t) ≥ 1 ∗ p times ∗ 1 = 1

Continuing this way, we get

N(xn+1, xn+2, xn+2, t) ≤ N
(
xn, xn+1, xn+1,

t

k

)
≤ N

(
xn−1, xn, xn,

t

k2

)
...

≤ N
(
x0, x1, x1,

t

kn+1

)
Now for any positive integer p and t > 0, we have

N(xn, xn+p, xn+p) ≤ N
(
xn, xn+1, xn+1,

t

p

)
� p times �N

(
xn+p−1, xn+p, xn+p,

t

p

)
≤ N

(
x0, x1, x1,

t

pkn

)
� p times �N

(
x0, x1, x1,

t

pkn+p−1

)
Therefore
lim
n→∞

N(xn, xn+p, xn+p, t) ≤ 0 � p times � 0 = 0

Which implies that {xn} is a Cauchy sequence in intuitionistic generalized
fuzzy metric space X. Since X is intuitionistic generalized fuzzy complete,
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sequence {xn} converges to a point x ∈ X. Now we prove that x is a fixed
point of {Tn} for all n. Now we have

3M(Tmx, x, x, t) = lim
n→∞

3M(Tmx, xn+2, xn+2, t)

= lim
n→∞

3M(Tmx, Tn+2xn+1, Tn+2xn+1, t)

≥ lim
n→∞

 M
(
x, xn+1, xn+1,

t
k

)
+ M

(
x, x, Tmx,

t
k

)
+

M
(
xn+1, xn+1, Tn+2xn+1,

t
k

) 
= lim

n→∞

 M
(
x, xn+1, xn+1,

t
k

)
+ M

(
x, x, Tmx,

t
k

)
+

M
(
xn+1, xn+1, xn+2,

t
k

) 
=

{
M
(
x, x, x,

t

k

)
+ M

(
x, x, Tmx,

t

k

)
+ M

(
x, x, x,

t

k

)}
=

{
1 + M

(
x, x, Tmx,

t

k

)
+ 1

}
= 2 + M

(
x, x, Tmx,

t

k

)
≥ 2 + M(x, x, Tmx, t)

Therefore, 2M(Tmx, x, x, t) ≥ 2, That is, M(Tmx, x, x, t) ≥ 1
Hence M(Tmx, x, x, t) = 1 for all t > 0. Therefore Tmx = x.
Hence Tnx = x for all n and

3N(Tmx, x, x, t) = lim
n→∞

3N(Tmx, xn+2, xn+2, t)

= lim
n→∞

3N(Tmx, Tn+2xn+1, Tn+2xn+1, t)

≤

 N
(
x, xn+1, xn+1,

t
k

)
+ N

(
x, x, Tmx,

t
k

)
+

N
(
xn+1, xn+1, Tn+2xn+1,

t
k

) 
= lim

n→∞

 N
(
x, xn+1, xn+1,

t
k

)
+ N

(
x, x, Tmx,

t
k

)
+

N
(
xn+1, xn+1, xn+2,

t
k

) 
=

{
N
(
x, x, x,

t

k

)
+ N

(
x, x, Tmx,

t

k

)
+ N

(
x, x, x,

t

k

)}
=

{
0 + N

(
x, x, Tmx,

t

k

)
+ 0

}
= 0 + N

(
x, x, Tmx,

t

k

)
≤ N(x, x, Tmx, t)

Therefore, 2N(Tmx, x, x, t) ≤ 0. That is, N(Tmx, x, x, t) ≤ 0
Hence N(Tmx, x, x, t) = 0 for all t > 0. Therefore Tmx = x.
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Hence Tnx = x for all n. Therefore x is a common fixed point of {Tn}.

