

Gen. Math. Notes, Vol. 23, No. 2, August 2014, pp. 43-50 ISSN 2219-7184; Copyright © ICSRS Publication, 2014 www.i-csrs.org Available free online at http://www.geman.in

2- Absorbing Sub Semi Modules of Partial Semi Modules

M. Srinivasa Reddy¹, V. Amarendra Babu² and P.V. Srinivasa Rao³

 ¹Department of S & H, D.V.R & Dr. H.S. MIC College of Technology Kanchikacherla- 521180, Krishna, Andhra Pradesh, India Email: maths4444@gmail.com
 ²Department of Mathematics, Acharya Nagarjuna University Nagarjuna Nagar-522510, Guntur, Andhra Pradesh, India Email: amarendravelisela@ymail.com
 ³Department of S & H, D.V.R & Dr. H.S. MIC College of Technology Kanchikacherla- 521180, Krishna, Andhra Pradesh, India

Email: srinu_fu2004@yahoo.co.in

(Received: 2-4-14 / Accepted: 19-5-14)

Abstract

The partial functions under disjoint-domain sums and functional composition do not form a field, and thus conventional linear algebra is not applicable. However they can be regarded as a so-ring, an algebraic structure possessing a natural partial ordering, an infinitary partial addition and a binary multiplication, subject to a set of axioms. In this paper, we introduce the notions of 2-absorbing ideal of so-rings and 2-absorbing subsemimodule of partial semimodules and study their characteristics.

Keywords: So-ring, Ideal, Prime ideal, 2-absorbing ideal, Partial semimodule, Subsemimodule, Multiplication partial semimodule, 2-absorbing subsemimodule.

Introduction:

Partially defined infinitary operations occur in the contexts ranging from integration theory to programming language semantics. The general cardinal algebras studied by Tarski in 1949, Σ - structures studied by Higgs in 1980, Housdorff topoligical commutative groups studied by Bourbaki in 1966, sum-ordered partial monoids and sum-ordered partial semirings studied by Arbib, Manes, Benson and Streenstrup are some of the algebraic structures of the above type.

Motivated by the work done in partially-additive semantics by Arbib, Manes [2] and in the development of matrix theory of so-rings by Martha E. Streenstrup [6], G. V. S. Acharyulu [1] in 1992 studied the conditions under which an arbitrary so-ring becomes a pfn(D,D), Mfn(D,D) and Mset(D,D). Continuing this study, P.V. Srinivasa Rao [8] in 2011 developed the ideal theory for so-rings and partial semimodules over partial semirings. In this paper, we generalise the concept of prime ideals in a different way as 2-absorbing ideals. In addition to it we introduce the notion of 2-absorbing subsemimodule of partial semimodules and characterize 2-absorbing subsemodules interms of 2-absorbing partial ideals of a partial semiring *R*.

1 Preliminaries

In this section we collect important definitions, results and examples which were already proved for our use in the next sections.

Definition 1.1 [5]: A partial monoid is a pair (M, Σ) where M is a non empty set and Σ is a partial addition defined on some, but not necessarily all families $(x_i : i \in I)$ in M subject to the following axioms:

(i) Unary Sum Axiom: If $(x_i : i \in I)$ is a one element family in M and $I = \{j\}$, then $\sum (x_i : i \in I)$ is defined and equals x_j .

(ii) Partition-Associatively Axiom: If $(x_i : i \in I)$ is a family in M and If $(I_j : j \in J)$ is a partition of I, then $(x_i : i \in I)$ is summable if and only if $(x_i : i \in I_j)$ is summable for every j in J and $(\sum (x_i : i \in I_j) : j \in J)$ is summable.

We write $\sum (x_i : i \in I) = \sum (\sum (x_i : i \in I_j) : j \in J).$

Definition 1.2 [5]: The sum ordering \leq on a partial monoid (M, Σ) is the binary relation \leq such that $x \leq y$ if and only if there exists a h in M such that y = x + h, for $x, y \in M$.

