Gen. Math. Notes, Vol. 24, No. 1, September 2014, pp.52-57
ISSN 2219-7184; Copyright ©ICSRS Publication, 2014
www.i-csrs.org
Available free online at http://www.geman.in

Derivations of Operators on Hilbert Modules

A. Sahleh ${ }^{1}$ and L. Najarpisheh ${ }^{2}$
${ }^{1,2}$ Department of Mathematics, University of Guilan
P.O. Box 1914, Rasht, Iran
${ }^{1}$ E-mail: sahlehj@guilan.ac.ir
${ }^{2}$ E-mail: najarpisheh@phd.guilan.ac.ir

(Received: 19-4-14 / Accepted: 25-5-14)

Abstract

Let A be a C^{*}-algebra and X be a right Hilbert A-module. In this paper we study the relation between innerness of derivations on $\mathcal{K}(X)$, compact operators on X, and $\mathcal{L}(X)$, adjointable operators on X, also we show that with the certain conditions every derivation on $\mathcal{K}(X)$ and $\mathcal{L}(X)$ is zero.

Keywords: C^{*}-algebra, Hilbert C^{*}-module, Derivation.

1 Introduction

Hilbert C^{*}-modules were first introduced in the work of I. Kaplansky [5]. Hilbert C^{*}-modules are very useful in operator K-theory, operator algebra, Morita equivalence and others. Hilbert C^{*}-modules form a category in between Banach spaces and Hilbert spaces and obey the same axioms as a Hilbert space except that inner product takes values in a C^{*}-algebra rather than in the complex numbers. Let us recall some basic facts about the Hilbert C^{*}-modules.

Let A be a C^{*}-algebra. An right inner product A-module is a linear space X which is a right A-module (with compatible scalar multiplication: $\lambda(x . a)=(\lambda x) . a=x .(\lambda a)$ for $x \in X, a \in A, \lambda \in \mathbf{C})$, together with a map $(x, y) \longmapsto\langle x, y\rangle_{X}: X \times X \longrightarrow A$ such that for all $x, y, z \in X, a \in A, \alpha, \beta \in \mathbf{C}$
(i) $\langle x, \alpha y+\beta z\rangle_{X}=\alpha\langle x, y\rangle_{X}+\beta\langle x, z\rangle_{X}$;
(ii) $\langle x, y \cdot a\rangle_{X}=\langle x, y\rangle_{X} a$;
(iii) $\langle y, x\rangle_{X}=\langle x, y\rangle_{X}^{*}$;
(iv) $\langle x, x\rangle_{X} \geq 0 ; \quad$ if $\langle x, x\rangle_{X}=0$ then $x=0$.

A right pre-Hilbert A-module X is called a right Hilbert A-module if it is complete with respect to the norm $\|x\|=\left\|\langle x, x\rangle_{X}\right\|^{\frac{1}{2}}$. X is said to be full if the linear span of the set $\left\{\langle x, y\rangle_{X}: x, y \in X\right\}$ is dense in A. One interesting example of full right Hilbert C^{*}-modules is any C^{*} - algebra A as a right Hilbert A-module via $\langle a, b\rangle_{A}=a^{*} b \quad(a, b \in A)$.
Likewise, a left Hilbert A-module with an A-valued inner product ${ }_{x}\langle\cdot,$.$\rangle can$ be defined.

Let X be a right Hilbert A-module, we define $\mathcal{L}(X)$ to be the set of all maps $T: X \longrightarrow X$ for which there is a map $T^{*}: X \longrightarrow X$ such that $\langle T x, y\rangle_{X}=\left\langle x, T^{*} y\right\rangle_{X}(x, y \in X)$. It is easy to see that T must be bounded A-linear and $\mathcal{L}(X)$ is a C^{*}-algebra. For $x, y \in X$, define the operator $\theta_{x, y}$ on X by $\theta_{x, y}(z)=x .\langle y, z\rangle_{X} \quad(z \in X)$. Denote by $\mathcal{K}(X)$ the closed linear span of $\left\{\theta_{x, y}: x, y \in X\right\}$, then $\mathcal{K}(X)$ is a closed two sided ideal in $\mathcal{L}(X)$. The reader is referred to [6] for more details on Hilbert C^{*}-modules.

