

Gen. Math. Notes, Vol. 24, No. 1, September 2014, pp.52-57 ISSN 2219-7184; Copyright ©ICSRS Publication, 2014 www.i-csrs.org Available free online at http://www.geman.in

Derivations of Operators on Hilbert Modules

A. Sahleh¹ and L. Najarpisheh²

^{1,2}Department of Mathematics, University of Guilan P.O. Box 1914, Rasht, Iran
¹E-mail: sahlehj@guilan.ac.ir
²E-mail: najarpisheh@phd.guilan.ac.ir

(Received: 19-4-14 / Accepted: 25-5-14)

Abstract

Let A be a C*-algebra and X be a right Hilbert A-module. In this paper we study the relation between innerness of derivations on $\mathcal{K}(X)$, compact operators on X, and $\mathcal{L}(X)$, adjointable operators on X, also we show that with the certain conditions every derivation on $\mathcal{K}(X)$ and $\mathcal{L}(X)$ is zero.

Keywords: C^{*}-algebra, Hilbert C^{*}-module, Derivation.

1 Introduction

Hilbert C^* -modules were first introduced in the work of I. Kaplansky [5]. Hilbert C^* -modules are very useful in operator K-theory, operator algebra, Morita equivalence and others. Hilbert C^* -modules form a category in between Banach spaces and Hilbert spaces and obey the same axioms as a Hilbert space except that inner product takes values in a C^* -algebra rather than in the complex numbers. Let us recall some basic facts about the Hilbert C^* -modules.

Let A be a C*-algebra. An right inner product A-module is a linear space X which is a right A-module (with compatible scalar multiplication: $\lambda(x.a) = (\lambda x).a = x.(\lambda a)$ for $x \in X$, $a \in A$, $\lambda \in \mathbf{C}$), together with a map $(x, y) \longmapsto \langle x, y \rangle_X : X \times X \longrightarrow A$ such that for all $x, y, z \in X$, $a \in A$, $\alpha, \beta \in \mathbf{C}$

$$\begin{array}{l} \text{(i)} \ \langle x, \alpha y + \beta z \rangle_{\!_X} = \alpha \langle x, y \rangle_{\!_X} + \beta \langle x, z \rangle_{\!_X} \ ;\\ \text{(ii)} \ \langle x, y.a \rangle_{\!_X} = \langle x, y \rangle_{\!_X} a;\\ \text{(iii)} \ \langle y, x \rangle_{\!_X} = \langle x, y \rangle_{\!_X}^* \ ;\\ \text{(iv)} \langle x, x \rangle_{\!_X} \ge 0 \ ; \qquad \text{if } \langle x, x \rangle_{\!_X} = 0 \ \text{then } x = 0 \ . \end{array}$$

A right pre-Hilbert A-module X is called a right Hilbert A-module if it is complete with respect to the norm $||x|| = ||\langle x, x \rangle_x||^{\frac{1}{2}}$. X is said to be full if the linear span of the set $\{\langle x, y \rangle_x : x, y \in X\}$ is dense in A. One interesting example of full right Hilbert C^{*}-modules is any C^{*}- algebra A as a right Hilbert A-module via $\langle a, b \rangle_A = a^*b$ $(a, b \in A)$.

Likewise, a left Hilbert A-module with an A-valued inner product $_{X}\langle .,.\rangle$ can be defined.

Let X be a right Hilbert A-module, we define $\mathcal{L}(X)$ to be the set of all maps $T : X \longrightarrow X$ for which there is a map $T^* : X \longrightarrow X$ such that $\langle Tx, y \rangle_X = \langle x, T^*y \rangle_X (x, y \in X)$. It is easy to see that T must be bounded A-linear and $\mathcal{L}(X)$ is a C^{*}-algebra. For $x, y \in X$, define the operator $\theta_{x,y}$ on X by $\theta_{x,y}(z) = x \cdot \langle y, z \rangle_X$ $(z \in X)$. Denote by $\mathcal{K}(X)$ the closed linear span of $\{\theta_{x,y} : x, y \in X\}$, then $\mathcal{K}(X)$ is a closed two sided ideal in $\mathcal{L}(X)$. The reader is referred to [6] for more details on Hilbert C^{*}-modules.

In this paper a derivation of an algebra A is a linear mapping D from A into itself such that D(ab) = aD(b) + D(a)b for all $a, b \in A$. For a fixed $b \in A$, the mapping $a \longmapsto ab - ba$ is clearly a derivation, which is called an inner derivation implemented by b.

2 Derivations of $\mathcal{K}(X)$ and $\mathcal{L}(X)$

The aim of present section is to study the derivations of operators on a Hilbert C^* -module. Throughout this section A is a C^* -algebra.

Lemma 2.1 [7] Every derivation of a C^* -algebra is bounded.