Uniqueness: Suppose x 6= y such that Tny = y for all n. Then

3M(x, y, y, t) = 3M(Tix, Tjy, Tjy, t)

≥
{
M
(
x, y, y,

t

k

)
+ M

(
x, x, Tix,

t

k

)
+ M

(
y, y, Tjy,

t

k

)}
=

{
M
(
x, y, y,

t

k

)
+ M

(
x, x, x,

t

k

)
+ M

(
y, y, y,

t

k

)}
= M

(
x, y, y,

t

k

)
+ 2

≥M(x, y, y, t) + 2

Therefore 2M(x, y, y, t) ≥ 2. That is M(x, y, y, t) ≥ 1
Hence M(x, y, y, t) = 1 for all t > 0 and

3N(x, y, y, t) = 3N(Tix, Tjy, Tjy, t)

≤
{
N
(
x, y, y,

t

k

)
+ N

(
x, x, Tix,

t

k

)
+ N

(
y, y, Tjy,

t

k

)}
=

{
N
(
x, y, y,

t

k

)
+ N

(
x, x, x,

t

k

)
+ N

(
y, y, y,

t

k

)}
= N

(
x, y, y,

t

k

)
+ 0

≤ N(x, y, y, t) + 0

Therefore 2N(x, y, y, t) ≤ 0. That is N(x, y, y, t) ≤ 0
Hence N(x, y, y, t) = 0 for all t > 0.
Therefore, x = y. Which is a contradiction to x 6= y.
Hence {Tn} have a unique common fixed point.

Corollary 3.2 Let (X,M,N, ∗, �) be a complete intuitionistic generalized
fuzzy metric space and Tn : X → X be a sequence of maps such that for all
t > 0 and 0 < k < 1 satisfying the condition.

M
(
Tix, Tjy, Tjy, t

)
≥ min

{
M
(
x, y, y,

t

k

)
,M
(
x, x, Tix,

t

k

)
,M
(
y, y, Tjy,

t

k

)}
and N

(
Tix, Tjy, Tjy, t

)
≤ max

{
N
(
x, y, y,

t

k

)
,N
(
x, x, Tix,

t

k

)
,N
(
y, y, Tjy,

t

k

)}
for all i 6= j and for all x, y ∈ X. Then {Tn} have unique common fixed point.
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Corollary 3.3 Let (X,M,N, ∗, �) be a complete intuitionistic generalized
fuzzy metric space with continuous t-norm ∗ is defined by a ∗ b = min {a, b}
and continuous t-conorms � is defined by a � b = max {a, b} and Tn : X → X
be a sequence of maps such that for all t > 0 and 0 < k < 1 satisfying the
condition.

M
(
Tix, Tjy, Tjy, t

)
≥
{
M
(
x, y, y,

t

k

)
∗M

(
x, x, Tix,

t

k

)
∗M

(
y, y, Tjy,

t

k

)}
and N

(
Tix, Tjy, Tjy, t

)
≤
{
N
(
x, y, y,

t

k

)
�N
(
x, x, Tix,

t

k

)
�N
(
y, y, Tjy,

t

k

)}
for all i 6= j and for all x, y ∈ X. Then {Tn} have unique common fixed point.

Corollary 3.4 Let (X,M,N, ∗, �) be a complete intuitionistic generalized
fuzzy metric space with continuous t-norm ∗ is defined by a ∗ b = min {a, b}
and continuous t-conorms � is defined by a � b = max {a, b} and Tn : X → X
be a sequence of maps such that for all t > 0 and 0 < k < 1 satisfying the
condition.

M
(
Tix, Tjy, Tjy, t

)
≥ min

 M
(
x, y, y, t

k

)
,M
(
x, x, Tix,

t
k

)
,

M
(
y, y, Tjy,

t
k

)
,M
(
x, x, Tjy,

2t
k

)  and

N
(
Tix, Tjy, Tjy, t

)
≤ max

 N
(
x, y, y, t

k

)
,N
(
x, x, Tix,

t
k

)
,

N
(
y, y, Tjy,

t
k

)
,N
(
x, x, Tjy,

2t
k

) 
for all i 6= j and for all x, y ∈ X. Then {Tn} have unique common fixed point.

Theorem 3.5 Let (X,M,N, ∗, �) be a complete first type intuitionistic gen-
eralized fuzzy metric space and Tn : X → X be a sequence of maps such that
for all t > 0 and 0 < k < 1 satisfying the condition.