In this paper a derivation of an algebra A is a linear mapping D from A into itself such that $D(a b)=a D(b)+D(a) b$ for all $a, b \in A$. For a fixed $b \in A$, the mapping $a \longmapsto a b-b a$ is clearly a derivation, which is called an inner derivation implemented by b.

2 Derivations of $\mathcal{K}(X)$ and $\mathcal{L}(X)$

The aim of present section is to study the derivations of operators on a Hilbert C^{*}-module. Throughout this section A is a C^{*}-algebra.

Lemma 2.1 [7] Every derivation of a C^{*}-algebra is bounded.
Theorem 2.2 Let X be a full right Hilbert A-module. If every derivation of $\mathcal{K}(X)$ is inner, then any derivation of $\mathcal{L}(X)$ is also inner.

Proof: Let D be a derivation of $\mathcal{L}(X)$ and let $x, y \in X$. By Cohen's factorization Theorem [3] for x there exists $a \in A, z \in X$ such that $x=z . a$. Moreover since X is full, there exists $\left(a_{n}\right)$ in $\langle X, X\rangle_{X}$ such that $a=\lim _{n} a_{n}$. Each a_{n} is of the form $a_{n}=\sum_{i=1}^{k_{n}}\left\langle x_{i n}, y_{i n}\right\rangle_{X}$ in which $x_{i n}, y_{i n} \in X$. Hence

$$
\begin{aligned}
D\left(\theta_{z . a_{n}, y}\right) & =D\left(\theta_{\sum_{i=1}^{k_{n}} z .\left\langle x_{i n}, y_{i n}\right\rangle_{X}, y}\right) \\
& =D\left(\sum_{i=1}^{k_{n}} \theta_{z .\left\langle x_{i n}, y_{i n}\right\rangle_{X}, y}\right) \\
& =\sum_{i=1}^{k_{n}} D\left(\theta_{z, x_{i n}} \theta_{y_{i n}, y}\right) \\
& =\sum_{i=1}^{k_{n}} \theta_{z, x_{i n}} D\left(\theta_{y_{i n}, y}\right)+\sum_{i=1}^{k_{n}} D\left(\theta_{z, x_{i n}}\right) \theta_{y_{i n}, y} \in \mathcal{K}(X) .
\end{aligned}
$$

Since $\left\|\theta_{\sum_{i=1}^{k_{n}} z .\left\langle x_{i n}, y_{i n}\right\rangle_{X}, y}-\theta_{x, y}\right\| \leq\left\|\sum_{i=1}^{k_{n}} z .\left\langle x_{i n}, y_{i n}\right\rangle_{X}-x\right\|\|y\|$, we get $\theta_{\sum_{i=1}^{k_{n}} z .\left\langle x_{i n}, y_{i n}\right\rangle_{X}, y}$ converges to $\theta_{x, y}$ in norm topology, as n tends to ∞. It follows from Lemma (2.1) that D maps $\mathcal{K}(X)$ into itself. Now since every derivation of $\mathcal{K}(X)$ is inner, there exists $T \in \mathcal{K}(X)$ such that $D(K)=K T-T K$ for all $K \in \mathcal{K}(X)$. Now for $S \in \mathcal{L}(X)$ and $\theta_{x, y}$ we have $D\left(S \theta_{x, y}\right)=S \theta_{x, y} T-T S \theta_{x, y}$. On the other hand,

$$
D\left(S \theta_{x, y}\right)=S D\left(\theta_{x, y}\right)+D(S) \theta_{x, y}=S \theta_{x, y} T-S T \theta_{x, y}+D(S) \theta_{x, y}
$$

Consequently, we obtain $D(S) \theta_{x, y}=(S T-T S) \theta_{x, y}$. So for all $z \in X$, $D(S) \theta_{x, y}(z)=(S T-T S) \theta_{x, y}(z)$. Now since X is full, for every $u \in X$ there exist $x \in X$ and $\left(a_{n}\right) \subseteq A$ such that $u=\lim _{n} x . a_{n}$ and every a_{n} is of the form $a_{n}=\sum_{i=1}^{k_{n}}\left\langle x_{i n}, y_{i n}\right\rangle_{X}$ in which $x_{i n}, y_{i n} \in X$. Now since $D(S),(S T-T S) \in$ $\mathcal{L}(X)$ we have