Definition 1.3 [5]: A partial semiring is a quadruple $(R, \Sigma, \cdot, 1)$, Where (R, Σ) is a partial monoid with partial addition \sum , $(R, \cdot, 1)$ is a monoid with multiplicative operation ' \cdot ' and unit '1', and the additive and multiplicative structures obey the following distributive laws:

If $\sum (x_i : i \in I)$ is defined in *R*, then for all *y* in *R*, $\sum (y \cdot x_i : i \in I)$ and $\sum (x_i \cdot y : i \in I)$ are defined and $y \cdot [\sum_i x_i] = \sum_i (y \cdot x_i), [\sum_i x_i] \cdot y = \sum_i (x_i \cdot y).$

Definition 1.4 [5]: A sum-ordered partial semiring (or so-ring for short), is a partial semiring in which the sum ordering is a partial ordering.

Definition 1.5 [1]: Let R be so-ring. A subset N of R is said to be an ideal of R if the following are satisfied:

(I₁) if $(x_i : i \in I)$ is a summable family in *R* and $x_i \in N$ for every $i \in I$ then $\sum x_i \in N$, (I₂) if $x \le y$ and $y \in N$ then $x \in N$, and

(I₃) if $x \in N$ and $r \in R$ then $xr, rx \in N$.

Theorem 1.6 [6]: An ideal of P of a complete so-ring R is prime if and only if for any $a, b \in R$, $ab \in P$ implies $a \in P$ or $b \in P$.

Definition 1.7 [7]: Let $(R, \Sigma, ., 1)$ be a partial semiring and (M, Σ) be a partial monoid. Then M is said to be a left partial semimodule over R if there exists a function $*: R \times M \to M: (r, x) \mapsto r * x$ which satisfies the following axioms for $x, (x_i: i \in I)$ in M and $r_1, r_2, (r_i: j \in J)$ in R

(i) if
$$\overline{\sum}_{i} x_{i}$$
 exists then $r * (\overline{\sum}_{i} x_{i}) = \overline{\sum}_{i} (r * x_{i})$,
(ii) if $\sum_{j} r_{j}$ exists then $(\sum_{j} r_{j}) * x = \overline{\sum}_{j} (r_{j} * x)$,
(iii) $r_{1} * (r_{2} * x) = (r_{1} \cdot r_{2}) * x$, and
(iv) $1_{R} * x = x$.

Definition 1.8 [7]: Let $(M, \overline{\Sigma})$ be a left partial semimodule over a partial semiring *R*. Then a nonempty subset *N* of *M* is said to be a subsemimodule of *M* if *N* is closed under $\overline{\Sigma}$ and *.

Remark 1.9 [7]: If *N* is a proper subsemimoule of a partial semimodule *M* over *R* then $(N : M) = \{r \in R \mid rM \subseteq N\}$.

Definition 1.10 [7]: Let M be a partial semimodule over R. Then M is said to be multiplication partial semimodule if for all subsemimodules N of M there exists a partial ideal I of R such that N = IM.

Theorem 1.11 [7]: A partial semimodule M over R is a multiplication partial semimodule if and only if there exists a partial ideal I of R such that Rm=IM for each $m \in M$.

Definition 1.12 [7]: Let M be a multiplication partial semimodule over R and N, K be subsemimodules of M such that N = IM and K = JM for some partial ideals I, J of R. Then the multiplication of N and K is defined as NK = (IM) (JM) = (IJ)M.

Definition 1.13 [7]: Let M be a multiplication partial semimodule over R and m_1 , $m_2 \in M$ such that $R m_1 = IM$ and $R m_2 = JM$ for some partial ideals I, J of R. Then the multiplication of m_1 and m_2 is defined as $m_1 m_2 = (IM)(JM) = (IJ)M$.

2 2- Absorbing Ideals

Throughout this section R denotes commutative so-ring. In this section we introduce the notion of 2-absorbing ideal and prove that radical of I is 2-absorbing ideal of so-ring.

Definition 2.1: A proper ideal of a so-ring R is called 2- absorbing if for any a, b, $c \in R$, $abc \in I$ implies $ab \in I$ or $ac \in I$ or $bc \in I$.

Remark 2.2: Every prime ideal of a so-ring *R* is 2-absorbing.

Proof: Suppose *P* is a prime ideal of *R*.