Theorem 2.2 Let X be a full right Hilbert A-module. If every derivation of $\mathcal{K}(X)$ is inner, then any derivation of $\mathcal{L}(X)$ is also inner.

Proof: Let *D* be a derivation of $\mathcal{L}(X)$ and let $x, y \in X$. By Cohen's factorization Theorem [3] for *x* there exists $a \in A$, $z \in X$ such that x = z.a. Moreover since *X* is full, there exists (a_n) in $\langle X, X \rangle_X$ such that $a = \lim_n a_n$. Each a_n is of the form $a_n = \sum_{i=1}^{k_n} \langle x_{in}, y_{in} \rangle_X$ in which $x_{in}, y_{in} \in X$. Hence

$$D(\theta_{z.a_n,y}) = D(\theta_{\sum_{i=1}^{k_n} z.\langle x_{in}, y_{in} \rangle_X, y})$$

= $D(\sum_{i=1}^{k_n} \theta_{z.\langle x_{in}, y_{in} \rangle_X, y})$
= $\sum_{i=1}^{k_n} D(\theta_{z,x_{in}} \theta_{y_{in}, y})$
= $\sum_{i=1}^{k_n} \theta_{z,x_{in}} D(\theta_{y_{in}, y}) + \sum_{i=1}^{k_n} D(\theta_{z,x_{in}}) \theta_{y_{in}, y} \in \mathcal{K}(X).$

Since $\| \theta_{\sum_{i=1}^{k_n} z.\langle x_{in}, y_{in} \rangle_X, y} - \theta_{x,y} \| \le \| \sum_{i=1}^{k_n} z.\langle x_{in}, y_{in} \rangle_X - x \| \| y \|$, we get $\theta_{\sum_{i=1}^{k_n} z.\langle x_{in}, y_{in} \rangle_X, y}$ converges to $\theta_{x,y}$ in norm topology, as n tends to ∞ . It follows from Lemma (2.1) that D maps $\mathcal{K}(X)$ into itself. Now since every derivation of $\mathcal{K}(X)$ is inner, there exists $T \in \mathcal{K}(X)$ such that D(K) = KT - TK for all $K \in \mathcal{K}(X)$. Now for $S \in \mathcal{L}(X)$ and $\theta_{x,y}$ we have $D(S\theta_{x,y}) = S\theta_{x,y}T - TS\theta_{x,y}$. On the other hand,

$$D(S\theta_{x,y}) = SD(\theta_{x,y}) + D(S)\theta_{x,y} = S\theta_{x,y}T - ST\theta_{x,y} + D(S)\theta_{x,y}$$

Consequently, we obtain $D(S)\theta_{x,y} = (ST - TS)\theta_{x,y}$. So for all $z \in X$, $D(S)\theta_{x,y}(z) = (ST - TS)\theta_{x,y}(z)$. Now since X is full, for every $u \in X$ there exist $x \in X$ and $(a_n) \subseteq A$ such that $u = \lim_n x \cdot a_n$ and every a_n is of the form $a_n = \sum_{i=1}^{k_n} \langle x_{in}, y_{in} \rangle_X$ in which $x_{in}, y_{in} \in X$. Now since $D(S), (ST - TS) \in \mathcal{L}(X)$ we have

$$D(S)(u) = D(S)(\lim_{n} \sum_{i=1}^{k_{n}} x.\langle x_{in}, y_{in} \rangle_{X})$$

$$= \lim_{n} D(S)(\sum_{i=1}^{k_{n}} x.\langle x_{in}, y_{in} \rangle_{X})$$

$$= \lim_{n} \sum_{i=1}^{k_{n}} D(S)(x.\langle x_{in}, y_{in} \rangle_{X})$$

$$= \lim_{n} \sum_{i=1}^{k_{n}} (ST - TS)(x.\langle x_{in}, y_{in} \rangle_{X})$$

$$= (ST - TS)(\lim_{n} \sum_{i=1}^{k_{n}} x.\langle x_{in}, y_{in} \rangle_{X})$$

$$= (ST - TS)(u).$$

Hence D(S) = ST - TS and this completes the proof.

The following definition of a Hilbert bimodule is orginally due to Brown, Mingo and Shen [2].

Definition 2.3 Let X be an A-bimodule. X is said to be a Hilbert Abimodule, when X is a left and right Hilbert A-module and satisfies the relation $_{X}\langle x,y\rangle.z = x.\langle y,z\rangle_{X}.$

Example 2.4 Let A be a C^{*}-algebra. Then A is a Hilbert A-bimodule with left and right inner products given by $_{A}\langle a,b\rangle = ab^{*}$ and $\langle a,b\rangle_{A} = a^{*}b$ $(a,b \in A)$.

Proposition 2.5 Let X be a Hilbert A-bimodule. If A is commutative then $\mathcal{K}(X)$ is commutative.