$$
\begin{aligned}
D(S)(u) & =D(S)\left(\lim _{n} \sum_{i=1}^{k_{n}} x \cdot\left\langle x_{i n}, y_{i n}\right\rangle_{X}\right) \\
& =\lim _{n} D(S)\left(\sum_{i=1}^{k_{n}} x \cdot\left\langle x_{i n}, y_{i n}\right\rangle_{X}\right) \\
& =\lim _{n} \sum_{i=1}^{k_{n}} D(S)\left(x \cdot\left\langle x_{i n}, y_{i n}\right\rangle_{X}\right) \\
& =\lim _{n} \sum_{i=1}^{k_{n}}(S T-T S)\left(x \cdot\left\langle x_{i n}, y_{i n}\right\rangle_{X}\right) \\
& =(S T-T S)\left(\lim _{n} \sum_{i=1}^{k_{n}} x \cdot\left\langle x_{i n}, y_{i n}\right\rangle_{X}\right) \\
& =(S T-T S)(u)
\end{aligned}
$$

Hence $D(S)=S T-T S$ and this completes the proof.
The following definition of a Hilbert bimodule is orginally due to Brown, Mingo and Shen [2].

Definition 2.3 Let X be an A-bimodule. X is said to be a Hilbert A bimodule, when X is a left and right Hilbert A-module and satisfies the relation ${ }_{x}\langle x, y\rangle . z=x .\langle y, z\rangle_{X}$.

Example 2.4 Let A be a C^{*}-algebra. Then A is a Hilbert A-bimodule with left and right inner products given by ${ }_{A}\langle a, b\rangle=a b^{*}$ and $\langle a, b\rangle_{A}=a^{*} b \quad(a, b \in A)$.

Proposition 2.5 Let X be a Hilbert A-bimodule. If A is commutative then $\mathcal{K}(X)$ is commutative.

Proof: Since $\mathcal{K}(E)$ is the closed linear span of $\left\{\theta_{x, y}: x, y \in X\right\}$, we show that $\theta_{x, y} \theta_{u, v}(z)=\theta_{u, v} \theta_{x, y}(z)$ for every $x, y, u, v, z \in X$.

$$
\begin{aligned}
\theta_{x, y} \theta_{u, v}(z)=\theta_{x \cdot\langle y, u\rangle_{X}, v}(z)=x .\langle y, u\rangle_{X}\langle v, z\rangle_{X} & ={ }_{X}\left\langle x .\langle y, u\rangle_{X}, v\right\rangle . z \\
& ={ }_{X}\left\langle{ }_{X}\langle x, y\rangle . u, v\right\rangle . z \\
& ={ }_{X}\langle x, y\rangle_{X}\langle u, v\rangle . z . \\
\theta_{u, v} \theta_{x, y}(z)=\theta_{u .\langle v, x\rangle_{X}, y}(z)=u .\langle v, x\rangle_{X}\langle y, z\rangle_{X} & ={ }_{X}\left\langle u \cdot\langle v, x\rangle_{X}, y\right\rangle . z \\
& ={ }_{X}\left\langle{ }_{X}\langle u, v\rangle . x, y\right\rangle . z \\
& ={ }_{X}\langle u, v\rangle_{X}\langle x, y\rangle . z . \\
& ={ }_{x}\langle x, y\rangle_{X}\langle u, v\rangle . z .
\end{aligned}
$$

Therefore $\theta_{x, y} \theta_{u, v}=\theta_{u, v} \theta_{x, y}$, as claimed.

Remark 2.6 Let A be a C^{*}-algebra. In [4, theorem 2] R. V. Kadison showed that Each derivation of A annihilates its center.

Corollary 2.7 Let X be a Hilbert A-bimodule. If A is commutative then every derivation on $\mathcal{K}(X)$ is zero.

Proof: Since A is commutative, the C^{*}-algebra $\mathcal{K}(X)$ is commutative. So by remark (2.6) every derivation on $\mathcal{K}(X)$ is zero.