Let $a, b, c \in R \ni abc \in P$. Since P is prime,

Case-1: $a \in P$ or $bc \in P$. $\Rightarrow ab \in P$ or $bc \in P$.

Case-2: $ab \in P$ or $c \in P$. $\Rightarrow ab \in P$ or $ac \in P$.

From case-1 and case-2, $ab \in P$ or $bc \in P$ or $ac \in P$. Hence *P* is a 2-absorbing ideal of *R*.

Note that the converse need not be true.

Example 2.3: Consider the so-ring $R = \{0, u, v, x, y, 1\}$ with \sum defined on R by

$$\sum_{i} x_{i} = \begin{cases} x_{j} & \text{if } x_{i} = 0 \quad \forall i \neq j, \text{ for some } j, \\ undefined, & otherwise. \end{cases}$$

And ' \cdot ' defined by the following table:

•	0	и	v	x	у	1
0	0	0	0	0	0	0
и	0	и	0	0	0	и
v	0	0	v	0	0	v
x	0	0	0	0	0	x
v	0	0	0	0	0	v
1	0	11	v	r	v	1
1	V	vi	r	~	y	1

Then the ideal $I = \{0, u, x\}$ is a 2-absorbing ideal. Since $v.y = 0 \in I$, but $v \notin I$ and $y \notin I$, I is not prime.

Theorem 2.4: If I and J are prime ideals of a so-ring R, then $I \cap J$ is 2-absorbing.

Proof: Suppose *I* and *J* are prime ideals of *R*. Let *a*, *b*, $c \in R \ni abc \in I \cap J$. Then $abc \in I$ and $abc \in J$. $\Rightarrow a \in I$ or $bc \in I$ and $a \in J$ or $bc \in J$. $\Rightarrow a \in I$ or $bc \in I$ and $a \in J$ or $bc \in J$. $\Rightarrow a \in I$ or $c \in I$ and $a \in J$ or $b \in J$ or $c \in J$. $\Rightarrow ab \in I \cap J$ or $bc \in I \cap J$ or $ac \in I \cap J$. Hence $I \cap J$ is a 2-absorbing ideal of *R*.

Remark 2.5 [8]: If *I* is an ideal of a so-ring *R* then the radical of *I* is $\sqrt{I} = \{a \in R \mid a^n \in I \text{ for some } n \in N\}.$

Theorem 2.6: If I is a 2-absorbing ideal of so-ring R, then \sqrt{I} is a 2-absorbing ideal of a so-ring R.

Proof: Let *I* be a 2-absorbing ideal of so-ring *R*. Let *a*, *b*, $c \in R \ni abc \in \sqrt{I}$. $\Rightarrow (abc)^n \in I$ for some $n \in \mathbb{N}$. $\Rightarrow a^n b^n c^n \in I$ for some $n \in \mathbb{N}$. Since *I* is 2absorbing, $a^n b^n \in I$ or $b^n c^n \in I$ or $a^n c^n \in I$ for some $n \in \mathbb{N}$. $\Rightarrow (ab)^n \in I$ or $(bc)^n \in I$ or $(ac)^n \in I$ for some $n \in \mathbb{N}$. $\Rightarrow ab \in \sqrt{I}$ or $bc \in \sqrt{I}$ or $ac \in \sqrt{I}$. Hence \sqrt{I} is a 2-absorbing ideal of *R*.

3 2-Absorbing Subsemimodules

Throughout this section *R* denotes a partial semiring.

In this section we introduce the notions of 2-absorbing subsemimodules of partial semimodules and characterize 2-absorbing subsemodules interms of 2-absorbing partial ideals of a partial semiring R.

Remark 3.1: Let *R* be a partial semiring. Then a partial ideal *I* is 2-*absorbing* iff for any partial ideals *A*, *B* and *C* of *R*, $ABC \subseteq I$ implies $AB \subseteq I$ or $BC \subseteq I$ or $AC \subseteq I$.

Definition 3.2: Let M be a partial semimodule over R and N be a proper subsemimodule of M. Then N is said to be a 2-absorbing subsemimodule of M if for any $a, b \in R$ and $m \in M$, $ab * m \in N$ implies $ab \in (N : M)$ or $a * m \in N$ or $b * m \in N$.