3M(Tix, Tjy, Tkz, t) ≥

 M
(
x, y, z, t

k

)
+ M

(
x, Tix, Tjy,

t
k

)
+1

2

[
M
(
y, Tjy, Tkz,

t
k

)
+ M

(
z, Tkz, Tix,

t
k

)]  and

3N(Tix, Tjy, Tkz, t) ≤

 N
(
x, y, z, t

k

)
+ N

(
x, Tix, Tjy,

t
k

)
+1

2

[
N
(
y, Tjy, Tkz,

t
k

)
+ N

(
z, Tkz, Tix,

t
k

)] 
for all i 6= j 6= k and for all x, y, z ∈ X. Then {Tn} have unique common fixed
point.
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Proof: Let x0 ∈ X be any arbitrary element.
Define a sequence {xn} in X as xn+1 = Tn+1xn for n = 0, 1, 2...
now we prove that {xn} is a Cauchy sequence in X.
For n ≥ 0, we have

3M(xn+1, xn+2, xn+3, t) = 3M(Tn+1xn, Tn+2xn+1, Tn+3xn+2, t)

≥


M
(
xn, xn+1, xn+2,

t
k

)
+ M

(
xn, Tn+1xn, Tn+2xn+1,

t
k

)
+

1
2

[ M
(
xn+1, Tn+2xn+1, Tn+3xn+2,

t
k

)
+

M
(
xn+2, Tn+3xn+2, Tn+1xn,

t
k

) ]


=

 M
(
xn, xn+1, xn+2,

t
k

)
+ M

(
xn, xn+1, xn+2,

t
k

)
+

1
2

[
M
(
xn+1, xn+2, xn+3,

t
k

)
+ M

(
xn+2, xn+3, xn+1,

t
k

)] 
=

 M
(
xn, xn+1, xn+2,

t
k

)
+ M

(
xn, xn+1, xn+2,

t
k

)
+

M
(
xn+1, xn+2, xn+3,

t
k

) 
= 2M

(
xn, xn+1, xn+2,

t

k

)
+ M

(
xn+1, xn+2, xn+3,

t

k

)
≥ 2M

(
xn, xn+1, xn+2,

t

k

)
+ M(xn+1, xn+2, xn+3, t)

Therefore
2M(xn+1, xn+2, xn+3, t) ≥ 2M

(
xn, xn+1, xn+2,

t
k

)
That is M(xn+1, xn+2, xn+3, t) ≥M

(
xn, xn+1, xn+2,

t
k

)
and

3N(xn+1, xn+2, xn+3, t) = 3N(Tn+1xn, Tn+2xn+1, Tn+3xn+2, t)

≤


N
(
xn, xn+1, xn+2,

t
k

)
+ N

(
xn, Tn+1xn, Tn+2xn+1,

t
k

)
+

1
2

[ N
(
xn+1, Tn+2xn+1, Tn+3xn+2,

t
k

)
+

N
(
xn+2, Tn+3xn+2, Tn+1xn,

t
k

) ]


=

 N
(
xn, xn+1, xn+2,

t
k

)
+ N

(
xn, xn+1, xn+2,

t
k

)
+

1
2

[
N
(
xn+1, xn+2, xn+3,

t
k

)
+ N

(
xn+2, xn+3, xn+1,

t
k

)] 
=

 N
(
xn, xn+1, xn+2,

t
k

)
+ N

(
xn, xn+1, xn+2,

t
k

)
+

N
(
xn+1, xn+2, xn+3,

t
k

) 
= 2N

(
xn, xn+1, xn+2,

t

k

)
+ N

(
xn+1, xn+2, xn+3,

t

k

)
≤ 2N

(
xn, xn+1, xn+2,

t

k

)
+ N(xn+1, xn+2, xn+3, t)
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Therefore
2N(xn+1, xn+2, xn+3, t) ≤ 2N

(
xn, xn+1, xn+2,

t
k

)
That is N(xn+1, xn+2, xn+3, t) ≤ N

(
xn, xn+1, xn+2,

t
k

)
continuing this way, we get

M(xn+1, xn+2, xn+3, t) ≥M
(
xn, xn+1, xn+2,

t

k

)
≥M

(
xn−1, xn, xn+1,

t

k2

)
...