Let X be a Hilbert A-bimodule and $T \in \mathcal{L}(X)$. Then there exists an operator $T^{*} \in \mathcal{L}(X)$ such that $\langle T x, y\rangle_{X}=\left\langle x, T^{*} y\right\rangle_{X}(x, y \in X)$. Here there exist one interesting point about T and T^{*}, in fact we can't conclude that ${ }_{x}\langle T x, y\rangle={ }_{x}\left\langle x, T^{*} y\right\rangle$. For example let A be a noncommutative C^{*}-algebra and $Z(A)$ be the center of A. Then for Hilbert A-bimodule A, the operator T_{c} $(c \notin Z(A))$ defined by $T_{c}(a)=c a$ on A is a adjointable operator and $T_{c}{ }^{*}=T_{c^{*}}$, because

$$
\left\langle T_{c}(a), b\right\rangle_{A}=\langle c a, b\rangle_{A}=(c a)^{*} b=a^{*} c^{*} b=\left\langle a, c^{*} b\right\rangle_{A}=\left\langle a, T_{c^{*}} b\right\rangle_{A},
$$

But since ${ }_{A}\left\langle T_{c}(a), b\right\rangle={ }_{A}\langle c a, b\rangle=c a b^{*}$ and ${ }_{A}\left\langle a, T_{c^{*}}(b)\right\rangle={ }_{A}\left\langle a, c^{*} b\right\rangle=a\left(c^{*} b\right)^{*}=$ $a b^{*} c$, we have ${ }_{A}\left\langle T_{c}(a), b\right\rangle \neq{ }_{A}\left\langle a, T_{c^{*}}(b)\right\rangle$.

Remark 2.8 Let A be a commutative C^{*}-algebra and X a Hilbert C^{*} bimodule over A. In [1, Proposition 1.4] B. Abadie and R. Exel proved that ${ }_{x}\langle x, y\rangle . z={ }_{x}\langle z, y\rangle . x$ for all $x, y, z \in X$. By this Proposition, for all $x, y, z, t \in$ X we have:

$$
\begin{aligned}
\left.{ }_{x}\left\langle_{X}\langle x, y\rangle . z, t\right\rangle={ }_{x}{ }_{X}{ }_{x}\langle z, y\rangle \cdot x, t\right\rangle={ }_{x}\langle z, y\rangle_{x}\langle x, t\rangle= & ={ }_{x}\langle x, t\rangle_{x}\langle z, y\rangle \\
& \left.={ }_{x}{ }_{x}\langle x, t\rangle . z, y\right\rangle \\
& ={ }_{x}\left\langle x .\langle t, z\rangle_{x}, y\right\rangle .
\end{aligned}
$$

Proposition 2.9 Let A be commutative and X be a Hilbert A-bimodule. If $T \in \mathcal{L}(X)$ Then for all $x, y \in X,{ }_{x}\langle T x, y\rangle={ }_{x}\left\langle x, T^{*} y\right\rangle$.

Proof: Suppose that $u={ }_{x}\langle T x, y\rangle-{ }_{x}\left\langle x, T^{*} y\right\rangle$, we prove that $u u^{*}=0$.

$$
\begin{aligned}
u u^{*} & \left.={ }_{{ }_{X}}\langle T x, y\rangle-{ }_{x}\left\langle x, T^{*} y\right\rangle\right)\left({ }_{x}\langle y, T x\rangle-{ }_{x}\left\langle T^{*} y, x\right\rangle\right) \\
& ={ }_{x}\langle T x, y\rangle_{x}\langle y, T x\rangle-{ }_{x}\langle T x, y\rangle_{x}\left\langle T^{*} y, x\right\rangle \\
& -{ }_{x}\left\langle x, T^{*} y\right\rangle_{x}\langle y, T x\rangle+{ }_{x}\left\langle x, T^{*} y\right\rangle_{X}\left\langle T^{*} y, x\right\rangle \\
& ={ }_{x}\left\langle{ }_{x}\langle T x, y\rangle \cdot y, T x\right\rangle-{ }_{x}\left\langle{ }_{x}\langle T x, y\rangle . T^{*} y, x\right\rangle \\
& -{ }_{x}\left\langle{ }_{X}\left\langle x, T^{*} y\right\rangle \cdot y, T x\right\rangle+{ }_{x}\left\langle{ }_{x}\left\langle x, T^{*} y\right\rangle . T^{*} y, x\right\rangle
\end{aligned}
$$