Theorem 3.3: Let M be a partial semimodule over R and K be a proper subsemimodule of M. If K is a 2-absorbing subsemimodule of M then its associated partial ideal (K: M) is a 2-absorbing partial ideal of R.

Proof: Suppose *K* is a 2-absorbing subsemimodule of *M*. Let *a*, *b*, $c \in R \ni abc \in (K:M)$. Then $(abc)M \subseteq K . \Rightarrow ab(cM) \subseteq K . \Rightarrow ab*(c*m) \in K \quad \forall m \in M . \Rightarrow ab \in (K:M)$ or $a*(c*m) \in K$ or $b*(c*m) \in K \quad \forall m \in M . \Rightarrow ab \in (K:M)$ or $a(cM) \subseteq K$ or $b(cM) \subseteq K . \Rightarrow ab \in (K:M)$ or $ac \in (K:M)$ or $bc \in (K:M)$.

Hence (K: M) is a 2-absorbing partial ideal of R.

Example 3.4: Let *R* be the partial semiring N with finite support addition and usual multiplication. Then M = NxN is a left partial semimodule over *R* by the scalar multiplication $*:(x,(a,b)) \mapsto (xa,xb)$ and K = 0x4N is a subsemimodule of *M*. Here $(K:M) = \{0\}$ which is a prime partial ideal of *R*. Hence it is 2-absorbing. Since $2 \cdot 2 * (0,1) \in K$, but $2 \cdot 2 = 4 \notin (K:M)$, $2 * (0,1) \notin K$ and hence *K* is not a 2-absorbing partial ideal of *R*.

Theorem 3.5: Let M be a multiplication partial semimodule over R and N be a subsemimodule of M. Then N is 2- absorbing subsemimodule of M if and only if (N:M) is a 2-absorbing partial ideal of R.

Proof: By the theorem.3.3, we get the necessary part. For the sufficient part, suppose (N : M) is a 2-absorbing partial ideal of *R*. Let *I*, *J* be a partial ideals of *R* and *K* be a subsemimodule of $M \ni (IJ) K \subseteq N$. Since *M* is multiplication partial semimodule, \exists a partial ideal *L* of $R \ni K = LM : \Rightarrow N \supseteq (IJ)(LM) = (IJL)M$. $\Rightarrow IJL \subseteq (N : M)$. Since (N : M) is a 2-absorbing partial ideal of *R*, $IJ \subseteq (N : M)$ or $JL \subseteq (N : M)$ or $IL \subseteq (N : M) : \Rightarrow IJ \subseteq (N : M)$ or $ILM \subseteq N$. \Rightarrow *IJ* \subseteq (*N* : *M*) or *JK* \subseteq *N* or *IK* \subseteq *N*. Hence *N* is a 2-absorbing subsemimodule of *M*.

Theorem 3.6: Let *M* be a multiplication partial semimodule over *R* and *N* be a subsemimodule of *M*. Then the following conditions are equivalent:

- (i) *N* is a 2-absorbing subsemimodule of *M*.
- (ii) For any subsemimodules U, V and W of M, $UVW \subseteq N$ implies $UV \subseteq N$ or $VW \subseteq N$ or $UW \subseteq N$.
- (iii) For any $m_1, m_2, m_3 \in M$, $m_1m_2m_3 \subseteq N$ implies $m_1m_2 \in N$ or $m_2m_3 \in N$ or $m_1m_3 \in N$.

Proof: (i) \Rightarrow (ii): Suppose *N* is a 2-absorbing subsemimodule of *M*. Let *U*, *V* and *W* be the subsemimodules of $M \ni UVW \subseteq N$. Since *M* is a multiplication partial semimodule, \exists partial ideals *I*, *J*, *K* of $R \ni U = IM$, V = JM and W = KM. $\Rightarrow UVW = (IJK)M \subseteq N$. $\Rightarrow IJK \subseteq (N : M)$. Since by the theorem.3.5, (N : M) is a 2-absorbing partial ideal of *R*, and so, $IJ \subseteq (N : M)$ or $JK \subseteq (N : M)$ or $IK \subseteq (N : M)$. $\Rightarrow UV = (IJ M)M \subseteq N$ or $(JK)M \subseteq N$ or $(IK)M \subseteq N$. $\Rightarrow UV \subseteq N$ or $VW \subseteq N$ or $UW \subseteq N$.