Proof: Since $\mathcal{K}(E)$ is the closed linear span of $\{\theta_{x,y} : x, y \in X\}$, we show that $\theta_{x,y}\theta_{u,v}(z) = \theta_{u,v}\theta_{x,y}(z)$ for every $x, y, u, v, z \in X$.

$$\begin{split} \theta_{x,y}\theta_{u,v}(z) &= \theta_{x.\langle y,u\rangle_{X},v}(z) = x.\langle y,u\rangle_{X} \langle v,z\rangle_{X} &= \sqrt{x.\langle y,u\rangle_{X},v\rangle.z} \\ &= \sqrt{x.\langle y,u\rangle_{X},v\rangle.z} \\ &= \sqrt{x}\langle x,y\rangle_{X}\langle u,v\rangle.z \\ \theta_{u,v}\theta_{x,y}(z) &= \theta_{u.\langle v,x\rangle_{X},y}(z) = u.\langle v,x\rangle_{X} \langle y,z\rangle_{X} &= \sqrt{u.\langle v,x\rangle_{X},y\rangle.z} \\ &= \sqrt{x}\langle u,v\rangle_{X}\langle y,z\rangle.z \\ &= \sqrt{x}\langle u,v\rangle_{X}\langle x,y\rangle.z \\ &= \sqrt{x}\langle u,v\rangle_{X}\langle x,y\rangle.z . \end{split}$$

Therefore $\theta_{x,y}\theta_{u,v} = \theta_{u,v}\theta_{x,y}$, as claimed.

Remark 2.6 Let A be a C^* -algebra. In [4, theorem 2] R. V. Kadison showed that Each derivation of A annihilates its center.

Corollary 2.7 Let X be a Hilbert A-bimodule. If A is commutative then every derivation on $\mathcal{K}(X)$ is zero.

Proof: Since A is commutative, the C^* -algebra $\mathcal{K}(X)$ is commutative. So by remark (2.6) every derivation on $\mathcal{K}(X)$ is zero.

Let X be a Hilbert A-bimodule and $T \in \mathcal{L}(X)$. Then there exists an operator $T^* \in \mathcal{L}(X)$ such that $\langle Tx, y \rangle_X = \langle x, T^*y \rangle_X (x, y \in X)$. Here there exist one interesting point about T and T^* , in fact we can't conclude that $_X\langle Tx, y \rangle = _X\langle x, T^*y \rangle$. For example let A be a noncommutative C^* -algebra and Z(A) be the center of A. Then for Hilbert A-bimodule A, the operator T_c $(c \notin Z(A))$ defined by $T_c(a) = ca$ on A is a adjointable operator and $T_c^* = T_{c^*}$, because

$$\langle T_c(a), b \rangle_A = \langle ca, b \rangle_A = (ca)^* b = a^* c^* b = \langle a, c^* b \rangle_A = \langle a, T_{c^*} b \rangle_A,$$

But since $_{A}\langle T_{c}(a),b\rangle = _{A}\langle ca,b\rangle = cab^{*}$ and $_{A}\langle a,T_{c^{*}}(b)\rangle = _{A}\langle a,c^{*}b\rangle = a(c^{*}b)^{*} = ab^{*}c$, we have $_{A}\langle T_{c}(a),b\rangle \neq _{A}\langle a,T_{c^{*}}(b)\rangle$.

Remark 2.8 Let A be a commutative C^{*}-algebra and X a Hilbert C^{*}bimodule over A. In [1, Proposition 1.4] B. Abadie and R. Exel proved that $_{X}\langle x, y \rangle . z = _{X}\langle z, y \rangle . x$ for all $x, y, z \in X$. By this Proposition, for all $x, y, z, t \in X$ we have:

Proposition 2.9 Let A be commutative and X be a Hilbert A-bimodule. If $T \in \mathcal{L}(X)$ Then for all $x, y \in X$, $_{X}\langle Tx, y \rangle = _{X}\langle x, T^{*}y \rangle$.

Proof: Suppose that $u = {}_{X}\langle Tx, y \rangle - {}_{X}\langle x, T^*y \rangle$, we prove that $uu^* = 0$.

$$uu^{*} = (_{X}\langle Tx, y \rangle - _{X}\langle x, T^{*}y \rangle)(_{X}\langle y, Tx \rangle - _{X}\langle T^{*}y, x \rangle)$$

$$= _{X}\langle Tx, y \rangle_{X}\langle y, Tx \rangle - _{X}\langle Tx, y \rangle_{X}\langle T^{*}y, x \rangle$$

$$- _{X}\langle x, T^{*}y \rangle_{X}\langle y, Tx \rangle + _{X}\langle x, T^{*}y \rangle_{X}\langle T^{*}y, x \rangle$$

$$= _{X}\langle_{X}\langle Tx, y \rangle.y, Tx \rangle - _{X}\langle_{X}\langle Tx, y \rangle.T^{*}y, x \rangle$$

$$- _{X}\langle_{X}\langle x, T^{*}y \rangle.y, Tx \rangle + _{X}\langle_{X}\langle x, T^{*}y \rangle.T^{*}y, x \rangle$$