Now by Remark (2.8), we have

$$
\begin{aligned}
u u^{*} & ={ }_{x}\left\langle T x .\langle T x, y\rangle_{x}, y\right\rangle-{ }_{x}\left\langle T x .\left\langle x, T^{*} y\right\rangle_{X}, y\right\rangle \\
& -{ }_{x}\left\langle x \cdot\langle T x, y\rangle_{X}, T^{*} y\right\rangle+{ }_{x}\left\langle x .\left\langle x, T^{*} y\right\rangle_{x}, T^{*} y\right\rangle \\
& ={ }_{x}\left\langle{ }_{x}\langle T x, T x\rangle \cdot y, y\right\rangle-{ }_{x}\left\langle T x .\langle T x, y\rangle_{x}, y\right\rangle \\
& -{ }_{x}\left\langle x \cdot\left\langle x, T^{*} y\right\rangle_{X}, T^{*} y\right\rangle+{ }_{x}\left\langle{ }_{x}\langle x, x\rangle . T^{*} y, T^{*} y\right\rangle \\
& ={ }_{x}\langle T x, T x\rangle_{x}\langle y, y\rangle-{ }_{x}\langle T x, T x\rangle_{x}\langle y, y\rangle \\
& -{ }_{x}\langle x, x\rangle_{X}\left\langle T^{*} y, T^{*} y\right\rangle+{ }_{x}\langle x, x\rangle_{X}\left\langle T^{*} y, T^{*} y\right\rangle \\
& =0 .
\end{aligned}
$$

Thus we conclude that ${ }_{x}\langle T x, y\rangle-{ }_{x}\left\langle x, T^{*} y\right\rangle=0$ as claimed.

Theorem 2.10 Let X be a Hilbert A-bimodule. If A is commutative then every derivation on $\mathcal{L}(X)$ is zero.

Proof: Let D be a derivation of $\mathcal{L}(X)$. First notice that for every x, y in X, the operator $\theta_{x, y}$ belongs to the center of $\mathcal{L}(X)$. Let $T \in \mathcal{L}(X)$, then $\theta_{x, y} T(z)=\theta_{x, T^{*} y}(z)=x \cdot\left\langle T^{*} y, z\right\rangle_{X}={ }_{x}\left\langle x, T^{*} y\right\rangle . z$. Now by Proposition (2.9) we have

$$
\theta_{x, y} T(z)={ }_{x}\langle T x, y\rangle . z=T x \cdot\langle y, z\rangle_{X}=\theta_{T x, y}(z)=T \theta_{x, y}(z) .
$$

So Remark (2.6) implies that for every x, y in $X, D\left(\theta_{x, y}\right)=0$. Now we prove that for every operator $T \in \mathcal{L}(X), D(T)=0$. For this goal, let $x \in X$. Thus $D(T) \theta_{x, D(T)(x)}=D\left(T \theta_{x, D(T)(x)}\right)-T D\left(\theta_{x, D(T)(x)}\right)=0$.
Hence for every $z \in X$ we conclude that

$$
D(T) \theta_{x, D(T)(x)}(z)=D(T)\left(x \cdot\langle D(T)(x), z\rangle_{X}\right)=D(T)(x) \cdot\langle D(T)(x), z\rangle_{X}=0
$$

Now by setting $z=D(T)(x)$ we have $D(T)(x) \cdot\langle D(T)(x), D(T)(x)\rangle_{X}=0$ and so $\langle D(T)(x), D(T)(x)\rangle_{X}\langle D(T)(x), D(T)(x)\rangle_{X}=0$. This implies that $\langle D(T)(x), D(T)(x)\rangle_{X}=0$, consequently we obtain $D(T)(x)=0$ and the proof is complete.

References

[1] B. Abadie and R. Exel, Hilbert C^{*}-bimodules over commutative C^{*} algebras and an isomorphism condition for quantum Heisenberg manifolds, Rev. Math. Phys., 9(1997), 411-423.
[2] L.G. Brown, J.A. Mingo and N.T. Shen, Quasi-multipliers and embeddings of Hilbert C^{*}-bimodules, Canad. J. Math., 46(6) (1994), 1150-1174.
[3] F.F. Bonsall and J. Duncan, Complete Normed Algebra, Springer-Verlag, Berlin, (1973).
[4] R.V. Kadison, Derivations of operator algebras, Ann. Math., 83(2) (1966), 280-293.
[5] I. Kaplansky, Modules over operator algebras, Amer. J. Math., 75(1953), 839-858.
[6] E.C. Lance, Hilbert C^{*}-modules, LMS Lecture Note Series 210, Cambridge Univ. Press, (1995).
[7] S. Sakai, On a conjecture of Kaplansky, Tohoku Math. J., 12(1960), 31-33.