(ii) \Rightarrow (iii): Suppose for any subsemimodules U, V and W of M, $UVW \subseteq N \Rightarrow UV \subseteq N$ or $VW \subseteq N$ or $UW \subseteq N$. Let $m_1, m_2, m_3 \in M, m_1m_2m_3 \subseteq N$. Since M is a multiplication partial semimodule, \exists partial ideals I, J, K of $R \ni Rm_1 = IM, Rm_2 = JM$, $Rm_3 = KM$. $\Rightarrow m_1 m_2 m_3 = (Rm_1)(Rm_2)(Rm_3) = (IJK)M \subseteq N$. $\Rightarrow (Rm_1)(Rm_2)$ (Rm_3) = (IJK)M $\subseteq N$. $\Rightarrow (Rm_1)(Rm_2)(Rm_3) \subseteq N$. $\Rightarrow (Rm_1)(Rm_2) \subseteq N$ or $(Rm_2)(Rm_3) \subseteq N$ or $(Rm_1)(Rm_3) \subseteq N$. $\Rightarrow m_1m_2 \in N$ or $m_2m_3 \in N$ or $m_1m_3 \in N$.

(iii) \Rightarrow (i): Suppose for any $m_1, m_2, m_3 \in M, m_1m_2m_3 \subseteq N \Rightarrow m_1m_2 \in N$ or $m_2m_3 \in N$ or $m_1m_3 \in N$. Now we prove (*N*:*M*) is a 2-absorbing partial ideal of *R*. Let *I*, *J* and *K* be the partial ideals of $R \Rightarrow IJK \subseteq (N : M)$. Then(IJK) $M \subseteq N$. Suppose $IJ \not\subset (N : M), JK \not\subset (N : M)$ and $IK \not\subset (N : M)$. \Rightarrow (IJ) $M \not\subset N, (JK)M \not\subset N$ and $(IK)M \not\subset N. \Rightarrow \exists i \in I, j \in J$ and $k \in K, m_1, m_2, m_3 \in M \ni (ij) * m_1 \in (IJ)M \setminus N,$ $(jk) * m_2 \in (JK)M \setminus N$ and $(ik) * m_3 \in (IK)M \setminus N$.

 $\Rightarrow [(ij) * m_1][(jk) * m_2][(ik) * m_3] = [(IJ)M][(JK)M][(IK)M] = (IJK)M M \subseteq N.$ $\Rightarrow (ij) * m_1 \in N \text{ or } (jk) * m_2 \in N \text{ or } (ik) * m_3 \in N, \text{ a contradiction.}$

Hence (N : M) is a 2-absorbing partial ideal of *R*. Hence by the theorem.3.5, *N* is a 2-absorbing subsemimodule of *M*.

References

- [1] G.V.S. Acharyulu, A study of sum-ordered partial semirings, *Doctoral Thesis*, Andhra University, (1992).
- [2] M.A. Arbib and E.G. Manes, Partially additive categories and flowdiagram semantics, *Journal of Algebra*, 62(1980), 203-227.
- [3] S. Jonathan, *Golan: Semirings and their Applications*, Kluwer Academic Publishers, (1999).
- [4] J.N. Chaudhari, 2-Absorbing ideals in semirings, *International Journal of Algebra*, 6(6) (2012), 265-270.
- [5] E.G. Manes and D.B. Benson, The inverse semigroup of a sum-ordered semiring, *Semigroup Forum*, 31(1985), 129-152.
- [6] M.E. Streenstrup, Sum-ordered partial semirings, *Doctoral Thesis*, Graduate School of the University of Massachusetts (Department of Computer and Information Science), February (1985).
- [7] P.V.S. Rao, Partial semimodules over partial semirings, *Intenational Journal of Computational Cognition (IJCC)*, 8(4)(December) (2010), 80-84.
- [8] P.V.S. Rao, Ideal theory of sum-ordered partial semirings, *Doctoral Thesis*, Acharya Nagarjuna University, (2011).