Now by Remark (2.8), we have

$$\begin{array}{rcl} uu^{*} & = & _{X}\langle Tx.\langle Tx,y\rangle_{X},y\rangle - _{X}\langle Tx.\langle x,T^{*}y\rangle_{X},y\rangle \\ & - & _{X}\langle x.\langle Tx,y\rangle_{X},T^{*}y\rangle + _{X}\langle x.\langle x,T^{*}y\rangle_{X},T^{*}y\rangle \\ & = & _{X}\langle _{X}\langle Tx,Tx\rangle.y,y\rangle - _{X}\langle Tx.\langle Tx,y\rangle_{X},y\rangle \\ & - & _{X}\langle x.\langle x,T^{*}y\rangle_{X},T^{*}y\rangle + _{X}\langle _{X}\langle x,x\rangle.T^{*}y,T^{*}y\rangle \\ & = & _{X}\langle Tx,Tx\rangle_{X}\langle y,y\rangle - _{X}\langle Tx,Tx\rangle_{X}\langle y,y\rangle \\ & - & _{X}\langle x,x\rangle_{X}\langle T^{*}y,T^{*}y\rangle + _{X}\langle x,x\rangle_{X}\langle T^{*}y,T^{*}y\rangle \\ & = & 0. \end{array}$$

Thus we conclude that $_{x}\langle Tx, y \rangle - _{x}\langle x, T^{*}y \rangle = 0$ as claimed.

Theorem 2.10 Let X be a Hilbert A-bimodule. If A is commutative then every derivation on $\mathcal{L}(X)$ is zero.

Proof: Let *D* be a derivation of $\mathcal{L}(X)$. First notice that for every x, y in *X*, the operator $\theta_{x,y}$ belongs to the center of $\mathcal{L}(X)$. Let $T \in \mathcal{L}(X)$, then $\theta_{x,y}T(z) = \theta_{x,T^*y}(z) = x \cdot \langle T^*y, z \rangle_X = {}_x \langle x, T^*y \rangle \cdot z$. Now by Proposition (2.9) we have

$$\theta_{x,y}T(z) = {}_{X}\langle Tx, y \rangle. z = Tx. \langle y, z \rangle_{X} = \theta_{Tx,y}(z) = T\theta_{x,y}(z).$$

So Remark (2.6) implies that for every x, y in X, $D(\theta_{x,y}) = 0$. Now we prove that for every operator $T \in \mathcal{L}(X)$, D(T) = 0. For this goal, let $x \in X$. Thus $D(T)\theta_{x,D(T)(x)} = D(T\theta_{x,D(T)(x)}) - TD(\theta_{x,D(T)(x)}) = 0$. Hence for every $z \in X$ we conclude that

$$D(T)\theta_{x,D(T)(x)}(z) = D(T)(x,\langle D(T)(x),z\rangle_X) = D(T)(x),\langle D(T)(x),z\rangle_X = 0$$

Now by setting z = D(T)(x) we have $D(T)(x).\langle D(T)(x), D(T)(x) \rangle_x = 0$ and so $\langle D(T)(x), D(T)(x) \rangle_x \langle D(T)(x), D(T)(x) \rangle_x = 0$. This implies that $\langle D(T)(x), D(T)(x) \rangle_x = 0$, consequently we obtain D(T)(x) = 0 and the proof is complete.

References

- B. Abadie and R. Exel, Hilbert C*-bimodules over commutative C*algebras and an isomorphism condition for quantum Heisenberg manifolds, *Rev. Math. Phys.*, 9(1997), 411-423.
- [2] L.G. Brown, J.A. Mingo and N.T. Shen, Quasi-multipliers and embeddings of Hilbert C^{*}-bimodules, Canad. J. Math., 46(6) (1994), 1150-1174.
- [3] F.F. Bonsall and J. Duncan, Complete Normed Algebra, Springer-Verlag, Berlin, (1973).
- [4] R.V. Kadison, Derivations of operator algebras, Ann. Math., 83(2) (1966), 280-293.
- [5] I. Kaplansky, Modules over operator algebras, Amer. J. Math., 75(1953), 839-858.
- [6] E.C. Lance, Hilbert C^{*}-modules, LMS Lecture Note Series 210, Cambridge Univ. Press, (1995).
- [7] S. Sakai, On a conjecture of Kaplansky, Tohoku Math. J., 12(1960), 31-33.