≥M
(
x0, x1, x2,

t

kn+1

)
→ 1 as n→∞ and

Continuing this way, we get

N(xn+1, xn+2, xn+3, t) ≤ N
(
xn, xn+1, xn+2,

t

k

)
≤ N

(
xn−1, xn, xn+1,

t

k2

)
...

≤ N
(
x0, x1, x2,

t

kn+1

)
→ 0 as n→∞ and

Since M is first type, we have
M(xn+1, xn+1, xn+2, t) ≥M(xn+1, xn+2, xn+3, t)
Therefore, M(xn+1, xn+1, xn+2, t)→ 1 as n→∞
Since N is first type, we have
N(xn+1, xn+1, xn+2, t) ≤ N(xn+1, xn+2, xn+3, t)
Therefore, N(xn+1, xn+1, xn+2, t)→ 0 as n→∞
Now for any positive integer p and t > 0, we have

M(xn, xn+p, xn+p, t) ≥M
(
xn, xn+1, xn+1,

t
p

)
∗ p times ∗M

(
xn+p−1, xn+p, xn+p,

t
p

)
Taking limit as n→∞ we get
lim
n→∞

M(xn, xn+p, xn+p, t) ≥ 1 ∗ p times ∗ 1 = 1

Therefore lim
n→∞

M(xn, xn+p, xn+p, t) = 1 and

Now for any positive integer p and t > 0, we have

N(xn, xn+p, xn+p, t) ≤ N
(
xn, xn+1, xn+1,

t
p

)
�p times�N

(
xn+p−1, xn+p, xn+p,

t
p

)
Taking limit as n→∞ we get
lim
n→∞

N(xn, xn+p, xn+p, t) ≤ 0 � p times � 0 = 0

Therefore lim
n→∞

N(xn, xn+p, xn+p, t) = 0
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which implies that {xn} is a Cauchy sequence in intuitionistic generalized fuzzy
metric space X.
Since X is a intuitionistic generalized fuzzy complete, sequence {xn} converges
to a point x ∈ X. Now we prove that x is a fixed point of {Tn} for all n.
Now we have

3M
(
Tmx, x, x, t

)
= lim

n→∞
3M
(
Tmx, xn+2, xn+3, t

)
= lim

n→∞
3M
(
Tmx, Tn+2xn+1, Tn+3xn+2, t

)

≥ lim
n→∞


M
(
x, xn+1, xn+2,

t
k

)
+ M

(
x, Tmx, Tn+2xn+1,

t
k

)
+

1
2

[ M
(
xn+1, Tn+2xn+1, Tn+3xn+2,

t
k

)
+

M
(
xn+2, Tn+3xn+2, Tmx,

t
k

) ]


= lim
n→∞

 M
(
xn, xn+1, xn+2,

t
k

)
+ M

(
x, Tmx, xn+2,

t
k

)
+

1
2

[
M
(
xn+1, xn+2, xn+3,

t
k

)
+ M

(
xn+2, xn+3, Tmx,

t
k

)] 
=

 M
(
x, x, x, t

k

)
+ M

(
x, Tmx, x,

t
k

)
+

1
2

[
M
(
x, x, x, t

k

)
+ M

(
x, x, Tmx,

t
k

)] 
=

{
1 + M

(
Tmx, x, x,

t

k

)
+

1

2

[
1 + M

(
Tmx, x, x,

t

k

)]}
=

1

2

[
3M
(
Tmx, x, x,

t

k

)
+ 3
]

6M
(
Tmx, x, x, t

)
≥ 3M

(
Tmx, x, x,

t

k

)
+ 3

≥ 3M(Tmx, x, x, t) + 3

Therefore, 3M(Tmx, x, x, t) ≥ 3. That is M(Tmx, x, x, t) ≥ 1.
Hence M(Tmx, x, x, t) = 1 for all t > 0. That is Tmx = x.
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Hence Tnx = x for all n.

3N
(
Tmx, x, x, t

)
= lim

n→∞
3N
(
Tmx, xn+2, xn+3, t

)
= lim

n→∞
3N
(
Tmx, Tn+2xn+1, Tn+3xn+2, t

)

≤ lim
n→∞


N
(
x, xn+1, xn+2,

t
k

)
+ N

(
x, Tmx, Tn+2xn+1,

t
k

)
+

1
2

[ N
(
xn+1, Tn+2xn+1, Tn+3xn+2,

t
k

)
+

N
(
xn+2, Tn+3xn+2, Tmx,

t
k

) ]


= lim
n→∞

 N
(
xn, xn+1, xn+2,

t
k

)
+ N

(
x, Tmx, xn+2,

t
k

)
+

1
2

[
N
(
xn+1, xn+2, xn+3,

t
k

)
+ N

(
xn+2, xn+3, Tmx,

t
k

)] 
=

 N
(
x, x, x, t

k

)
+ N

(
x, Tmx, x,

t
k

)
+

1
2

[
N
(
x, x, x, t

k

)
+ N

(
x, x, Tmx,

t
k

)] 
=

{
0 + N

(
Tmx, x, x,

t

k

)
+

1

2

[
0 + N

(
Tmx, x, x,

t

k

)]}
=

1

2

[
3N
(
Tmx, x, x,

t

k

)
+ 0
]

6N
(
Tmx, x, x, t

)
≤ 3N

(
Tmx, x, x,

t

k

)
+ 0

≤ 3N(Tmx, x, x, t) + 0

Therefore, 3N(Tmx, x, x, t) ≤ 0. That is N
(
Tmx, x, x, t) ≤ 0.

Hence N(Tmx, x, x, t) = 0 for all t > 0. That is Tmx = x.
Hence Tnx = x for all n.
Therefore x is a common fixed point of {Tn}.
Uniqueness: Suppose x 6= y such that Tny = y for all n. Then

3M(x, y, y, t) = 3M(Tix, Tjy, Tky, t)

≥

 M
(
x, y, y, t

k

)
+ M

(
x, Tix, Tjy,

t
k

)
+1

2

[
M
(
y, Tjy, Tkz,

t
k

)
+ M

(
y, Tkz, Tix,

t
k

)] 
=

 M
(
x, y, y, t

k

)
+ M

(
x, x, y, t

k

)
+1

2

[
M
(
y, y, y, t

k

)
+ M

(
y, y, x, t

k

)] 
=

 M
(
x, y, y, t

k

)
+ M

(
x, y, y, t

k

)
+1

2

[
1 + M

(
x, y, y, t

k

)] 
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=
1

2

[
5M
(
x, y, y,

t

k

)
+ 1
]

6M(x, y, y, t) ≥ 5M
(
x, y, y,

t

k

)
+ 1

≥ 5M(x, y, y, t) + 1

Therefore M(x, y, y, t) ≥ 1. Hence M(x, y, y, t) = 1 for all t > 0 and

3N(x, y, y, t) = 3N(Tix, Tjy, Tky, t)

≤

 N
(
x, y, y, t

k

)
+ N

(
x, Tix, Tjy,

t
k

)
+1

2

[
N
(
y, Tjy, Tkz,

t
k

)
+ N

(
y, Tkz, Tix,

t
k

)] 
=

 N
(
x, y, y, t

k

)
+ N

(
x, x, y, t

k

)
+1

2

[
N
(
y, y, y, t

k

)
+ N

(
y, y, x, t

k

)] 
=

 N
(
x, y, y, t

k

)
+ N

(
x, y, y, t

k

)
+1

2

[
0 + N

(
x, y, y, t

k

)] 
=

1

2

[
5N
(
x, y, y,

t

k

)
+ 0
]

6N(x, y, y, t) ≤ 5N
(
x, y, y,

t

k

)
+ 0

≤ 5N(x, y, y, t) + 0

Therefore N(x, y, y, t) ≤ 0
Hence N(x, y, y, t) = 0 for all t > 0.
Therefore x = y. Which is a contradiction to x 6= y.
Hence {Tn} have a unique common fixed point.
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